Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2...

42
Chapter 7 Chapter 7 Sequential Circuits Sequential Circuits Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering N ti l C t l U i it National Central University Jungli, Taiwan

Transcript of Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2...

Page 1: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Chapter 7 Chapter 7 ppSequential CircuitsSequential Circuits

Jin-Fu LiAdvanced Reliable Systems (ARES) Lab.

Department of Electrical EngineeringN ti l C t l U i itNational Central University

Jungli, Taiwan

Page 2: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Outline

Latches & RegistersS qu ncin Timin Di mSequencing Timing Diagram

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Page 3: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Sequencing Combinational logic

Output depends on current inputsp p pSequential logic

Output depends on current and previous inputsOutput depends on current and previous inputsRequires separating previous, current, futureCalled state or tokensCalled state or tokensEx: FSM, pipeline

CL

clk

in out

clk clk clk

CL CL

PipelineFinite State Machine

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Page 4: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Sequencing ElementsLatch: Level sensitive

A.k.a. transparent latch, D latchp ,Flip-flop: edge triggered

A k a master-slave flip-flop D flip-flop D A.k.a. master slave flip flop, D flip flop, D register

Timing Diagrams pch Q

clk clk

QTiming DiagramsTransparentOpaque

D

Flo

Latc Q D Q

OpaqueEdge-trigger

clk

D

Q (latch)

Q (fl )

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Q (flop)

Page 5: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Latches Negative-level sensitive latch

DQ

clk0

1 D

clkQ

Positive-level sensitive latch

Q0

clk

DD

Q1

clk Q

D

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

Page 6: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

RegistersPositive-edge triggered register (single-phase clock)p )

lk

00DQM D

clk

clk

1Q

Sclk

1S QM

clkclk

Q

master slavemaster slave

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Page 7: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Registers Operations of the positive-edge triggered register g

clk=0

clk=1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

Page 8: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Registers CMOS circuit implementation of the positive-edge triggered registerg gg g

D

Q

clk clk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Page 9: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Single-Phase Latch Positive active-static latch

-clk

D Q 1. Low area cost2 D i i bili f

clk2. Driving capability of

D must override the feedback inverter

-clk

D Qclk

clk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

-clk

Page 10: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Typical Latch Symbolic Layouts

Vdd

D Q

clk

-clk Q-clk

lk

DQ

clk

lklk clk-clk

Vss

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Page 11: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

CVSL (Differential) Style Register The following figure shows latches based on a CVSL structuren V L u u

An N and a P version are shown that are cascaded to form a registerg

-Q

clk

DQQ

clk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Page 12: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Double-Edge Triggered Register Th f ll i fi h l t h th t b The following figure shows latches that may be used to clock data on both edges of the clock

L t h 1 L t h 2clk Latch 1clk

Latch 2

D -DQ2 -Q2

Q1 -Q1D D

clk clk

D -D

Q1clk

Q2clk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Q1 Q2

Page 13: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Double-Edge Triggered Register Double-edge triggered register can be implemented by combining Latch 1 & Latch 2 p y gas follows

Latch 2

Q

Q2

-Q2

D

-Q

Q

-Q1

Q1clk

lk Latch 2 enabled

Latch 1clk Latch 1 enabled Latch 2 enabled

Q2=-Q2=low Q1=-Q1=high

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Page 14: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Asynchronously RegisterAsynchronously resettable register

clk t-clk -reset

Q

clk clk-clkclk

-clk -clkclk

D

clk

-reset

Q

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Q

Page 15: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Asynchronously RegisterAsynchronously resettable and settable register g

-clk -reset

Q

clk clk-clkclk

Q

lk

clk

D

-clk -clkclk

-set

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Page 16: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Dynamic Latches & RegistersDynamic single clock latches

clkDDD

clkclk

-Q-clk

DD

-clk-clk

Dynamic single clock registers

D

clk

-Q

-clk

Qclk-clk

D-clkclk

Q

-clk clk-clk clk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Page 17: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Dynamic LatchesClock active high latch

X QD CLK

D X

Xn QnDn CLK

01

HH

10

01

CLK Q 10

LL 1

Xn-1 Qn-1

Qn-1

Clock active high latch with buffer

D X

CLK -Q

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Page 18: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Dynamic LatchesClock active low latch

D X QD CLK

CLK

D

X Q

Xn QnDn CLK

01

LL

10

01

X Q10

HH

0 Xn-1

Qn-1

Qn-1

Clock active low latch with buffer

CLK

D

X -Q

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Page 19: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Dynamic LatchesClock active high and low latches without feedback

CLK

D

CLK

D X

Q

X Q

The problem of leakage currentAssume that the capacitance of node X is 0.002pF p pand the leakage current I is 1nA

