Chapter 6. Molten State - CHERIC...Molten state of polymers depends on MW Flexible-chain polymers -...

15
Polymer Physics Chapter 6 Chapter 6. Molten State 6.1 Introduction Kinetic energies of molecules potential energies of interaction : liquid " " : gas " " : solid (crystal) Molten state of polymers depends on MW Flexible-chain polymers - random conformation in molten state chain entanglements (important) Liquid-crystalline polymers - orientational order

Transcript of Chapter 6. Molten State - CHERIC...Molten state of polymers depends on MW Flexible-chain polymers -...

  • Polymer Physics Chapter 6

    Chapter 6. Molten State

    6.1 Introduction

    Kinetic energies of molecules ≈ potential energies of interaction : liquid " ≫ " : gas " ≪ " : solid (crystal)

    Molten state of polymers depends on MW

    Flexible-chain polymers - random conformation in molten state chain entanglements (important)

    Liquid-crystalline polymers - orientational order

  • Polymer Physics Chapter 6

    6.2 Fundamental concepts in rheology

    "Rheology" : the study which deals with the flow and deformation of fluids.(or ) relationships : (rheological) constitutive eq'ns

    Balance equation : Law of mass conservation (Continuity equation) Law of momentum conservation (Momentum equation) Law of energy conservation (Energy or Heat equation)

    * Incompressible, steady flow,

    (mass) (momentum) (energy)

    γσ − γσ &−

    STkTC

    p

    p&+∇+∇=∇⋅

    +⋅∇+−∇=∇⋅=⋅∇

    vσv

    gσvvv

    :

    0

    ρρ

  • Polymer Physics Chapter 6

    • Steady simple shear flow

    0,0,

    /

    322

    1

    21

    ===

    =

    vvdxdv

    AF

    γ

    σ

    &

    ⎟⎟⎟

    ⎜⎜⎜

    ⎛=

    33

    2221

    1211

    0000

    σσσσσ

    σstresses normal:,,

    ),symmetric(

    332211

    2112

    σσσσσ =

  • Polymer Physics Chapter 6

    * Material parameters

    tcoefficien stress normal secondary)(or second:

    tcoefficien stress normal primary)(or first :

    viscosity:

    23322

    2

    22211

    1

    21

    γσσ

    γσσ

    γση

    &

    &

    &

    −=Ψ

    −=Ψ

    =

  • Polymer Physics Chapter 6

    • Elongational flow

    * Uniaxial elongational flow

    for an incompressible fluid

    : elongational (or extensional) strain rate

    : elongational viscosity (fiber spinning)

    1

    2

    3

    332211 2,

    2, xvxvxv εεε &&& −=−==

    ε&

    εσση&

    2211 −=

  • Polymer Physics Chapter 6

    * Biaxial elongational flow

    (film blowing)

    1

    2

    332211 2,, xvxvxv

    3

    εεε &&& −===

    εσσ

    εσση

    &&33223311 −=

    −=B

  • Polymer Physics Chapter 6

    * Planar extensional flow

    (sheet casting)

    0,, 32211

    2

    =−== vxvxv εε &&

    εσση&

    2211 −=EP

    1

  • Polymer Physics Chapter 6

    • Dynamic flow

    : phase angle

    ・Complex shear modulus

    ・Complex viscosity

    ))(exp(

    "')sin(cos)exp(

    0*

    00*

    δωσσ

    γγωωγωγγ

    +=

    +=+==

    ti

    ititti

    δ

    modulus) phaseof(out modulus loss:"modulus) phaseinor modulus, (elastic modulus storage:'

    "'sincos0

    0

    0

    0*

    **

    --G-G

    iGGiG +=+== δγσδ

    γσ

    γσ

    storage)(energy viscosity complex ofpart elastic:"n)dissipatio(energy viscosity dynamic:'

    "''"**

    *

    ηη

    ηηωωγ

    ση iGiG −=−==&

  • Polymer Physics Chapter 6

    - Rheological behaviors of simple shear

    most polymer melts (pseudoplastic) wet beach sand (dilatant) oils, cement slurries, margarine (Bingham)

    γ&

    σ

  • Polymer Physics Chapter 6

    (Newtonian)

    (power-law) Ostwald-de Waele equation

    K : consistency factor, n : power-law index

    - Time dependence of a non-Newtonian liquid

    γησ &=21

    γγσ && 121−= nK

  • Polymer Physics Chapter 6

    6.3 Measurement of rheological properties:

    Couette viscometer, capillary viscometer, parallel-plate viscometer,

    cone-and-plate viscometer

    (first normal stress difference) =

    (second normal stress difference) =

    (first normal stress coefficient) =

    (second normal stress coefficient) =

    21 &, NNη

    1N

    2N

    2211 σσ −

    3322 σσ −

    21

    γ&N

    22

    γ&N

  • Polymer Physics Chapter 6

    ωφ

    θ

    r) :3 , :2 , :(1scoordinate Spherical θφ

    2221112RFN

    πσσ =−=

    33221121 22lnσσσσθθ −+=+=

    ∂∂

    =∂∂ NN

    rpr

    r

    cRT

    θωγ

    πγησ === && ,

    23)( 312

  • Polymer Physics Chapter 6

    6.4 Flexible-chain polymers

    Flow properties ~ function of MW & chain branching

    cMMM ∝ for4.3

    nt)entanglemechain ofpoint (startingmassmolar critical:cM

    일반적으로온도

    압력

    ↓→↑ η

    ↑→↑↑ η( ) ( )⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    ∆=⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    =00

    0 expexp TTREA

    TTBA

    αη

  • Polymer Physics Chapter 6

    • Rouse model

    flexible repeating units in viscous surroundings

    long enough to obey Gauss distribution

    Forces acting on each repeating unit

    i) drag force w.r.t. surrounding medium

    relative velocity of the repeating unit

    ii) force from the adjacent repeating units

    iii) force from Brownian motion

    Not applicable to polymer melts of MW > Mc

    ∴ Model for dilute solution

  • Polymer Physics Chapter 6

    • Reptation model

    coiled chain trapped in a network

    du Gennes : theory of reptation of polymer chains

    Doi & Edwards : the relationship of the dynamics of repeating chains to mechanical properties

    (rubbery plateau shear modulus)

    (zero-shear rate viscosity)

    experimental data :

    ∴Model for entangled polymer chains in the absence of a permanent network

    30

    0

    M

    MGp

    η

    4.30 M∝η