Chapter 8 Design of infinite impulse response digital filter.

47
Chapter 8 Chapter 8 Design of infinite impulse Design of infinite impulse response digital filter response digital filter

Transcript of Chapter 8 Design of infinite impulse response digital filter.

Page 1: Chapter 8 Design of infinite impulse response digital filter.

Chapter 8Chapter 8

Design of infinite impulse Design of infinite impulse response digital filterresponse digital filter

Page 2: Chapter 8 Design of infinite impulse response digital filter.

2/47

IIR filter– Recursive equation of IIR filter

– Transfer function of IIR filter

1. Basic property of IIR filters1. Basic property of IIR filters

1 20 1 2

1 21 2

0

1

( )1

1

NN

MM

Nk

kk

Mk

kk

a a z a z a zH z

b z b z b z

a z

b z

0

0 1

( ) ( ) ( )

( ) ( )

k

N M

k kk k

y n h k x n k

a x n k b y n k

Page 3: Chapter 8 Design of infinite impulse response digital filter.

3/47

– Transfer function of IIR filter• Factored form

1 2

1 2

( )( ) ( )( )

( )( ) ( )N

M

K z z z z z zH z

z p z p z p

Page 4: Chapter 8 Design of infinite impulse response digital filter.

4/47

2. Design of IIR filter using analog 2. Design of IIR filter using analog filterfilter

Impulse invariant method– Identical impulse response of discrete filter to that of

analog filter

Analog Filter

Transfer Function

Digital Filter

Transfer Function

Impulse ResponseImpulse Response

Series

( )H s ( )H z

( )h t ( )h nT

Fig. 8-1.

Page 5: Chapter 8 Design of infinite impulse response digital filter.

5/47

– Design a LPF using Impulse invariant method

( )a

H ss a

Fig. 8-2.

Page 6: Chapter 8 Design of infinite impulse response digital filter.

6/47

• Inverse Laplace transform

• Sampling with T of inverse Laplace transform

• z-transform

( ) , 0ath t ae t

( ) anTnh h nT ae

0

0

1

0

1

( )

( )

1

z

z

z

nn

n

anT n

n

aT n

n

aT

H z h z

ae

a e

a

e

Page 7: Chapter 8 Design of infinite impulse response digital filter.

7/47

• Transfer function with single pole

• Inverse Laplace transform

• Sampling with T of inverse Laplace transform

1

( )N

i

i i

CH s

s p

1

( ) i

Np t

ii

h t C e

1

( ) i

Np nT

ii

h nT C e

Page 8: Chapter 8 Design of infinite impulse response digital filter.

8/47

• z-transform

• Using commutative law

0

0 1

( ) ( )

i

n

n

Np nT n

in i

H z h nT z

C e z

1 0

1

1 0

( )

( )

i

i

Np nT n

ii n

Np t n

ii n

H z C e z

C e z

Page 9: Chapter 8 Design of infinite impulse response digital filter.

9/47

• Using an infinite series

11

0

1( )

1i

i

p T np T

n

e ze z

11

( )1 i

Ni

p Ti

CH z

e z

Page 10: Chapter 8 Design of infinite impulse response digital filter.

10/47

– Repeated poles in designing filter• Repeated pole of l order

• z-transform

1 1

1 1

( 1)( )

( 1)! 1i

l li

l aT

a p

CH z

l a e z

( )( )

il

i

CH s

s p

Page 11: Chapter 8 Design of infinite impulse response digital filter.

11/47

– Complex number in designing filter (1)

• z-transform

– Complex number in designing filter (2)

• z-transform

( )( )( )

s aH s

s a jb s a jb

1

2 21

1 ( cos )( )

1 (2 cos ) z

aT

aTaT

e bT zH z

e bT z e

( )( )( )

bH s

s a jb s a jb

1

2 21

( sin )( )

1 (2 cos ) z

aT

aTaT

e bT zH z

e bT z e

Page 12: Chapter 8 Design of infinite impulse response digital filter.

