Chapter 6 Finite Differences - Engineering...

18
Chapter 6 Finite Differences 6.1 Introduction For a function = , finite differences refer to changes in values of (dependent variable) for any finite (equal or unequal) variation in (independent variable). In this chapter, we shall study various differencing techniques for equal deviations in values of and associated differencing operators; also their applications will be extended for finding missing values of a data and series summation. 6.2 Shift or Increment Operator () Shift (Increment) operator denoted by โ€˜โ€™ operates on () as = + Or = + , where โ€˜โ€™ is the step height for equi-spaced data points. Clearly effect of the shift operator is to shift the function value to the next higher value + or + Also 2 = () = + = +2 โˆด = + Moreover โˆ’1 = โˆ’ , where โˆ’1 is the inverse shift operator. 6.3 Differencing Operators If 0 , 1 , 2 , โ€ฆ be the values of for corresponding values of 0 , 1 , 2 , โ€ฆ , then the differences of are defined by ( 1 โˆ’ 0 ) , ( 2 โˆ’ 1 ) , โ€ฆ ,( โˆ’ โˆ’1 ) , and are denoted by different operators discussed in this section. 6.3.1 Forward Difference Operator โˆ† Forward difference operator โ€˜โˆ†โ€™ operates on as โˆ† = +1 โˆ’ Or โˆ† = + โˆ’ , where is the height of differencing. โˆด โˆ† 0 = 1 โˆ’ 0 โˆ† 1 = 2 โˆ’ 1 โ‹ฎ โˆ† = +1 โˆ’ Also โˆ† 2 0 = โˆ† 1 โˆ’ โˆ† 0 = 2 โˆ’ 1 โˆ’ 1 โˆ’ 0 = 2 โˆ’ 2 1 + 0 โ‹ฎ โˆ† 0 = โˆ’ 1 โˆ’1 + 2 โˆ’2 โˆ’โ‹ฏ + โˆ’1 โˆ’1 โˆ’1 1 + โˆ’1 0 Generalizing โˆ† = + โˆ’ 1 +โˆ’1 + 2 +โˆ’2 โˆ’โ‹ฏ + โˆ’1 Here โˆ† is the order forward difference; Table 6.1 shows the forward differences of various orders.

Transcript of Chapter 6 Finite Differences - Engineering...

Chapter 6

Finite Differences

6.1 Introduction

For a function ๐‘ฆ = ๐‘“ ๐‘ฅ , finite differences refer to

changes in values of ๐‘ฆ (dependent variable) for any

finite (equal or unequal) variation in ๐‘ฅ (independent

variable).

In this chapter, we shall study various differencing

techniques for equal deviations in values of ๐‘ฅ and

associated differencing operators; also their

applications will be extended for finding missing

values of a data and series summation.

6.2 Shift or Increment Operator (๐‘ฌ)

Shift (Increment) operator denoted by โ€˜๐ธโ€™ operates on ๐‘“(๐‘ฅ) as ๐ธ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘•

Or ๐ธ๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘ฅ+๐‘• , where โ€˜๐‘•โ€™ is the step height for equi-spaced data points.

Clearly effect of the shift operator ๐ธ is to shift the function value to the next

higher value ๐‘“ ๐‘ฅ + ๐‘• or ๐‘ฆ๐‘ฅ+๐‘•

Also ๐ธ2๐‘“ ๐‘ฅ = ๐ธ ๐ธ๐‘“(๐‘ฅ) = ๐ธ๐‘“ ๐‘ฅ + ๐‘• = ๐‘“ ๐‘ฅ + 2๐‘•

โˆด ๐ธ๐‘›๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘›๐‘•

Moreover ๐ธโˆ’1๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ โˆ’ ๐‘• , where ๐ธโˆ’1 is the inverse shift operator.

6.3 Differencing Operators

If ๐‘ฆ0, ๐‘ฆ1, ๐‘ฆ2 , โ€ฆ๐‘ฆ๐‘› be the values of ๐‘ฆ for corresponding values of ๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2 ,

โ€ฆ๐‘ฅ๐‘› , then the differences of ๐‘ฆ are defined by (๐‘ฆ1 โˆ’ ๐‘ฆ0), (๐‘ฆ2 โˆ’ ๐‘ฆ1), โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) , and are denoted by different operators discussed in this section.

6.3.1 Forward Difference Operator โˆ†

Forward difference operator โ€˜โˆ†โ€™ operates on ๐‘ฆ๐‘ฅ as โˆ†๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘ฅ+1โˆ’ ๐‘ฆ๐‘ฅ

Or โˆ†๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ’ ๐‘“ ๐‘ฅ , where ๐‘• is the height of differencing.

โˆด โˆ†๐‘ฆ0 = ๐‘ฆ1โˆ’ ๐‘ฆ0

โˆ†๐‘ฆ1 = ๐‘ฆ2โˆ’ ๐‘ฆ1

โ‹ฎ

โˆ†๐‘ฆ๐‘› = ๐‘ฆ๐‘›+1โˆ’ ๐‘ฆ๐‘›

Also โˆ†2๐‘ฆ0 = โˆ†๐‘ฆ1โˆ’ โˆ†๐‘ฆ0 = ๐‘ฆ2โˆ’ ๐‘ฆ1 โˆ’ ๐‘ฆ1โˆ’ ๐‘ฆ0 = ๐‘ฆ2 โˆ’ 2๐‘ฆ1 + ๐‘ฆ0

โ‹ฎ

โˆ†๐‘›๐‘ฆ0 = ๐‘ฆ๐‘› โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›โˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›โˆ’1 ๐‘›๐ถ๐‘›โˆ’1๐‘ฆ1 + โˆ’1 ๐‘›๐‘ฆ0

Generalizing โˆ†๐‘›๐‘ฆ๐‘Ÿ = ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘Ÿ๐‘ฆ๐‘Ÿ

Here โˆ†๐‘› is the ๐‘›๐‘ก๐‘• order forward difference; Table 6.1 shows the forward

differences of various orders.

Table 6.1 Forward Differences

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ โˆ†๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

โˆ†๐‘ฆ๐‘œ ๐’™๐Ÿ ๐‘ฆ1 โˆ†2๐‘ฆ๐‘œ

โˆ†๐‘ฆ1 โˆ†3๐‘ฆ๐‘œ ๐’™๐Ÿ y2 โˆ†2๐‘ฆ1 โˆ†4๐‘ฆ0

โˆ†๐‘ฆ2 โˆ†3๐‘ฆ1 โˆ†5๐‘ฆ0 ๐’™๐Ÿ‘ ๐‘ฆ3 โˆ†2๐‘ฆ2 โˆ†4๐‘ฆ1

โˆ†๐‘ฆ3 โˆ†3๐‘ฆ2 ๐’™๐Ÿ’ ๐‘ฆ4 โˆ†2๐‘ฆ3

โˆ†๐‘ฆ4 ๐’™๐Ÿ“ ๐‘ฆ5

The arrow indicates the direction of differences from top to bottom. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column.

Relation between โˆ† and ๐‘ฌ

โˆ† and ๐ธ are connected by the relation โˆ† โ‰ก ๐ธ โˆ’ 1

Proof: we know that โˆ†๐‘ฆ๐‘› = ๐‘ฆ๐‘›+1โˆ’ ๐‘ฆ๐‘›

= ๐ธ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›

โ‡’ โˆ†๐‘ฆ๐‘› = ๐ธ โˆ’ 1 ๐‘ฆ๐‘›

โ‡’ โˆ† โ‰ก ๐ธ โˆ’ 1 or ๐ธ โ‰ก 1 + โˆ†

Properties of operator โ€˜โˆ†โ€™

โˆ†๐ถ = 0 , ๐ถ being a constant

โˆ†๐ถ ๐‘“(๐‘ฅ) = ๐ถ๐‘“(๐‘ฅ)

โˆ†[๐‘Ž๐‘“ ๐‘ฅ ยฑ ๐‘๐‘”(๐‘ฅ)] = ๐‘Ž โˆ†๐‘“ ๐‘ฅ ยฑ ๐‘ โˆ†๐‘”(๐‘ฅ)

โˆ† ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ† ๐‘” ๐‘ฅ + ๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ , ๐‘“ & ๐‘” may be interchanged

โˆ† ๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ โˆ’๐‘“(๐‘ฅ)โˆ†๐‘” ๐‘ฅ

๐‘” ๐‘ฅ+๐‘• ๐‘” ๐‘ฅ

Result 1: The ๐’๐’•๐’‰ differences of a polynomial of degree 'n' are constant and all

higher order differences are zero.

