Chapter 8 SU13

download Chapter 8 SU13

of 106

Transcript of Chapter 8 SU13

  • 7/30/2019 Chapter 8 SU13

    1/106

    Figure8.1

    Objec/ve:todesignapipingsystemhowtoes/matethepumpsize

    Chapter8ViscousflowinPipes

    WeneedtohaveapumptocompensateHeadlossduetofric/onHeadlossduetoelbows,valves,andEleva/onchange

  • 7/30/2019 Chapter 8 SU13

    2/106

    Gas Turbine to Produce Electricity

  • 7/30/2019 Chapter 8 SU13

    3/106

    Cogeneration with Gas Turbine

  • 7/30/2019 Chapter 8 SU13

    4/106

    Gas Turbine Blade

  • 7/30/2019 Chapter 8 SU13

    5/106

    Cooling of Gas Turbine Blade

  • 7/30/2019 Chapter 8 SU13

    6/106

    6.9.3.Viscousflowinacirculartube

    Figure6.34

    Navier-Stokesequa/onincylindricalcoordinates

  • 7/30/2019 Chapter 8 SU13

    7/106

    8.1.1LaminarandTurbulentFlows

    Figure8.3FlowislaminarifRe3,000

    Isthislaminarorturbulentflow?

    ReynoldsDyeExperiment

  • 7/30/2019 Chapter 8 SU13

    8/106

    Figure8.4

    Timedependenceoffluidvelocityatapoint

    Fluctua/oncomponentinthevelocityofaturbulentflow

  • 7/30/2019 Chapter 8 SU13

    9/106

    fig_08_18

    VelocityProfiles

    ParabolicprofileForLaminarFlow

    Power-lawprofileForTurbulentFlow

  • 7/30/2019 Chapter 8 SU13

    10/106

    B

  • 7/30/2019 Chapter 8 SU13

    11/106

    fig_08_19

    Fric/oninturbulentflowisgreatlyaffectedbyaroughsurface

    Inlaminarflow,

    whyisfric/onnotaffectedbysurfaceroughness?

  • 7/30/2019 Chapter 8 SU13

    12/106

    W

    A. 28,158;B.31,424;C.35,597;D.42,632

    Y

  • 7/30/2019 Chapter 8 SU13

    13/106

    8.1.2Entranceregion,developingflow,andfully

    developedflow

    Figure8.5

  • 7/30/2019 Chapter 8 SU13

    14/106

    8.1.3Pressurevaria/onalongahorizontalpipe,p(x)

    Figure8.6

    dPdzisconstantinafullydevelopedflow.

    Whyisdpdxgreater

    attheentranceregionthan

    atthefullydevelopedregion?

    Why?

  • 7/30/2019 Chapter 8 SU13

    15/106

    8.2FullyDevelopedLaminarFlow

    Rela/onshipbetweenwallshearstressandpressuredrop

    Figure8.7

    Objec/ve:toderivetheaboverela/onfromtheabovesketchAssume:steadystateflow,constantdiameterpipe

    accelera/oniszero.

    Thiswasderivedfrom

    Navier-Stokeseq.(Ch6)

  • 7/30/2019 Chapter 8 SU13

    16/106

    8.2FullyDevelopedLaminarFlow

    Rela/onshipbetweenwallshearstressandpressuredrop

    Figure8.8

    Free-bodydiagramofacylinderoffluid

  • 7/30/2019 Chapter 8 SU13

    17/106

    8.2FullyDevelopedLaminarFlow

    Rela/onshipbetweenwallshearstressandpressuredrop

    Alterna/vely,wecanderiveitfromvelocityprofile.(Chapter6)

  • 7/30/2019 Chapter 8 SU13

    18/106

    8.2FullyDevelopedLaminarFlow

    Rela/onshipbetweenwallshearstressandpressuredrop

  • 7/30/2019 Chapter 8 SU13

    19/106

    CapillaryTubeViscometer

    Capillarytube

    d=3mm

    Balancetomeasure

    Massflowrate

    Reservoir

    tank

    OpentoAir

    Liquid

    L=15cm

    H=7cmObjec/ve:todetermineliquidviscosity

    Given:Wecollected55gper1min.