12/47

– Example 8-1• second order Butterworth filter

• Partial fraction

• Impulse response function (T=1)

2

1( )

1 2H s

s s

2 2( )

( 1 ) 2 ( 1 ) 2

j jH s

s j s j

( 1 ) 2 1 ( 1 ) 2 1

1 2 1

1 2 1 2 2 2

2 2( )

1 1

2 sin(1 2)

1 2 cos(1 2)

j j

j jH z

e z e z

e z

e z e z

Page 13: Chapter 8 Design of infinite impulse response digital filter.

13/47

• Magnitude of impulse response function

– Summary of impulse invariance method(1)

(2) Multiply H(z) by T

1( ) ( )sT sz e

n

H z H s jmT

Fig. 8-3.

Page 14: Chapter 8 Design of infinite impulse response digital filter.

14/47

Bilinear z transform– Replacing s in the transfer function depending on the

filter required

• Arranging to z variable

2 1

1

zs

T z

12

12

Ts

zT

s

Page 15: Chapter 8 Design of infinite impulse response digital filter.

15/47

• Replacing

• Considering frequency scaling

– Replacing ,

(1 )2 2

(1 )2 2

T Tj

zT T

j

s j

2 2

2 2

2 1

1

2

2tan

2

d

d

d d

d d

j T

j T

j T j T

j T j T

d

ej

T e

e e

T e eT

jT

s j dj Tz e

Page 16: Chapter 8 Design of infinite impulse response digital filter.

16/47

– Relationship between analog frequency and digital frequency

2tan

2dT

T

tan2 2

dTT

Page 17: Chapter 8 Design of infinite impulse response digital filter.

17/47

• Frequency warping

Fig. 8-4.

Page 18: Chapter 8 Design of infinite impulse response digital filter.

18/47

– Example 8-2

• Using bilinear z transform

• in transfer function

1( )

11 ( )

1

H zk z

z

1( )

1 ( )c

H ss

k

11 1( )

2 2H z z

Page 19: Chapter 8 Design of infinite impulse response digital filter.

19/47

1) Impulse response of analog filter :

2) Frequency response of analog filter:

3) Impulse response of digital filter :

4) Frequency response of digital filter:

1/22

1

1 ( )c 1( )c - tan

cos2dT

1 sin-tan

1 cosd

d

T

T

cTce

Magnitude =

phase =

1 1, , 0, 0,

2 2

Magnitude =

phase =

Page 20: Chapter 8 Design of infinite impulse response digital filter.

20/47

5) Relationship between and

tan2d

c

T

dT

Page 21: Chapter 8 Design of infinite impulse response digital filter.

21/47

– Example 8-3• Specification of the desired filter

– Filter response : -3dB at 1000Hz

: -10dB at 3000Hz

– Sampling frequency : 10kHz

– Monotonic decrease in transition region(1000~3000Hz)

• Digital parameter from specification

1/100000[sec]T

2 1000[rad/sec], 0.2dp dpT

2 3000[rad/sec], 0.6dr drT

Page 22: Chapter 8 Design of infinite impulse response digital filter.

22/47

• Considering Frequency warp

– Prewarp

• Determining order of Butterworth filter

tan( ) 0.32492 2p dpT T

tan( ) 1.37642 2

drr TT

21.376410 log 1 ( ) 10

0.3249N

1N

Page 23: Chapter 8 Design of infinite impulse response digital filter.

23/47

• Using bilinear z transform

1( )

1 ( / )p

H ss

0.3949( )

10.3249

10.2452( 1)

0.5095

H zzz

z

z

2 1

1

zs

T z

Fig. 8-5.

Page 24: Chapter 8 Design of infinite impulse response digital filter.

24/47

Two transformation method– Impulse invariant method

– Bilinear z transform

3. Comparing two transformation 3. Comparing two transformation methodmethod

sTz e

2 1

1

zs

T z

Page 25: Chapter 8 Design of infinite impulse response digital filter.

25/47

– Example 8-4• Transfer function of analog filter

• Frequency response

• Using impulse invariant method (1)

1.333( )

1.333

aH s

s a s

1

( , 0.25 sec )0.75

a T

2 2

1.333( ) ( )

1.333aH j H j

1( ) tan1.333

j

1 1

1.333( )

1 1 0.716aT

aH z

e z z

Page 26: Chapter 8 Design of infinite impulse response digital filter.