Proof: Consider the polynomial ๐‘“(๐‘ฅ) of ๐‘›๐‘ก๐‘• degree

๐‘“(๐‘ฅ) = ๐‘Ž0๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ

๐‘›โˆ’1 + ๐‘Ž2๐‘ฅ๐‘›โˆ’2 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1๐‘ฅ + ๐‘Ž๐‘›

First differences of the polynomial ๐‘“(๐‘ฅ) are calculated as:

โˆ† ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ’ ๐‘“(๐‘ฅ)

= ๐‘Ž0 (๐‘ฅ + ๐‘•)๐‘› โˆ’ ๐‘ฅ๐‘› + ๐‘Ž1 (๐‘ฅ + ๐‘•)๐‘›โˆ’1 โˆ’ ๐‘ฅ๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1 ๐‘ฅ + ๐‘• โˆ’ ๐‘ฅ = ๐‘Ž0๐‘›๐‘• ๐‘ฅ๐‘›โˆ’1 + ๐‘Ž1

โ€ฒ ๐‘ฅ๐‘›โˆ’1 + ๐‘Ž2โ€ฒ ๐‘ฅ๐‘›โˆ’2 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1

โ€ฒ ๐‘• + ๐‘Ž๐‘›โ€ฒ

where ๐‘Ž1โ€ฒ , ๐‘Ž2

โ€ฒ ,โ€ฆ ,๐‘Ž๐‘›โˆ’1โ€ฒ , ๐‘Ž๐‘›

โ€ฒ are new constants

โ‡’ First difference of a polynomial of degree ๐‘› is a polynomial of degree (๐‘› โˆ’ 1)

Similarly โˆ†2๐‘“ ๐‘ฅ = โˆ† ๐‘“ ๐‘ฅ + ๐‘• โˆ’ โˆ† ๐‘“ ๐‘ฅ

= ๐‘Ž0๐‘›(๐‘› โˆ’ 1)๐‘•2 ๐‘ฅ๐‘›โˆ’2 + ๐‘Ž1โ€ฒโ€ฒ ๐‘ฅ๐‘›โˆ’3 + โ€ฆ+ ๐‘Ž๐‘›

โ€ฒโ€ฒ

โˆด Second difference of a polynomial of degree ๐‘› is a polynomial of degree (๐‘› โˆ’ 2)

Repeating the above process โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›(๐‘› โˆ’ 1)โ€ฆ2.1๐‘•๐‘› ๐‘ฅ๐‘›โˆ’๐‘›

โ‡’ โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› which is a constant

โˆด ๐‘›๐‘ก๐‘• Difference of a polynomial of degree ๐‘› is a polynomial of degree zero.

Thus (๐‘› + 1)๐‘ก๐‘•and higher order differences of a polynomial of ๐‘›๐‘ก๐‘• degree are all

zero.

The converse of above result is also true , i.e. if the ๐‘›๐‘ก๐‘• difference of a

polynomial given at equally spaced points are constant then the function is

a polynomial of degree โ€˜๐‘›โ€™.

6.3.2 Backward Difference Operator ๐›

Backward difference operator โ€˜ โˆ‡ โ€™ operates on ๐‘ฆ๐‘› as โˆ‡๐‘ฆ๐‘› = ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›โˆ’1

โˆด The differences (๐‘ฆ1 โˆ’ ๐‘ฆ0) , (๐‘ฆ2 โˆ’ ๐‘ฆ1) , โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) when denoted by

โˆ‡๐‘ฆ1, โˆ‡๐‘ฆ2, โ€ฆ ,โˆ‡๐‘ฆ๐‘› are called first backward differences.

Also โˆ‡2๐‘ฆ๐‘› = โˆ‡๐‘ฆ๐‘› โˆ’ โˆ‡๐‘ฆ๐‘›โˆ’1 , โˆ‡3๐‘ฆ๐‘› = โˆ‡2๐‘ฆ๐‘› โˆ’ โˆ‡2๐‘ฆ๐‘›โˆ’1 denote second and third

backward differences respectively.

Table 6.2 shows the backward differences of various orders.

Table 6.2 Backward Differences

๐’™ ๐’š ๐› ๐›๐Ÿ ๐›๐Ÿ‘ ๐›๐Ÿ’ ๐›๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

โˆ‡๐‘ฆ1 ๐’™๐Ÿ ๐‘ฆ1 โˆ‡2๐‘ฆ2

โˆ‡๐‘ฆ2 โˆ‡3๐‘ฆ3 ๐’™๐Ÿ y2 โˆ‡2๐‘ฆ3 โˆ‡4๐‘ฆ4

โˆ‡๐‘ฆ3 โˆ‡3๐‘ฆ4 โˆ‡5๐‘ฆ5 ๐’™๐Ÿ‘ ๐‘ฆ3 โˆ‡2๐‘ฆ4 โˆ‡4๐‘ฆ5

โˆ‡๐‘ฆ4 โˆ‡3๐‘ฆ5 ๐’™๐Ÿ’ ๐‘ฆ4 โˆ‡2๐‘ฆ5

โˆ‡๐‘ฆ5 ๐’™๐Ÿ“ ๐‘ฆ5

The arrow indicates the direction of differences from bottom to top. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column, i.e. โˆ‡๐‘ฆ1

= ๐‘ฆ1โˆ’ ๐‘ฆ

๐‘œ, โˆ‡2๐‘ฆ

2= โˆ‡๐‘ฆ

2โˆ’ โˆ‡๐‘ฆ

1, โ€ฆ ,โˆ‡5๐‘ฆ5 = โˆ‡4๐‘ฆ5 โˆ’ โˆ‡4๐‘ฆ4.

Relation between ๐› and ๐‘ฌ

โˆ‡ and ๐ธ are connected by the relation โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

Proof: we know that โˆ‡๐‘ฆ๐‘› = ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›โˆ’1

= ๐‘ฆ๐‘›โˆ’ ๐ธโˆ’1๐‘ฆ๐‘›

โ‡’ โˆ‡๐‘ฆ๐‘› = 1 โˆ’ ๐ธโˆ’1 ๐‘ฆ๐‘›

โ‡’ โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

6.3.3 Central Difference Operator ๐›…

Central difference operator โ€˜ ฮด โ€™ operates on ๐‘ฆ๐‘› as ฮด ๐‘ฆ๐‘› = ๐‘ฆ๐‘›+

1

2

โˆ’ ๐‘ฆ๐‘›โˆ’

1

2

โˆด The differences (๐‘ฆ1 โˆ’ ๐‘ฆ0) , (๐‘ฆ2 โˆ’ ๐‘ฆ1) , โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) when denoted by

ฮด๐‘ฆ1

2

, ฮด๐‘ฆ3

2

, โ€ฆ , ฮด๐‘ฆ๐‘›โˆ’

1

2

are called first central differences.

Also ฮด2๐‘ฆ๐‘› = ฮด๐‘ฆ๐‘›+

1

2

โˆ’ ฮด๐‘ฆ๐‘›โˆ’

1

2

, ฮด3๐‘ฆ๐‘› = ฮด2๐‘ฆ๐‘›+

1

2

โˆ’ ฮด2๐‘ฆ๐‘›โˆ’

1

2

denote second and third

central differences respectively as shown in Table 6.3.