    WhatisP[Pa]acrosscapillarytube?

    WhatisthevalueofvolumeflowrateQ[m3s]?

    Whatistheviscosityofliquid?

  • 7/30/2019 Chapter 8 SU13

    20/106

    H=7cm

    L=15cm

    Wecollected55gper1min.

    CapillaryTubeViscometer

  • 7/30/2019 Chapter 8 SU13

    21/106

  • 7/30/2019 Chapter 8 SU13

    22/106

    CapillaryTubeViscometer

  • 7/30/2019 Chapter 8 SU13

    23/106

    W

    A. 8;B.10;C.12;D.15

    WhydoesEGLdecrease

    alongxdirec/on?

    Answer:duetopressuredrop

  • 7/30/2019 Chapter 8 SU13

    24/106

    W

  • 7/30/2019 Chapter 8 SU13

    25/106

    8.2.3PipingSystemDesign

    (Es/ma/onofthelossduetofric/on)

    Deriva/onoffric/onfactorDefini/on

    Recall

    64/

  • 7/30/2019 Chapter 8 SU13

    26/106

    8.2.3Es/ma/onoffric/onalpressuredropusingfric/onfactor

    Recall

    From

    WhereForlaminarflow:

    Forturbulentflow:

  • 7/30/2019 Chapter 8 SU13

    27/106

    Calcula/onprocedureofpressuredropduetofric/on

    Step1:CalculateReynoldsnumber

    Step2:Determineifflowislaminarorturbulent.

    Step3:Determinefric/onfactor

    Step4:CalculateP

  • 7/30/2019 Chapter 8 SU13

    28/106

    Example(Laminarflow)

    Objec/ve:toes/matethefric/onalpressureloss

    Given:Water,pipediameterd=4mm;Length=19m

    Averagevelocity=0.35msDensity=1,000kgm3;Viscosity=1mPa.s

    10m

    7m

    2m

    Valve

    Step1:CalculateReynoldsnumber

    Step2:Determineifflowislaminarorturbulent.

    Step3:Determinefric/onfactor(f=0.04)

    Step4:Calculatefric/onalpressuredrop(Answer:P=11,638Pa)

    =0.04 19 /0.004 0.5(1000)0.352=11,638

  • 7/30/2019 Chapter 8 SU13

    29/106

    Example(turbulentflow)

    Objec/ve:toes/matethefric/onalpressureloss

    Given:Water,pipediameterd=4mm;Length=19mAveragevelocity=15ms

    Density=1,000kgm3;Viscosity=1mPa.s

    10m

    7m

    2m

    Valve

    Step1:CalculateReynoldsnumber

    Step2:Determineifflowislaminarorturbulent.

    Step3:Determinefric/onfactor(f=0.0202)

    f=0.316(60,000)0.25=0.31615.65=0.0202

    Step4:Calculatefric/onalpressuredrop(P=10,790,000Pa)

    Pump

    =0.0202 19 /0.004 0.5(1000)152=10,790,000

  • 7/30/2019 Chapter 8 SU13

    30/106

    Page412

    8.4.1MajorLossesSurfaceRoughnessEffectonFric/onalPressureDrop

    Forasmoothpipe(inturbulentflow)

    Foraroughsurfacepipe

    UseMoodychart

  • 7/30/2019 Chapter 8 SU13

    31/106

    Fric/onfactorasafunc/onofReynoldsnumberandrela/veroughnessfor

    roundpipestheMoodychartWhatisfforRe=60,000?Forasmoothpipef=0.02Foraroughpipe(/D=0.002)f=0.0253

    Figure8.20

  • 7/30/2019 Chapter 8 SU13

    32/106

    B

    V1=3msV2=2.1ms

  • 7/30/2019 Chapter 8 SU13

    33/106

  • 7/30/2019 Chapter 8 SU13

    34/106

    fig_03_21

    Thelocusofeleva/onsprovidedbyPitottubesisEnergyline.