Therefore, T=CV/I=0.002pFx5V/1nA=100usThat is, the latch needs to be refreshed each 100us. Otherwise, the output Q will become hi h

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

high

Page 20: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Sequencing Methods Flip-flops2-Phase Latches

Flip-Fl

clk

Tc

Pulsed Latches

ops

Flop

Flop

clk clk

Combinational Logic

φ1

φ

2-Phase Tran Tc/2

tnonoverlap tnonoverlap

atch

φ2

atch

atch

φ1 φ1φ2

nsparent Latche CombinationalL i

CombinationalL iLa

φp

La La

esP

ulsed

Logic Logic

tpw

Half-Cycle 1 Half-Cycle 1

φp φp

Latches

Combinational Logic

Latc

h

Latc

h

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Page 21: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Timing Diagrams

A tpdCombinational

LogicA YContamination and Propagation Delays

Yg

clk clk

tcd

tsetup t

tpd Logic Prop. Delay

tcd Logic Cont. Delay

p g y

FlopD Q

clk

D

setup thold

tpcq

tpcq Latch/Flop Clk-Q Prop Delay

tccq Latch/Flop Clk-Q Cont. Delay

tpdq Latch D-Q Prop DelayQ

clk clk

tccq

tsetup thold

pdq

tpcq Latch D-Q Cont. Delay

tsetup Latch/Flop Setup Time

L t h/Fl H ld Ti

Latc

hD Q

clk

D

tccq

setup holdtpcq

tpdqtcdq

thold Latch/Flop Hold Time

Q

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Page 22: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Max-Delay: Flip-Flops

( )setuppd c pcqt T t t≤ − +14243

clk clk

sequencing overheadF1 F2Combinational Logic

T

Q1 D2

clk

Tc

tsetupt

Q1 tpd

tpcq

D2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

Page 23: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Max Delay: 2-Phase Latches

Q1 2 3

φ1 φ1φ2

Combinational CombinationalQ2 Q3D1 D2 D3

( )1 2

sequencing overhead

2pd pd pd c pdqt t t T t= + ≤ −123

L1

φ

L2 L3

CombinationalLogic 1

CombinationalLogic 2

T

φ1

φ2

Tc

D1 tpdq1

Q1

D2

tpd1

tpdq2

Q2 tpd2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

D3

Page 24: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Max Delay: Pulsed Latches( )setup

sequencing overhead

max ,pd c pdq pcq pwt T t t t t≤ − + −14444244443

Q1 Q2D1 D2

φp φp

Combinational LogicL1 L2

Tc

D1 tpdq

Q1

D2

(a) tpw > tsetup tpd

D2

φp

tpw

Q1

D2

(b) tpw < tsetup

Tctpcq

tpd tsetup

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

D2

Page 25: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Min-Delay: Flip-Flops

holdcd ccqt t t≥ −clk

CLF1

clk

Q1

clk

D2

F2

D2

clk

Q1 tcdtQ1

D2

cd

thold

tccq

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

Page 26: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Min-Delay: 2-Phase Latches

1, 2 hold nonoverlapcd cd ccqt t t t t≥ − −φ

CLQ1

φ1

L1

Hold time reduced by nonoverlap

D2

φ2

L2

Paradox: hold applies twice each cycle, vs. only once for flops

φ1

tnonoverlap

t

only once for flops.

But a flop is made of two latches!

Q1

φ2

tcd

tccq

D2 thold

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Page 27: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Min-Delay: Pulsed Latches

holdcd ccq pwt t t t≥ − +

φHold time increased

CLQ1

φp

L1

by pulse width

φp

D2

L2

Q1

φp tpw

t

thold

tQ1

D2

tcdtccq

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Page 28: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Time BorrowingIn a flop-based system:

Data launches on one rising edgeg gMust setup before next rising edgeIf it arrives late, system failsf , y fIf it arrives early, time is wastedFlops have hard edgesFlops have hard edges

In a latch-based systemData can pass through latch while transparentData can pass through latch while transparentLong cycle of logic can borrow time into nextAs long as each loop completes in one cycleAs long as each loop completes in one cycle

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

Page 29: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Time Borrowing Example

φ1

φ2

φ1 φ1φ2La

tch

Latc

h

Latc

h

Combinational Logic CombinationalLogic(a)

Borrowing time acrosshalf-cycle boundary

Borrowing time acrosspipeline stage boundary

(b) atch

atchCombinational Logic Combinational

Logic

φ1 φ2

(b) La La

g Logic

L b ti i t ll b t t l t ithi th l

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

Loops may borrow time internally but must complete within the cycle

Page 30: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

How Much Borrowing?