Table 6.3 Central Differences

๐’™ ๐’š ๐›… ๐›…๐Ÿ ๐›…๐Ÿ‘ ๐›…๐Ÿ’ ๐›…๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

ฮด๐‘ฆ12

๐’™๐Ÿ ๐‘ฆ1 ฮด2๐‘ฆ1

ฮด๐‘ฆ32 ฮด3๐‘ฆ3

2

๐’™๐Ÿ y2 ฮด2๐‘ฆ2 ฮด4๐‘ฆ

2

ฮด๐‘ฆ52 ฮด3๐‘ฆ5

2

ฮด5๐‘ฆ52

๐’™๐Ÿ‘ ๐‘ฆ3 ฮด2๐‘ฆ3 ฮด4๐‘ฆ

3

ฮด๐‘ฆ72 ฮด3๐‘ฆ7

2

๐’™๐Ÿ’ ๐‘ฆ4 ฮด2๐‘ฆ4

ฮด๐‘ฆ92

๐’™๐Ÿ“ ๐‘ฆ5

Central differences in each column notate difference of two adjoining consecutive

entries of the previous column, i.e. ฮด๐‘ฆ1

2

= ๐‘ฆ1โˆ’ ๐‘ฆ

๐‘œ, โ€ฆ , ฮด5๐‘ฆ5

2

= ฮด4๐‘ฆ3 โˆ’ ฮด4๐‘ฆ2.

Relation between ๐›… and ๐‘ฌ

ฮด and ๐ธ are connected by the relation ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

Proof: we know that ฮด ๐‘ฆ๐‘› = ๐‘ฆ๐‘›+

1

2

โˆ’ ๐‘ฆ๐‘›โˆ’

1

2

= ๐ธ1

2๐‘ฆ๐‘›โˆ’ ๐ธโˆ’ 1

2๐‘ฆ๐‘›

โ‡’ ฮด ๐‘ฆ๐‘› = ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 ๐‘ฆ๐‘›

โˆด ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

Observation: It is only the notation which changes and not the difference.

โˆด ๐‘ฆ1 โˆ’ ๐‘ฆ๐‘œ = โˆ†๐‘ฆ0 = โˆ‡๐‘ฆ1 = ฮด๐‘ฆ1

2

6.3.4 Averaging Operator ๐›

Averaging operator โ€˜ ฮผ โ€™ operates on ๐‘ฆ๐‘ฅ as ฮผ ๐‘ฆ๐‘ฅ =1

2 ๐‘ฆ

๐‘ฅ+๐‘•

2

+ ๐‘ฆ๐‘ฅโˆ’

๐‘•

2

Or ฮผ ๐‘“ ๐‘ฅ = 1

2 ๐‘“ ๐‘ฅ +

๐‘•

2 + ๐‘“ ๐‘ฅ โˆ’

๐‘•

2 , โ€˜ h โ€™ is the height of the interval.

Relation between ๐› and ๐‘ฌ

We know that ฮผ ๐‘ฆ๐‘› =1

2 ๐‘ฆ

๐‘›+๐‘•

2

+ ๐‘ฆ๐‘›โˆ’

๐‘•

2

=1

2 ๐ธ

1

2๐‘ฆ๐‘›+ ๐ธโˆ’ 1

2๐‘ฆ๐‘›

โ‡’ ฮผ ๐‘ฆ๐‘› =1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 ๐‘ฆ๐‘›

โˆด ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Result 2: Relation between ๐‘ฌ and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know ๐‘ฆ ๐‘ฅ + ๐‘• = ๐‘ฆ ๐‘ฅ + ๐‘• ๐‘ฆโ€ฒ ๐‘ฅ +๐‘•2

2! ๐‘ฆโ€ฒโ€ฒ ๐‘ฅ +. .. By Taylorโ€™s theorem

= ๐‘ฆ ๐‘ฅ + ๐‘• ๐ท๐‘ฆ(๐‘ฅ) +๐‘•2

2! ๐ท2๐‘ฆ(๐‘ฅ)+. ..

= 1 + ๐‘•๐ท +๐‘•2

2! ๐ท2 + โ‹ฏ ๐‘ฆ(๐‘ฅ)

โ‡’ ๐ธ ๐‘ฆ ๐‘ฅ = ๐‘’๐‘•๐ท๐‘ฆ(๐‘ฅ)

โˆด ๐ธ = ๐‘’๐‘•๐ท, ๐ท โ‰ก๐‘‘

๐‘‘๐‘ฅ

Result 3: Relation between โˆ† and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know that โˆ† โ‰ก ๐ธ โˆ’ 1

โ‡’ โˆ† โ‰ก ๐‘’๐‘•๐ท โˆ’ 1 โˆต ๐ธ = ๐‘’๐‘•๐ท

Result 4: Relation between ๐œต and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know that โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1 = 1 โˆ’ ๐‘’โˆ’๐‘•๐ท โˆต ๐ธ = ๐‘’๐‘•๐ท

Result 5: Relation between โˆ† and ๐œต

We know that ๐ธ โ‰ก 1 + โˆ† โ‹ฏโ‘ 

Also ๐ธโˆ’1 โ‰ก 1 โˆ’ โˆ‡

โ‡’ ๐ธ โ‰ก1

1โˆ’โˆ‡ โ‹ฏ โ‘ก

โ‡’ 1 + โˆ†โ‰ก1

1โˆ’โˆ‡ From โ‘  and โ‘ก

โ‡’ โˆ†โ‰ก1

1โˆ’โˆ‡โˆ’ 1

โ‡’ โˆ†โ‰กโˆ‡

1โˆ’โˆ‡

Result 6: Relation between ๐› , ๐œน and ๐‘ฌ

We have ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Also ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

โ‡’ ฮผฮด โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

โ‡’ ฮผฮด โ‰ก1

2 ๐ธ โˆ’ ๐ธโˆ’ 1

Result 7: Relation between ๐› , ๐œน , โˆ† and โˆ‡

We have ฮผฮด โ‰ก1

2 ๐ธ โˆ’ ๐ธโˆ’ 1 =

1

2 1 + โˆ†) โˆ’ (1 โˆ’ โˆ‡

โ‡’ ฮผฮด โ‰ก1

2 โˆ† + โˆ‡

Result 8: โˆ†๐‘›๐‘ฆ๐‘Ÿ = โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ

We have โˆ†๐‘›๐‘ฆ๐‘Ÿ = (๐ธ โˆ’ 1)๐‘›๐‘ฆ๐‘Ÿ โˆต โˆ†= ๐ธ โˆ’ 1

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘Ÿ๐‘ฆ๐‘Ÿ

= ๐ธ๐‘› โˆ’ ๐‘›๐ถ1๐ธ๐‘›โˆ’1 + ๐‘›๐ถ2๐ธ

๐‘›โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘› ๐‘ฆ๐‘Ÿ

= ๐ธ๐‘›๐‘ฆ๐‘Ÿ โˆ’ ๐‘›๐ถ1๐ธ๐‘›โˆ’1๐‘ฆ๐‘Ÿ + ๐‘›๐ถ2๐ธ

๐‘›โˆ’2๐‘ฆ๐‘Ÿ โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

Also โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ = (1 โˆ’ Eโˆ’1)๐‘›๐‘ฆ๐‘›+๐‘Ÿ โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

= 1 โˆ’ ๐‘›๐ถ1๐ธโˆ’1 + ๐‘›๐ถ2๐ธ

โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐ธโˆ’๐‘› ๐‘ฆ๐‘›+๐‘Ÿ

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

โˆด โˆ†๐‘›๐‘ฆ๐‘Ÿ = โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ

Example 1 Evaluate the following:

i. โˆ†๐‘’๐‘ฅ ii. โˆ†2๐‘’๐‘ฅ iii. โˆ† ๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ iv. โˆ† ๐‘ฅ+1