    Thelocusofeleva/onsprovidedbysta/ctapishydraulicgradeline

    Ifweassumenofric/onallossandnominorloss,(Figfromchapter3)

    Pressurehead

    WithPitottube

  • 7/30/2019 Chapter 8 SU13

    35/106

    fig_03_22

    Ifweassumenofric/onallossandnominorloss,(Figfromchapter3)

    Pressure

    head

    WithPitottube

  • 7/30/2019 Chapter 8 SU13

    36/106

    Mc

    Thesearesta/cpressuretubes,

    measuringsta/cpressures.

    ?

  • 7/30/2019 Chapter 8 SU13

    37/106

  • 7/30/2019 Chapter 8 SU13

    38/106

    Mc

    FromB.Eq.,wehave

    Vexit=24.3ms

    Specificenergyisgivenas[Jkg].Thetotalenergyisconstanteverywhere.

    Answer:totalenergyintermsofpressure;P=(1000)(9.8)(30m)=294.3kPa.

    Totalenergydoesnotchange(duetofric/onlessassump/on).

    Totalspecificenergy=/=294.3/

  • 7/30/2019 Chapter 8 SU13

    39/106

    Y

    Disthepipediameter.

  • 7/30/2019 Chapter 8 SU13

    40/106

  • 7/30/2019 Chapter 8 SU13

    41/106

  • 7/30/2019 Chapter 8 SU13

    42/106

    fig_08_32

    8.4.2MinorLossinaSuddenExpansion,Fig.8.32

    GlobeValve

    SwingCheckValve

    GateValve

    StopCheckValve

    fig_08_33

    Notethatinletvelocityisequaltooutletvelocity.

    Whataboutinletpressureandoutletpressure?

    Sameornot?Why?

    Answer:Thereisalossofenergyintheformofpressuredropacrossavalve.

    Whydowelosesomeenergyorpressure?

  • 7/30/2019 Chapter 8 SU13

    43/106

    )2

    (2

    g

    VKh LL =

    LossCoefficients

    forPipeComponents

    Table8.2

  • 7/30/2019 Chapter 8 SU13

    44/106

    Example

    Objec/ve:toes/matethedischargepressureofpump

    Given:Water,pipediameterd=2cm;Length=23m

    Averagevelocity=2ms

    Density=1,000kgm3;Viscosity(water)=1mPa.s

    15m

    5m3m

    Valve

    Kforelbow=0.7

    Kforvalve=1.2

    Pump

    Duetofric/on

    Duetominorloss

  • 7/30/2019 Chapter 8 SU13

    45/106

  • 7/30/2019 Chapter 8 SU13

    46/106

  • 7/30/2019 Chapter 8 SU13

    47/106

  • 7/30/2019 Chapter 8 SU13

    48/106

  • 7/30/2019 Chapter 8 SU13

    49/106

  • 7/30/2019 Chapter 8 SU13

    50/106

    Example8.8

  • 7/30/2019 Chapter 8 SU13

    51/106

    Example8.8

  • 7/30/2019 Chapter 8 SU13

    52/106

    2.Considerawaterpumpingsystemshowninthefigurebelow.Waterflowsat12gpm.

    Insidediameterofthepipeis0.75in,lengthsaregivenin,losscoefficientsfor90-degree

    elbows=0.2,losscoefficientforwideopenvalve=0.4.1gal=0.133683;

  • 7/30/2019 Chapter 8 SU13

    53/106

  • 7/30/2019 Chapter 8 SU13

    54/106

    2.Considerawaterpumpingsystemshowninthefigurebelow.Waterflowsat12gpm.

    Insidediameterofthepipeis0.75in,lengthsaregivenin,losscoefficientsfor90-degree

    elbows=0.2,losscoefficientforwideopenvalve=0.4.1gal=0.133683;

  • 7/30/2019 Chapter 8 SU13

    55/106

    2.Considerawaterpumpingsystemshowninthefigurebelow.Waterflowsat12gpm.