Q11 2

φ1 φ2

Combinational Logic 1Q2D1 D2

L1

φ1

L2Combinational Logic 1

( )borrow setup nonoverlap2cTt t t≤ − +

2-Phase Latches

φ1

φ2Tc

tnonoverlap

2

Pulsed Latches

D2

Tc/2 Nominal Half-Cycle 1 Delay

tborrowtsetup

borrow setuppwt t t≤ −

Pulsed Latches

D2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Page 31: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Clock SkewWe have assumed zero clock skewClocks really have uncertainty in arrival timeClocks really have uncertainty in arrival time

Decreases maximum propagation delayIncreases minimum contamination delayIncreases minimum contamination delayDecreases time borrowing

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

Page 32: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Skew: Flip-Flops

F1 F2

clk clk

Combinational Logic

Tc

Q1 D2( )setup skew

e e i e he d

pd c pcqt T t t t≤ − + +144424443

clk

Q1

tskew

tsetup

tpcq

t d

sequencing overhead

hold skewcd ccqt t t t≥ − +Q1

D2

clk

setuptpdq

CLF1

Q1

clk

F2

c

D2

tskew

Q1

clk thold

tccq

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 32

D2 tcd

Page 33: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Skew: Latches

Q1

L1 L2 L3

φ1 φ1φ2

Combinational CombinationalQ2 Q3D1 D2 D3( )2t T t≤

2-Phase Latches

L

φ1

L LLogic 1 Logic 2( )sequencing overhead

1 2 h ld l k

2

,

pd c pdq

d d

t T t

t t t t t t

≤ −

≥ − − +

123

φ2

( )

1 2 hold nonoverlap skew

borrow setup nonoverlap skew

,

2

cd cd ccq

c

t t t t t t

Tt t t t

≥ +

≤ − + +

( )setup skewmax ,pd c pdq pcq pwt T t t t t t≤ − + − +1444442444443

Pulsed Latches

sequencing overhead

hold skewcd pw ccqt t t t t≥ + − +

2

( )borrow setup skewpwt t t t≤ − +

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 33

Page 34: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Two-Phase ClockingIf setup times are violated, reduce clock speedpIf hold times are violated, chip fails at any speedspeedIn this class, working chips are most importantimportant

No tools to analyze clock skewAn s t nt h ld tim s is t s An easy way to guarantee hold times is to use 2-phase latches with big nonoverlap times

ll h l k ( h h )Call these clocks φ1, φ2 (ph1, ph2)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 34

Page 35: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Safe Flip-FlopIn class, use flip-flop with nonoverlapping clocks

Very slow – nonoverlap adds to setup timeBut no hold times

In industry, use a better timing analyzerAdd buffers to slow signals if hold time is at riskAdd buffers to slow signals if hold time is at risk

φ2 Qφ1

D X Qφ2 φ1

φφ

φ

φ1

φ

φ2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 35

φ1φ2

Page 36: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Clock DistributionIn a large CMOS chip, clock distribution is a serious problemu p m

For example,Vdd=5Vdd

Creg=2000pF (20K register bits @ 0.1pF)Tclk=10nsTrise/fall=1nsIpeak=C(dv/dt)=(2000p)x(5/1n)=10AP =C(V )2f=2000px25x100=5WPd=C(Vdd)2f=2000px25x100=5W

Methods for reducing the values of Ipeaknd Pand Pd

Reduce Cl h /f ll

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 36

Interleaving the rise/fall time

Page 37: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Clock DistributionClocking is a floorplanning problem because clock delay varies with position on the chipy p pWays to improve clock distribution

Physical designPhysical designMake clock delays more evenAt least more predictable

Circuit designMinimizing delays using several stages of drivers

Two most common types of physical clocking networks

H-tree clock distributionBalanced-tree clock distribution

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 37

Page 38: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

H-Tree Clock Distribution

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 38

clock

Page 39: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

H-Tree Clock Distribution

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 39

Source: Prof. Irwin

Page 40: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Balanced-Tree Clock Distribution

clock

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 40

Page 41: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Reduce Clocking PowerTechniques used to reduce the high dynamic power dissipation

Use a low capacitance clock routing line such as metal3. This layer of metal can be, for example, dedicated to clock distribution onlyclock distribution onlyUsing low-swing drivers at the top level of the tree or in intermediate levels

C1 C2CA

Vdd

clkp -clkp

C

Vout

clkn

p

-clkn

p

C3 C4CB

Gnd

n n

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 41

Clock

Page 42: Chapter 7 Sequential Circuitsjfli/vlsi1/lecture08/ch07.pdf · 1 φ 1 φ 2 D1 D2 D3Combinational Q2 Q3Combinational 12 ( ) sequencing overhead tt t T t pd pd pd c pdq=+ ≤−2 123

Power & Ground Distribution

Source: Prof. Irwin

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 42