๐‘ฅ2โˆ’3๐‘ฅ+2 v. โˆ†๐‘“๐‘˜

2 = ๐‘“๐‘˜ + ๐‘“๐‘˜+1 โˆ†๐‘“๐‘˜

Solution: i. โˆ†๐‘’๐‘ฅ = ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ = ๐‘’๐‘ฅ(๐‘’๐‘• โˆ’ 1)

โˆ†๐‘’๐‘ฅ = ๐‘’๐‘ฅ(๐‘’ โˆ’ 1) , if ๐‘• = 1

ii. โˆ†2๐‘’๐‘ฅ = โˆ†(โˆ†๐‘’๐‘ฅ)

= โˆ† ๐‘’๐‘ฅ ๐‘’๐‘• โˆ’ 1

= ๐‘’๐‘• โˆ’ 1 โˆ†๐‘’๐‘ฅ

= ๐‘’๐‘• โˆ’ 1 ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ

= ๐‘’๐‘• โˆ’ 1 ๐‘’๐‘ฅ(๐‘’๐‘• โˆ’ 1)

= ๐‘’๐‘ฅ (๐‘’๐‘• โˆ’ 1)2

iii. โˆ†๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ + ๐‘• โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ

= ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ+๐‘•โˆ’๐‘ฅ

1+(๐‘ฅ+๐‘•)๐‘ฅ

= ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘•

1+(๐‘ฅ+๐‘•)๐‘ฅ

iv. โˆ† ๐‘ฅ+1

๐‘ฅ2โˆ’3๐‘ฅ+2 = โˆ†

๐‘ฅ+1

๐‘ฅโˆ’1 (๐‘ฅโˆ’2)

= โˆ† โˆ’2

๐‘ฅโˆ’1+

3

๐‘ฅโˆ’2 = โˆ†

โˆ’2

๐‘ฅโˆ’1 + โˆ†

3

๐‘ฅโˆ’2

= โˆ’2 1

๐‘ฅ+1โˆ’1โˆ’

1

๐‘ฅโˆ’1 + 3

1

๐‘ฅ+1โˆ’2โˆ’

1

๐‘ฅโˆ’2

= โˆ’2 1

๐‘ฅโˆ’

1

๐‘ฅโˆ’1 + 3

1

๐‘ฅโˆ’1โˆ’

1

๐‘ฅโˆ’2

= โˆ’(๐‘ฅ+4)

๐‘ฅ ๐‘ฅโˆ’1 (๐‘ฅโˆ’2)

v. โˆ†๐‘“๐‘˜2 = ๐‘“๐‘˜+1

2 โˆ’ ๐‘“๐‘˜2 = ๐‘“๐‘˜+1 + ๐‘“๐‘˜ ๐‘“๐‘˜+1 โˆ’ ๐‘“๐‘˜ = ๐‘“๐‘˜ + ๐‘“๐‘˜+1 โˆ†๐‘“๐‘˜

Example 2 Evaluate the following:

i. โˆ†๐‘’๐‘ฅ log 2๐‘ฅ ii. โˆ† ๐‘ฅ2

cos 2๐‘ฅ

Solution: i. Let ๐‘“ ๐‘ฅ = ๐‘’๐‘ฅ and ๐‘” ๐‘ฅ = log 2๐‘ฅ

We have โˆ† ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ† ๐‘” ๐‘ฅ + ๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ

โˆด โˆ†๐‘’๐‘ฅ log 2๐‘ฅ = ๐‘’๐‘ฅ+๐‘•โˆ† log 2๐‘ฅ + log 2๐‘ฅ โˆ†๐‘’๐‘ฅ

= ๐‘’๐‘ฅ+๐‘• log 2 ๐‘ฅ + ๐‘• โˆ’ log 2๐‘ฅ + log 2๐‘ฅ ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ

= ๐‘’๐‘ฅ๐‘’๐‘• log 1 +๐‘•

๐‘ฅ + ๐‘’๐‘ฅ log 2๐‘ฅ ๐‘’๐‘• โˆ’ 1

= ๐‘’๐‘ฅ ๐‘’๐‘• log 1 +๐‘•

๐‘ฅ + log 2๐‘ฅ ๐‘’๐‘• โˆ’ 1

ii. Let ๐‘“ ๐‘ฅ = ๐‘ฅ2 and ๐‘” ๐‘ฅ = cos 2๐‘ฅ

We have โˆ† ๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ โˆ’๐‘“(๐‘ฅ)โˆ†๐‘” ๐‘ฅ

๐‘” ๐‘ฅ+๐‘• ๐‘” ๐‘ฅ

=cos 2๐‘ฅ ๐‘ฅ+๐‘• 2โˆ’๐‘ฅ2 โˆ’๐‘ฅ2 cos 2 ๐‘ฅ+๐‘• โˆ’cos 2๐‘ฅ

cos 2 ๐‘ฅ+๐‘• cos 2๐‘ฅ

= ๐‘•2+2๐‘•๐‘ฅ cos 2๐‘ฅ+2๐‘ฅ2 sin 2๐‘ฅ+๐‘• sin ๐‘•

cos 2 ๐‘ฅ+๐‘• cos 2๐‘ฅ

Example 3 Evaluate โˆ†4 1 โˆ’ 2๐‘ฅ 1 โˆ’ 3๐‘ฅ 1 โˆ’ 4๐‘ฅ 1 โˆ’ ๐‘ฅ ,where interval of differencing is one.

Solution: โˆ†4 1 โˆ’ 2๐‘ฅ 1 โˆ’ 3๐‘ฅ 1 โˆ’ 4๐‘ฅ 1 โˆ’ ๐‘ฅ

= โˆ†4 24๐‘ฅ4 + โ‹ฏ+ 1 = 24.4!. 14 = 576

โˆต โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› and โˆ†4๐‘ฅ๐‘› = 0 when ๐‘› < 4

Example 4 Prove that โˆ†3๐‘ฆ3 = โˆ‡3๐‘ฆ6

Solution: โˆ†3๐‘ฆ3 = (๐ธ โˆ’ 1)3๐‘ฆ3 โˆต โˆ†= ๐ธ โˆ’ 1

= ๐ธ3 โˆ’ 1 โˆ’ 3๐ธ2 + 3๐ธ ๐‘ฆ3

= ๐ธ3๐‘ฆ3 โˆ’ ๐‘ฆ3 โˆ’ 3๐ธ2๐‘ฆ3 + 3๐ธ๐‘ฆ3

= ๐‘ฆ6 โˆ’ ๐‘ฆ3 โˆ’ 3๐‘ฆ5 + 3๐‘ฆ4

Also โˆ‡3๐‘ฆ6 = (1 โˆ’ Eโˆ’1)3๐‘ฆ6 โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

= 1 โˆ’ Eโˆ’3 โˆ’ 3๐ธโˆ’1 + 3๐ธโˆ’2 ๐‘ฆ6

= ๐‘ฆ6 โˆ’ ๐‘ฆ3 โˆ’ 3๐‘ฆ5 + 3๐‘ฆ4

Example 5 Prove that โˆ† + โˆ‡ = โˆ†

โˆ‡โ€“โˆ‡

โˆ†

Solution: L.H.S. = โˆ† + โˆ‡ = ๐ธ โˆ’ 1 + 1 โˆ’ ๐ธโˆ’1

= ๐ธ โˆ’ ๐ธโˆ’1

R.H.S. =โˆ†

โˆ‡โ€“โˆ‡

โˆ†

=๐ธโˆ’1

1โˆ’๐ธโ€“1โˆ’

1โˆ’๐ธ โ€“1

๐ธโˆ’1

= ๐ธโˆ’1 2 โˆ’ 1โˆ’ ๐ธ โ€“1

2

1โˆ’๐ธ โ€“1 ๐ธโˆ’1

= ๐ธ2+1โˆ’ 2๐ธ โˆ’ 1+ ๐ธโ€“2โˆ’2๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

=๐ธ2โˆ’๐ธโˆ’2โˆ’2๐ธ+2๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ+๐ธโ€“1 ๐ธโˆ’๐ธ โ€“1 โˆ’ 2 ๐ธโˆ’ ๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ โˆ’ ๐ธโ€“1 ๐ธ + ๐ธ โ€“1โˆ’2

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ โˆ’ ๐ธโˆ’1 = R.H.S.