26/47

• Frequency response with

• Using bilinear z transform (2)

cos( ) sin( )

cos(0.25 ) sin(0.25 )

j Tz e T j T

j

2 2

1.333( ) ( )

1 0.716cos(0.25 ) 0.716sin(0.25 )

j TIIH e H j

1 0.716sin(0.25 )( ) tan

1 0.716cos(0.25 )j

2 1

1

( ) ( )

( 2) ( 2)

0.333 0.333

2.333 1.667

zs

T z

H z H s

aTz aT

aT z aT

z

z

Page 27: Chapter 8 Design of infinite impulse response digital filter.

27/47

• Frequency response

2 22

2 2

( ) ( )

0.777cos (0.25 ) 0.222cos(0.25 ) 0.555 0.777sin(0.25 ) 1.332sin(0.25 )

2.333cos(0.25 ) 1.667 2.333sin(0.25 )

j TBH e H j

12 2

1.332sin(0.25 )( ) tan

0.777cos (0.25 ) 0.222cos(0.25 ) 0.555 0.777sin (0.25 )j

Page 28: Chapter 8 Design of infinite impulse response digital filter.

28/47

Analog

Constant Impulse Response

Bilinear z Transform

Fig. 8-6.

Page 29: Chapter 8 Design of infinite impulse response digital filter.

29/47

– Example 8-5

• Partial fraction of impulse response

• Inverse Laplace transform

2

1( )

2 1H s

s s

/ 2 / 2( )

1 1

2 2

j jH s

j js s

1

/ 2

( ) ( )

2 sin2

t

h t H s

te

L

Page 30: Chapter 8 Design of infinite impulse response digital filter.

30/47

• Frequency response

• Analog filter with -3db at

2

4

1( )

( ) 2( ) 1

1

1

H jj j

2

2 2

7

2 3 7

( ) ( )

2

3.948 10

8.886 10 3.948 10

c

c

c c

H s H s

s s

s s

2 1000[rad/sec]c

Page 31: Chapter 8 Design of infinite impulse response digital filter.

31/47

• Impulse invariant method

– Partial fraction using sampling period ( ) 410 [sec]T

( 2 )

1 ( 2 ) 2( 2 )2

2 sin( 2)( )

2 cos( 2)

c

c c

Tc c

T Tc

e T zH z

z ze T e

0.20.4443

2 2cT

3

1 2

2.449 10( )

1.158 0.4112

zH z

z z

Page 32: Chapter 8 Design of infinite impulse response digital filter.

32/47

• Bilinear z transform

2 1

1

2

22

2 2 2

2 2 2 2 2

2

2

( ) ( )

2 1 2 12

1 1

( 1)

4( 1) 2 2 ( 1) ( 1)

0.064( 2 1)

1.168 0.424

zB sT z

c

c c

c

c c

H z H s

z zT z T z

T z

z T z T z

z z

z z

Page 33: Chapter 8 Design of infinite impulse response digital filter.

33/47

Design of various filters using frequency transformation

4. Frequency transformation4. Frequency transformation

Analog low pass filter

(normalization filter)

Analogfrequency transform Low pass Low pass High pass Band pass Band reject

Desired digital filter

Bilinear z transform

or

Impulse invariant method

Fig. 8-7.

Page 34: Chapter 8 Design of infinite impulse response digital filter.

34/47

Analog

low pass filter

(normalization)

Digital

low pass filter

(normalization)

Analog

Low pass

High pass

Band pass

Band reject

Digital

Low pass

High pass

Band pass

Band reject

Bilinear transform

Bilinear transform

Analog frequency transform

Digital frequency transform

Fig. 8-8.

Page 35: Chapter 8 Design of infinite impulse response digital filter.

35/47

– Low pass filter• -3dB at

– High pass filter• By replacing to

• -3dB at

2

1( )

2 1H s

s s

2

1( )

( / ) 2( / ) 1c c

H ss s

1[rad/sec]c

( )1

sH s

s

( )c

sH s

s

s1

s

1[rad/sec]c

Page 36: Chapter 8 Design of infinite impulse response digital filter.