    Insidediameterofthepipeis0.75in,lengthsaregivenin,losscoefficientsfor90-degree

    elbows=0.2,losscoefficientforwideopenvalve=0.4.1gal=0.133683;

  • 7/30/2019 Chapter 8 SU13

    56/106

    Powerthatshouldbedeliveredtopump

    =[]=Where

    Q=volumeflowrate[m3s]or[3s]

    P=totalpressureliinpump[Pa]or[psf]

    Conversion:

    1horsepower=1hp=550.lbs=745.7W

    Ifpumphas83%efficiency,=[]= /0.83

  • 7/30/2019 Chapter 8 SU13

    57/106

  • 7/30/2019 Chapter 8 SU13

    58/106

    Y

    Eleva/onfromEtoB

    =2.1hp

  • 7/30/2019 Chapter 8 SU13

    59/106

    Y

  • 7/30/2019 Chapter 8 SU13

    60/106

    Y

  • 7/30/2019 Chapter 8 SU13

    61/106

    fig_08_e11

    Example8.11

    Powerthatshouldbedeliveredtoturbine

    with100%efficiency:givenV=6.58s

  • 7/30/2019 Chapter 8 SU13

    62/106

    Example8.11

  • 7/30/2019 Chapter 8 SU13

    63/106

    W

    Conversion:1horsepower=1hp=550.lbs=745.7W

    A.1.0;B.1.5;C.2.0;D.3.0

  • 7/30/2019 Chapter 8 SU13

    64/106

    W

    A.0.2;B.0.6;C.1.0;D.2.0

    Conversion:1horsepower=1hp=550.lbs=745.7W

    85

    .85

    .85

  • 7/30/2019 Chapter 8 SU13

    65/106

    W

    Conversion:1horsepower=1hp=550.lbs=745.7W

  • 7/30/2019 Chapter 8 SU13

    66/106

    W

    Thenconsidering80%efficiency,

    Weget3.2650.8=4.08.

    Conversion:1horsepower=1hp=550.lbs=745.7W

  • 7/30/2019 Chapter 8 SU13

    67/106

    Fric/onFactorsforLaminarFlowinNoncircularDucts

    Usehydraulicdiameter,definedas

    Table8.3

    1

    2cm

  • 7/30/2019 Chapter 8 SU13

    68/106

  • 7/30/2019 Chapter 8 SU13

    69/106

    B

    V1A1=V2A2

  • 7/30/2019 Chapter 8 SU13

    70/106

    CoolingofAegisRadarSystem(phased-arraysystem)

  • 7/30/2019 Chapter 8 SU13

    71/106

    AS-17"Krypton"(Kh-31P)

    AegisRadarSystem(phased-arraysystem)

    OldRadar

  • 7/30/2019 Chapter 8 SU13

    72/106

    p_08_102

    MicrochannelcoolingsystemforVLSIchip

  • 7/30/2019 Chapter 8 SU13

    73/106

  • 7/30/2019 Chapter 8 SU13

    74/106

  • 7/30/2019 Chapter 8 SU13

    75/106

  • 7/30/2019 Chapter 8 SU13

    76/106

    Figure8.35Series(a)andparallel(b)pipesystems.

    8.5.2Mul/plePipeSystem

    Whatisconstant?

    Whatisconstant?

  • 7/30/2019 Chapter 8 SU13

    77/106

    Y

  • 7/30/2019 Chapter 8 SU13

    78/106

    W

  • 7/30/2019 Chapter 8 SU13

    79/106

    W

    Notethatf.V2=constant

    1

    2

    V2=2V1

  • 7/30/2019 Chapter 8 SU13

    80/106

    B

    V1=Q1A1=101.3963=7.1718s

    CalculateDP1

    DP1=2,238.9psf

    DP1=DP2

    1

    2

  • 7/30/2019 Chapter 8 SU13

    81/106

    TypicalVenturimeterconstruc/on.Figure8.44

    Whatistheopera/ngprinciple?

    8.6PipeFlowrateMeasurement

    ?

  • 7/30/2019 Chapter 8 SU13

    82/106

    Rotameter-typeflowmeter.(CourtesyofFischer&PorterCo.)

    Figure8.46

    8.6PipeFlowrateMeasurement

    Whatistheopera/ngprinciple?

  • 7/30/2019 Chapter 8 SU13

    83/106

    Turbine-typeflowmeter.(CourtesyofE.G.&G.FlowTechnology,Inc.)