Example 6 Prove that ๐ธ = 1 +1

2ฮด2 + ฮด 1 +

1

4ฮด2

Solution: R.H.S. = 1 +1

2ฮด2 + ฮด 1 +

1

4ฮด2

= 1 +1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

+ ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ + ๐ธโˆ’1 + 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ1

2 + ๐ธโˆ’ 1

2

=1

2 ๐ธ + ๐ธโˆ’1 +

1

2 ๐ธ โˆ’ ๐ธโˆ’1 = ๐ธ = L.H.S.

Example 7 Prove that โˆ‡ = โˆ’1

2ฮด2 + ฮด 1 +

1

4ฮด2

Solution: R.H.S. = โˆ’1

2ฮด2 + ฮด 1 +

1

4ฮด2

= โˆ’1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

+ ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ + ๐ธโˆ’1 + 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ1

2 + ๐ธโˆ’ 1

2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ โˆ’ ๐ธโˆ’1 = 1 โˆ’ ๐ธโˆ’1 = โˆ‡= L.H.S.

Example 8 Prove that (i) โˆ† โˆ’ โˆ‡ = ฮด2 (ii) ฮผ = 1 +1

4ฮด2 = 1 +

โˆ†

2 1 + โˆ† โˆ’

1

2

Solution: (i) ฮด2 = ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 2

= ๐ธ + ๐ธโˆ’1 โˆ’ 2 โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= ๐ธ โˆ’ 1 โˆ’ 1 โˆ’ ๐ธโˆ’1 = โˆ† โˆ’ โˆ‡

โˆต ๐ธ โˆ’ 1 โ‰ก โˆ† and 1 โˆ’ ๐ธโˆ’1 = โˆ†

(ii) 1 +1

4ฮด2 = 1 +

1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= 1

4 ๐ธ + ๐ธโˆ’1 + 2

= 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

=1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 = ฮผ โˆต ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Also 1 +โˆ†

2 1 + โˆ† โˆ’

1

2 = 1 +๐ธโˆ’1

2 1 + ๐ธ โˆ’ 1 โˆ’

1

2

โˆต โˆ† โ‰ก ๐ธ โˆ’ 1

= ๐ธ+1

2 ๐ธโˆ’

1

2

=1

2 ๐ธโˆ’

1

2 + ๐ธ1

2 = ฮผ

Example 9 Prove that (i) โˆ† โ‰ก ๐ธโˆ‡ โ‰ก โˆ‡E = ฮด๐ธ 12 (ii) Er = ฮผ +

๐›ฟ

2

2๐‘Ÿ

Solution: (i) ๐ธโˆ‡ = E 1 โˆ’ ๐ธโˆ’ 1 = ๐ธ โˆ’ 1 = โˆ† โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

โˆ‡E = 1 โˆ’ ๐ธโˆ’ 1 ๐ธ = ๐ธ โˆ’ 1 = โˆ†

ฮด๐ธ 12 = ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ 12 = ๐ธ โˆ’ 1 = โˆ† โˆต ฮด โ‰ก ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2

(ii) R.H.S. = ฮผ +๐›ฟ

2

2๐‘Ÿ

= 1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 +1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2

2๐‘Ÿ

โˆต ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 and ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1

2 2๐ธ

1

2

2๐‘Ÿ

= ๐ธ1

2 2๐‘Ÿ

= Er = L.H.S

Example 10 Prove that (i) ๐ท โ‰ก 1

๐‘•๐‘™๐‘œ๐‘” ๐ธ (iii) ๐‘•๐ท โ‰ก ๐‘™๐‘œ๐‘” 1 + โˆ† โ‰ก โˆ’log(1 โˆ’ โˆ‡)

(iii) โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 +7

12๐‘•4๐ท4 + โ‹ฏ

Solution: (i) We know that ๐ธ โ‰ก ๐‘’๐‘•๐ท

โ‡’ ๐‘™๐‘œ๐‘”๐ธ โ‰ก ๐‘™๐‘œ๐‘” ๐‘’๐‘•๐ท

โ‡’ ๐‘™๐‘œ๐‘”๐ธ โ‰ก ๐‘•๐‘‘ ๐‘™๐‘œ๐‘” ๐‘’

โ‡’ ๐ท โ‰ก 1

๐‘•๐‘™๐‘œ๐‘” ๐ธ โˆต ๐‘™๐‘œ๐‘” ๐‘’ = 1

(ii) ๐‘• ๐ท โ‰ก ๐‘™๐‘œ๐‘”๐ธ From relation (i)

โ‰ก log(1 + โˆ†) โˆต ๐ธ โ‰ก 1 + โˆ†

Also ๐‘• ๐ท โ‰ก ๐‘™๐‘œ๐‘”๐ธ โ‰ก โˆ’ log๐ธโˆ’1

โ‰ก โˆ’log(1 โˆ’ โˆ‡) โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

(iii) We know that โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

โ‡’ โˆ‡ โ‰ก 1 โˆ’1

๐ธ

โ‰ก 1 โˆ’ ๐‘’โˆ’๐‘•๐ท โˆต ๐ธ = ๐‘’๐‘•๐ท

โ‡’ โˆ‡โ‰ก 1 โˆ’ 1 โˆ’ ๐‘•๐‘‘ +๐‘•2๐ท2

2!โˆ’

๐‘•3๐ท3

3!+ โ‹ฏ

โ‡’ โˆ‡โ‰ก ๐‘•๐‘‘ โˆ’๐‘•2๐ท2

2! +

๐‘•3๐ท3

3!+ โ‹ฏ

โˆด โˆ‡2 โ‰ก ๐‘•๐‘‘ โˆ’๐‘•2๐ท2

2! +

๐‘•3๐ท3

3!+ โ‹ฏ

2

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 + ๐‘•2๐ท2

2!

2

+ โ‹ฏโˆ’ 2 ๐‘•๐‘‘ ๐‘•2๐ท2

2! + 2 ๐‘•๐‘‘

๐‘•3๐ท3

3! โˆ’โ‹ฏ

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 + ๐‘•4๐ท4

4+

๐‘•4๐ท4

3 โˆ’โ‹ฏ

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 +7

12๐‘•4๐ท4 โˆ’โ‹ฏ

Remark: In order to prove any relation, we can express the operators (โˆ† ,โˆ‡,๐›ฟ) in

terms of fundamental operator ๐ธ.

Example 11 Form the forward difference table for the function

๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 for ๐‘ฅ = 0, 1, 2, 3, 4.

Hence or otherwise find โˆ†3๐‘“ ๐‘ฅ , also show that โˆ†4๐‘“ ๐‘ฅ = 0

Solution: ๐‘“ 0 = โˆ’1, ๐‘“ 1 = โˆ’5, ๐‘“ 2 = โˆ’7, ๐‘“ 3 = โˆ’1, ๐‘“ 4 = 19

Constructing the forward difference table:

๐’™ ๐’‡(๐’™) โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐ŸŽ โˆ’1 โˆ’4

1 โˆ’5 2 โˆ’2 6 ๐Ÿ โˆ’7 8 0 6 6 ๐Ÿ‘ โˆ’1 14 20 ๐Ÿ’ 19

From the table, we see that โˆ†3๐‘“ ๐‘ฅ = 6 and โˆ†4๐‘“ ๐‘ฅ = 0

Note: Using the formula โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› , โˆ†3๐‘“ ๐‘ฅ = 1.3!. 1๐‘› = 6

Also โˆ†๐‘›+1๐‘“ ๐‘ฅ = 0 for a polynomial of degree ๐‘›, โˆด โˆ†4๐‘“ ๐‘ฅ = 0

Example 12 If for a polynomial, five observations are recorded as: ๐‘ฆ0 = โˆ’8,

๐‘ฆ1 = โˆ’6, ๐‘ฆ2 = 22, ๐‘ฆ3 = 148, ๐‘ฆ4 = 492, find ๐‘ฆ5.