36/47

– Band pass filter• -3dB at

– Band reject filter• -3dB at

2 20s

ss

2 20

ss

s

1[rad/sec]c

1[rad/sec]c

Page 37: Chapter 8 Design of infinite impulse response digital filter.

Table. 8-1 Analog Frequency Transform

Low pass filter (cutoff frequency )

Low pass filter (cutoff frequency : )

High pass filter (cutoff frequency : )

Band pass filter(Upper cufoff frequency : ,Lower cufoff

frequency: , Band pass frequency : )

Band reject filter (Upper cufoff frequency : ,Lower cufoff frequency :

, Band reject frequency : )

1[rad sec]c ( )H s

c

ss

c

css

20 ,h l h l

h l2 2

0

( )h l

ss

s

20 ,h l h l

h l2 2

0

( )h lss

s

c

Page 38: Chapter 8 Design of infinite impulse response digital filter.

38/47

– Example 8-6• Specification of filter design

– -3dB at 10Hz

– Sampling frequency ( )

– Bilinear z transform

– Transfer function :

• Considering prewarp

2

1( )

1.414 1H s

s s

'tan tan 0.325

2 10c

c

T

100[Hz]sf

Page 39: Chapter 8 Design of infinite impulse response digital filter.

39/47

• Transfer function of analog LPF

• Bilinear z transform

2

2

1( )

1.414 10.325 0.325

0.105

0.46 0.105

H ss s

s s

11

2

2

2

1 2

1 2

0.105( ) ( )

1 10.46 0.105

1 1

0.105 0.21 0.105

1.56 1.79 0.645

0.067 0.135 0.067

1 1.147 0.413

zzs

H z H sz zz z

z z

z z

z z

z z

Page 40: Chapter 8 Design of infinite impulse response digital filter.

40/47

• For computational efficiency

• For accurate frequency

'2tan

2c

c

T

T

2 1

1

zs

T z

'tan

2c

c

T

1

1

zs

z

'2tan

2

2tan 65[rad / sec]

0.01 10

cc

T

T

Page 41: Chapter 8 Design of infinite impulse response digital filter.

41/47

Fig. 8-9.

Page 42: Chapter 8 Design of infinite impulse response digital filter.

42/47

– Example 8-7• Specification of filter design

– cutoff frequency ( )

– Sampling frequency ( )

– Bilinear z transform

– Transfer function :

• Cutoff frequency using prewarp

1( )

1LH ss

'tan tan 0.7265

2 5c

c

T

150[Hz]sf

30[Hz]sf

Page 43: Chapter 8 Design of infinite impulse response digital filter.

43/47

• Analog HPF using table 8-1

• Bilinear z transform

( ) ( )

1

0.72651

cs

L s

c

H s H s

s

ss

11

1

1

( ) ( )

0.5792 0.5792

1 0.1584

zzs

H z H s

z

z

Page 44: Chapter 8 Design of infinite impulse response digital filter.

44/47

Fig. 8-10.

Page 45: Chapter 8 Design of infinite impulse response digital filter.

45/47

– Example 8-8• Specification of filter design

– Band pass frequency ( )

– Sampling frequency ( )

– Order of filter : 2

– Bilinear z transform

• Using table 8-1

200 ~ 300[Hz]sf

2[kHz]sf

2 20

( )h l

ss

s

Page 46: Chapter 8 Design of infinite impulse response digital filter.

46/47

• Analog bandpass filter

1( )

1LH ss

20

'tan tan 0.3249

2 10

' 3tan tan 0.5095

2 20

0.1655

0.1846

hh

ll

h l

h l

T

T

2 20

2

( ) ( )

0.1846

0.1846 0.0274

s

s

Ls

H s H s

s

s s

Page 47: Chapter 8 Design of infinite impulse response digital filter.

47/47

• Bilinear z transform

11

2

1 2

( ) ( )

0.1367 0.1367

1 1.2362 0.7265

zzs

H z H s

z

z z