    Figure8.47

    8.6PipeFlowrateMeasurement

    Whatistheopera/ngprinciple?

  • 7/30/2019 Chapter 8 SU13

    84/106

    FigureP8.84

    HWProblem8.84

    Waterat40oF,Flowrate=0.9galmin

    (gpmconversion:1USgallon=0.003786m3=0.133683)

    (Note1Bri/shimperialgallon=1.2USgallon)

    Determinepressuredrop.

  • 7/30/2019 Chapter 8 SU13

    85/106

    Chapter12Turbomachines

    Typicalposi/vedisplacementpumps:(a)/repump,(b)

    humanheart,(c)gearpump.

    Figure12.1

  • 7/30/2019 Chapter 8 SU13

    86/106

    12.4.2PumpPerformanceCharacteris/cs

    Typicalperformancecharacteris/csforacentrifugalpumpofa

    givensizeopera/ngataconstantimpellerspeed.

    Figure12.11

  • 7/30/2019 Chapter 8 SU13

    87/106

    Schema/cofapumpinstalla/oninwhichthepumpmustli

    fluidfromoneleveltoanother.

    Figure12.13

  • 7/30/2019 Chapter 8 SU13

    88/106

    .

    Typicalflowsystem

    WithReservoirtankabovepump

    Figure12.14

  • 7/30/2019 Chapter 8 SU13

    89/106

    12.4.2PumpPerformanceCharacteris/csFigure12.10(p.658)

    Units:

    1hP=745.7W

    1hP=550

    IfQ=0.5m3sandisP=20,000Pa,whatshouldbethesizeofmotor?(100%efficiency)

    Pump efficiency is not 100%

  • 7/30/2019 Chapter 8 SU13

    90/106

    Pumpefficiencyisnot100%.

    Figure12.11

    84%

    Ifpumpefficiencyis84%,13.4shouldbechangedto

  • 7/30/2019 Chapter 8 SU13

    91/106

    Figureonp.684(7thed)

    Systemcurve

  • 7/30/2019 Chapter 8 SU13

    92/106

    U/liza/onofthesystemcurveandthepumpperformancecurve

    toobtaintheopera/ngpointforthesystem.

    Figure12.15

  • 7/30/2019 Chapter 8 SU13

    93/106

    Example12.4FigureE12.4

    Objec/ve:todetermineQflowrate

    Given:totallengthofpipe=200

    Fric/onfactorf=0.02

    Pipediameter=6in

    Pumpcurveisgiven

    Solu/on:

    Weneedtodevelopasystemcurve,

    whichlookslikethis.

  • 7/30/2019 Chapter 8 SU13

    94/106

    FigureE12.4con7nued 1gal=0.133683

  • 7/30/2019 Chapter 8 SU13

    95/106

    Effectofopera/ngpumpsin(a)seriesand(b)inparallel.

    Figure12.16

    W

  • 7/30/2019 Chapter 8 SU13

    96/106

    W

    Conversion:1horsepower=1hp=550.lbs=745.7W

    Answerseenextpage

  • 7/30/2019 Chapter 8 SU13

    97/106

    AnswerforW49.

    W

  • 7/30/2019 Chapter 8 SU13

    98/106

    W

    Conversion:1horsepower=1hp=550.lbs=745.7W

    Answerseenextpage

  • 7/30/2019 Chapter 8 SU13

    99/106

    Answer

    W

  • 7/30/2019 Chapter 8 SU13

    100/106

    W

    Answerseenextpage

    PumpCurve

    SystemCurve

  • 7/30/2019 Chapter 8 SU13

    101/106

    W

  • 7/30/2019 Chapter 8 SU13

    102/106

    W

    A.0.55;B.2.15;C.4.35;D.5.40

    W

  • 7/30/2019 Chapter 8 SU13

    103/106

    W

    W

  • 7/30/2019 Chapter 8 SU13

    104/106

    W

    Answer:P=15+4+40=59m.Thus,ModelB.

  • 7/30/2019 Chapter 8 SU13

    105/106

    Answer:PumpC

    W

  • 7/30/2019 Chapter 8 SU13

    106/106

    W