Solution: ๐‘ฆ5 = ๐ธ5๐‘ฆ0 = (1 + โˆ†)5๐‘ฆ0 โˆต ๐ธ โ‰ก 1 + โˆ†

= ๐‘ฆ0 + 5๐ถ1โˆ†๐‘ฆ0 + 5๐ถ2โˆ†2๐‘ฆ0 + 5๐ถ3โˆ†

3๐‘ฆ0 + 5๐ถ4โˆ†4๐‘ฆ0 + โˆ†5๐‘ฆ0 โ€ฆโ‘ 

Constructing the forward difference table:

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐’™๐ŸŽ โˆ’8

2 ๐’™๐Ÿ โˆ’6 26

28 72 ๐’™๐Ÿ 22 98 48

126 120 ๐’™๐Ÿ‘ 148 218

344 ๐’™๐Ÿ’ 492

From table โˆ†๐‘ฆ0 = 2, โˆ†2๐‘ฆ0 = 26 , โˆ†3๐‘ฆ0 = 72 , โˆ†3๐‘ฆ0 = 48 โ€ฆ โ‘ก

โ‡’ ๐‘ฆ5

= โˆ’8 + 5 2 + 10 26 + 10 72 + 5 48 = 1222 using โ‘ก in โ‘ 

6.4 Missing values of Data Missing data or missing values occur when an observation is missing for a

particular variable in a data sample. Concept of finite differences can help to locate

the requisite value using known concepts of curve fitting.

To determine the equation of a line (equation of degree one), we need at least two

given points. Similarly to trace a parabola (equation of degree two), at least three

points are imperative. Thus we essentially require ๐‘› + 1 known observations to

determine a polynomial of ๐‘›๐‘ก๐‘• degree.

To find missing values of data using finite differences, we presume the degree of

the polynomial by the number of known observations and use the result

โˆ†๐‘›+1๐‘“ ๐‘ฅ = 0 for a polynomial of degree ๐‘›.

Example 13 Use the concept of missing data to find ๐‘ฆ5 if ๐‘ฆ0 = โˆ’8, ๐‘ฆ1 = โˆ’6,

๐‘ฆ2 = 22, ๐‘ฆ3 = 148, ๐‘ฆ4 = 492

Solution: Constructing the forward difference table taking ๐‘ฆ5 as missing value

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ โˆ†๐Ÿ“ ๐’™๐’ โˆ’8

2 ๐’™๐Ÿ โˆ’6 26

28 72 ๐’™๐Ÿ 22 98 48

126 120 ๐‘ฆ5 โˆ’ 1222 ๐’™๐Ÿ‘ 148 218 ๐‘ฆ5 โˆ’ 1174

344 ๐‘ฆ5 โˆ’ 1054 ๐’™๐Ÿ’ 492 ๐‘ฆ5 โˆ’ 836

๐‘ฆ5 โˆ’ 492 ๐’™๐Ÿ“ ๐‘ฆ5

Since 5 observations are known, let us assume that the polynomial represented by

given data is of 4๐‘ก๐‘• degree. โˆด โˆ†5๐‘ฆ = 0 โ‡’ ๐‘ฆ5โˆ’ 1222 = 0 or ๐‘ฆ5 = 1222

Example 14 Find the missing values in the following table

๐’™ ๐ŸŽ ๐Ÿ“ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“

๐’‡(๐’™) 6 ? 13 17 22 ?

Solution: Since there are 4 known values of ๐‘“ ๐‘ฅ in the given data, let us assume

the polynomial represented by the given data to be of 3๐‘Ÿ๐‘‘degree.

Constructing the forward difference table taking missing values as ๐‘Ž and ๐‘.

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐ŸŽ 6

๐‘Ž โˆ’ 6 ๐Ÿ“ ๐‘Ž 19 โˆ’ 2๐‘Ž

13 โˆ’ ๐‘Ž 3๐‘Ž โˆ’ 28 ๐Ÿ๐ŸŽ 13 ๐‘Ž โˆ’ 9 38 โˆ’ 4๐‘Ž

4 10 โˆ’ ๐‘Ž 15 17 1 ๐‘Ž + ๐‘ โˆ’ 38

5 ๐‘ โˆ’ 28 2๐ŸŽ 22 ๐‘ โˆ’ 27

๐‘ โˆ’ 22

25 ๐‘

Since the polynomial represented by the given data is considered to be of

3๐‘Ÿ๐‘‘degree, 4๐‘กโ„Žand higher order differences are zero i.e. โˆ†4๐‘ฆ = 0

โˆด 38 โˆ’ 4๐‘Ž = 0 and ๐‘Ž + ๐‘ โˆ’ 38 = 0 Solving these two equations, we get ๐‘Ž = 9.5 ๐‘ = 28.5

6.5 Finding Differences Using Factorial Notation We can conveniently find the forward differences of a polynomial using factorial

notation.

6.5.1 Factorial Notation of a Polynomial

A product of the form ๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 โ€ฆ ๐‘ฅ โˆ’ ๐‘Ÿ + 1 is called a factorial

polynomial and is denoted by ๐‘ฅ ๐‘Ÿ

โˆด ๐‘ฅ = ๐‘ฅ

๐‘ฅ 2 = ๐‘ฅ(๐‘ฅ โˆ’ 1)

๐‘ฅ 3 = ๐‘ฅ ๐‘ฅ โˆ’ 1 (๐‘ฅ โˆ’ 2)

โ‹ฎ

๐‘ฅ ๐‘› = ๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 โ€ฆ ๐‘ฅ โˆ’ ๐‘› + 1

In case, the interval of differencing is ๐‘•, then

๐‘ฅ ๐‘› = ๐‘ฅ ๐‘ฅ โˆ’ ๐‘• ๐‘ฅ โˆ’ ๐‘• โ€ฆ ๐‘ฅ โˆ’ ๐‘›โ€“ 1 ๐‘•

The results of differencing ๐‘ฅ ๐‘Ÿ are analogous to that differentiating ๐‘ฅ๐‘Ÿ

โˆด โˆ† ๐‘ฅ ๐‘› = ๐‘› ๐‘ฅ ๐‘›โˆ’1

โˆ†2 ๐‘ฅ ๐‘› = ๐‘›(๐‘› โˆ’ 1) ๐‘ฅ ๐‘›โˆ’2

โˆ†3 ๐‘ฅ ๐‘› = ๐‘› ๐‘› โˆ’ 1 (๐‘› โˆ’ 2) ๐‘ฅ ๐‘›โˆ’3

โ‹ฎ

โˆ†๐‘› ๐‘ฅ ๐‘› = ๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2 โ€ฆ 3.2.1 = ๐‘›!

โˆ†๐‘›+1 ๐‘ฅ ๐‘› = 0

Also 1

โˆ† ๐‘ฅ =

๐‘ฅ 2

2 ,

1

โˆ† ๐‘ฅ 2 =

๐‘ฅ 3

3 and so on

1

โˆ†2 ๐‘ฅ =

1

โˆ† ๐‘ฅ 2

2 =

๐‘ฅ 3

6

โ‹ฎ

Remark:

i. Every polynomial of degree ๐‘› can be expressed as a factorial

polynomial of the same degree and vice-versa.

ii. The coefficient of highest power of ๐‘ฅ and also the constant term

remains unchanged while transforming a polynomial to factorial

notation.

Example15 Express the polynomial 2๐‘ฅ2 + 3๐‘ฅ + 1 in factorial notation.

Solution: 2๐‘ฅ2 โˆ’ 3๐‘ฅ + 1 = 2๐‘ฅ2 โˆ’ 2๐‘ฅ + 5๐‘ฅ + 1

= 2๐‘ฅ ๐‘ฅ โˆ’ 1 + 5๐‘ฅ + 1

= 2 ๐‘ฅ 2 + 5 ๐‘ฅ + 1

Example16 Express the polynomial 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 in factorial notation.

Solution: 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 = 2 ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 4

Using remarks i and ii

= 2๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + ๐ด๐‘ฅ ๐‘ฅ โˆ’ 1 + ๐ต๐‘ฅ โˆ’ 4

= 2๐‘ฅ3 + ๐ด โˆ’ 6 ๐‘ฅ2 + โˆ’๐ด + ๐ต + 4 ๐‘ฅ โˆ’ 4

Comparing the coefficients on both sides

A โˆ’ 6 = โˆ’1, โˆ’๐ด + B + 4 = 3

โ‡’ A = 5, B = 4

โˆด 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 = 2 ๐‘ฅ 3 + 5 ๐‘ฅ 2 + 4 ๐‘ฅ โˆ’ 4

We can also find factorial polynomial using synthetic division as shown:

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 2 โ€“1 3 โ€“4

โ€“ 2 1

2 2 1 4 = ๐ต

โ€“ 4

2 5 = A

Example 17 Find โˆ†3๐‘“ ๐‘ฅ for the polynomial ๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1

Also show that โˆ†4๐‘“ ๐‘ฅ = 0

Solution: Finding factorial polynomial of ๐‘“ ๐‘ฅ as shown:

Let ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 = ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 1

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 1 โ€“2 โ€“3 โ€“1

โ€“ 1 โ€“1

2 1 โ€“1 โ€“ 4 = ๐ต

โ€“ 2

1 1 = A

โˆด ๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 = ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1

โˆ†3๐‘“ ๐‘ฅ = โˆ†3 ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1

= 3! + 0 = 6 โˆต โˆ†๐‘› ๐‘ฅ ๐‘› = ๐‘›! and โˆ†๐‘›+1 ๐‘ฅ ๐‘› = 0

Also โˆ†4๐‘“ ๐‘ฅ = โˆ†4 ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1 = 0

Note: Results obtained are same as in Example 11, where we have used

forward difference table to compute the differences.

Example 18: Obtain the function whose first difference is 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

Solution: Let ๐‘“ ๐‘ฅ be the function whose first difference is 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

โ‡’ โˆ†๐‘“ ๐‘ฅ = 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

Let 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1 = 8 ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 1

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 8 โ€“3 3 โ€“1

โ€“ 8 5

2 8 5 8 = ๐ต

โ€“ 16

8 21 = A

โˆด โˆ†๐‘“ ๐‘ฅ = 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1 = 8 ๐‘ฅ 3 + 21 ๐‘ฅ 2 + 8 ๐‘ฅ โˆ’ 1

๐‘“ ๐‘ฅ = 1

โˆ† 8 ๐‘ฅ 3 + 21 ๐‘ฅ 2 + 8 ๐‘ฅ โˆ’ 1

=8 ๐‘ฅ 4

4+

21 ๐‘ฅ 3

3+

8 ๐‘ฅ 2

2โˆ’ ๐‘ฅ โˆต

1

โˆ† ๐‘ฅ =

๐‘ฅ 2

2 ,

1

โˆ† ๐‘ฅ 2 =

๐‘ฅ 3

3, โ€ฆ

= 2 ๐‘ฅ 4 + 7 ๐‘ฅ 3 + 4 ๐‘ฅ 2 โˆ’ [๐‘ฅ] = 2๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 3 + 7๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + 4๐‘ฅ ๐‘ฅ โˆ’ 1 โˆ’ ๐‘ฅ

= ๐‘ฅ 2 ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 3 + 7 ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + 4 ๐‘ฅ โˆ’ 1 โˆ’ 1 = ๐‘ฅ 2๐‘ฅ3 โˆ’ 5๐‘ฅ2 + 5๐‘ฅ โˆ’ 3 = 2๐‘ฅ4 โˆ’ 5๐‘ฅ3 + 5๐‘ฅ2 โˆ’ 3๐‘ฅ

โ‡’ ๐‘“ ๐‘ฅ = 2๐‘ฅ4 โˆ’ 5๐‘ฅ3 + 5๐‘ฅ2 โˆ’ 3๐‘ฅ

6.6 Series Summation Using Finite Differences The method of finite differences may be used to find sum of a given series by

applying the following algorithm:

1. Let the series be represented by ๐‘ข0, ๐‘ข1 , ๐‘ข2 , ๐‘ข3, โ€ฆ

2. Use the relation ๐‘ข๐‘Ÿ = ๐ธ๐‘Ÿ๐‘ข0 to introduce the operator ๐ธ in the series.

3. Replace ๐ธ by โˆ† by substituting ๐ธ โ‰ก 1 + โˆ† and find the sum the series by

any of the applicable methods like sum of a G.P., exponential or logarithmic

series or by binomial expansion and operate term by term on ๐‘ข0 to find the

required sum.

Example 19 Prove the following using finite differences:

i. ๐‘ข0 + ๐‘ข1๐‘ฅ

1!+ ๐‘ข2

๐‘ฅ2

2!+ โ‹ฏ = ๐‘’๐‘ฅ ๐‘ข0 + ๐‘ฅ

โˆ† ๐‘ข0

1!+ ๐‘ฅ2 โˆ†2 ๐‘ข0

2!+ โ‹ฏ

ii. ๐‘ข0 โˆ’ ๐‘ข1 + ๐‘ข2 โˆ’ ๐‘ข3 + โ‹ฏ = 1

2 ๐‘ข0 โˆ’

1

4โˆ† ๐‘ข0 +

1

8โˆ†2 ๐‘ข0 โˆ’โ‹ฏ

Solution: i. ๐‘ข0 + ๐‘ข1๐‘ฅ

1!+ ๐‘ข2

๐‘ฅ2

2!+ โ‹ฏ = ๐‘ข0 +

๐‘ฅ

1!๐ธ๐‘ข0 +

๐‘ฅ2

2!๐ธ2๐‘ข0 + โ‹ฏ

= 1 +๐‘ฅ๐ธ

1!+

๐‘ฅ2๐ธ2

2!๐‘ข0 + โ‹ฏ ๐‘ข0

= ๐‘’๐‘ฅ๐ธ ๐‘ข0 = ๐‘’๐‘ฅ(1+โˆ†) ๐‘ข0

= ๐‘’๐‘ฅ๐‘’๐‘ฅโˆ† ๐‘ข0

= ๐‘’๐‘ฅ 1 +๐‘ฅโˆ†

1!+

๐‘ฅ2โˆ†2

2!+ โ‹ฏ ๐‘ข0

= ๐‘’๐‘ฅ ๐‘ข0 + ๐‘ฅโˆ† ๐‘ข0

1!+ ๐‘ฅ2 โˆ†2 ๐‘ข0

2!+ โ‹ฏ

ii. ๐‘ข0 โˆ’ ๐‘ข1 + ๐‘ข2 โˆ’ ๐‘ข3 + โ‹ฏ = ๐‘ข0 โˆ’ ๐ธ๐‘ข0 + ๐ธ2๐‘ข0 โˆ’ ๐ธ3๐‘ข0 + โ‹ฏ

= 1 โˆ’ ๐ธ + ๐ธ2 โˆ’ ๐ธ3 + โ‹ฏ ๐‘ข0

= 1 + ๐ธ โˆ’1 ๐‘ข0

= 2 + โˆ† โˆ’1 ๐‘ข0

= 2โˆ’1 1 +โˆ†

2 โˆ’1

๐‘ข0

=1

2 1 โˆ’

โˆ†

2+

โˆ†2

4โˆ’โ‹ฏ ๐‘ข0

= 1

2 ๐‘ข0 โˆ’

1

4โˆ† ๐‘ข0 +

1

8โˆ†2 ๐‘ข0 โˆ’โ‹ฏ

Example 20 Sum the series 12, 22, 32,โ€ฆ, ๐‘›2 using finite differences.

Solution: Let the series 12, 22, 32,โ€ฆ, ๐‘›2 be represented by ๐‘ข0, ๐‘ข1 , ๐‘ข2 ,โ€ฆ, ๐‘ข๐‘›โˆ’1

โˆด ๐‘† = ๐‘ข0 + ๐‘ข1 + ๐‘ข2 + โ‹ฏ+๐‘ข๐‘›โˆ’1

โ‡’ ๐‘† = ๐‘ข0 + ๐ธ๐‘ข0 + ๐ธ2๐‘ข0 + โ‹ฏ+๐ธ๐‘›โˆ’1๐‘ข0

= 1 + ๐ธ + ๐ธ2 + โ‹ฏ+ ๐ธ๐‘›โˆ’1 ๐‘ข0

=1โˆ’๐ธ๐‘›

1โˆ’๐ธ๐‘ข0 =

๐ธ๐‘›โˆ’1

๐ธโˆ’1๐‘ข0 โˆต ๐‘†๐‘› = ๐‘Ž

1โˆ’๐‘Ÿ๐‘›

1โˆ’๐‘Ÿ

โ‡’ ๐‘† =(1+โˆ†)๐‘›โˆ’1

(1+โˆ†)โˆ’1๐‘ข0

=1

โˆ† 1 + ๐‘›โˆ† +

๐‘›(๐‘›โˆ’1)

2!โˆ†2 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3!โˆ†3 + โ‹ฏ โˆ’ 1 ๐‘ข0

= ๐‘›๐‘ข0 +๐‘›(๐‘›โˆ’1)

2!โˆ†๐‘ข0 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3!โˆ†2๐‘ข0 + โ‹ฏ

Now ๐‘ข0 = 12 = 1

โˆ†๐‘ข0 = ๐‘ข1 โˆ’ ๐‘ข0 = 22 โˆ’ 12 = 3

โˆ†2๐‘ข0 = โˆ†๐‘ข1 โˆ’ โˆ†๐‘ข0 = ๐‘ข2 โˆ’ 2๐‘ข1 + ๐‘ข0 = 32 โˆ’ 2( 22) + 12 = 2

โˆ†3๐‘ข0, โˆ†4๐‘ข0 โ€ฆ are all zero as given series is an expression of degree 2

โˆด ๐‘† = ๐‘› + ๐‘›(๐‘›โˆ’1)

2! 3 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3! 2 + 0

= ๐‘› +3๐‘› ๐‘›โˆ’1

2+

๐‘› ๐‘›โˆ’1 ๐‘›โˆ’2

3

=1

6 6๐‘› + 9๐‘› ๐‘› โˆ’ 1 + 2๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2

=1

6๐‘› 6 + 9๐‘› โˆ’ 9 + 2๐‘›2 โˆ’ 6๐‘› + 4

=1

6๐‘› 2๐‘›2 + 3๐‘› + 1 =

1

6๐‘› ๐‘› + 1 (2๐‘› + 1)

Example 21 Prove that ๐‘ข0 + ๐‘ข1๐‘ฅ + ๐‘ข2๐‘ฅ2 + โ‹ฏ =

๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ

and hence evaluate 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ

Solution: ๐‘ข0 + ๐‘ข1๐‘ฅ + ๐‘ข2๐‘ฅ2 + โ‹ฏ = ๐‘ข0 + ๐‘ฅ๐ธ๐‘ข0 + ๐‘ฅ2๐ธ

2๐‘ข0 + โ‹ฏ

= 1 + ๐‘ฅ๐ธ + ๐‘ฅ2๐ธ2 + โ‹ฏ ๐‘ข0

=1

1โˆ’๐‘ฅ๐ธ๐‘ข0 โˆต ๐‘†โˆž =

๐‘Ž

1โˆ’๐‘Ÿ

=1

1โˆ’๐‘ฅ(1+โˆ†)๐‘ข0 =

1

(1โˆ’๐‘ฅ)โˆ’๐‘ฅโˆ†๐‘ข0

=1

1โˆ’๐‘ฅ

1

1โˆ’๐‘ฅโˆ†

1โˆ’๐‘ฅ ๐‘ข0

=1

1โˆ’๐‘ฅ 1 โˆ’

๐‘ฅโˆ†

1โˆ’๐‘ฅ โˆ’1๐‘ข0

=1

1โˆ’๐‘ฅ 1 +

๐‘ฅโˆ†

1โˆ’๐‘ฅ +

๐‘ฅ2โˆ†2

(1โˆ’๐‘ฅ)2+ โ‹ฏ ๐‘ข0

= ๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ = R.H.S.

Now to evaluate the series 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ

Let ๐‘ข0 = 1.2 = 2, ๐‘ข1 = 2.3 = 6, ๐‘ข2 = 3.4 = 12, ๐‘ข3 = 4.5 = 20,โ€ฆ

Forming forward difference table to calculate the differences

๐’– โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐’–๐ŸŽ = ๐Ÿ.๐Ÿ = ๐Ÿ

4 ๐’–๐Ÿ = ๐Ÿ.๐Ÿ‘ = ๐Ÿ” 2

6 0 ๐’–๐Ÿ = ๐Ÿ‘.๐Ÿ’ = ๐Ÿ๐Ÿ 2 0

8 0 ๐’–๐Ÿ‘ = ๐Ÿ’.๐Ÿ“ = ๐Ÿ๐ŸŽ 2

10 ๐’–๐Ÿ’ = ๐Ÿ“.๐Ÿ” = ๐Ÿ‘๐ŸŽ

โˆด 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ = ๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ

=2

1โˆ’๐‘ฅ+

4๐‘ฅ

(1โˆ’๐‘ฅ)2+

2๐‘ฅ2

(1โˆ’๐‘ฅ)3+ 0

=2

(1โˆ’๐‘ฅ)3

Exercise 6A

1. Express ๐‘ฆ4 in terms of successive forward differences.

2. Prove that โˆ†๐‘›๐‘’3๐‘ฅ+5 = ๐‘’3 โˆ’ 1 ๐‘›๐‘’3๐‘ฅ+5

3. Evaluate โˆ†2 5๐‘ฅ+12

๐‘ฅ2+5๐‘ฅ+6

4. If ๐‘ข0 = 3, ๐‘ข1 = 12, ๐‘ข2 = 81, ๐‘ข3 = 2000, ๐‘ข4 = 100, calculate โˆ†4๐‘ข0.

5. Prove that ฮผ =2+โˆ†

2 1+โˆ†= 1 +

1

4ฮด2

6. Find the missing value in the following table

๐‘ฅ 0 5 10 15 20 25

๐‘ฆ 6 10 - 17 - 31

7. Sum the series 13, 23, 33,โ€ฆ, ๐‘›3 using finite differences.

Answers

1. ๐‘ฆ4 = ๐‘ฆ0 + 4โˆ†๐‘ฆ0 + 6โˆ†2๐‘ฆ0 + 4โˆ†3๐‘ฆ0 + โˆ†4๐‘ฆ0

3. โ€“3(๐‘ฅ2+9๐‘ฅ+15)

๐‘ฅ(๐‘ฅ+1)(๐‘ฅ+4)(๐‘ฅ+5)(๐‘ฅ+8)(๐‘ฅ+9)

4. โˆ’7459

6. 13.25, 22.5