Chapter 6 Calculation of Properties of Pure...

143
1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13

Transcript of Chapter 6 Calculation of Properties of Pure...

Page 1: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

1

Chapter 6Calculation of Properties of Pure Fluids

2012/4/13

Page 2: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

2

Thermodynamic properties calculations from PVT and heat capacity data

Thermodynamics properties depend on the state of the system.The state of the system can be determined by the Gibbs phase ruleMeasurable properties: the temperature, the pressure and some heat capacities such as Cp and Cv.All the derived properties such as the entropy can be calculated using the thermodynamic relations

2012/4/13

Page 3: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

3

6.1 Some Mathematical Preliminaries

( )1 2

Thermodynamic state variable: , , , , , , , and For the single-component, one-phase system, the degree of freedom

is equal to 2 (i.e., 2 1 1 2 2).Thus, any intensive property, = , .

P T V S U H A G

F F C Pfθ θ θ

= − + = − + =

( )

( ), , ,

(A) The chain rule of differentiation.

Suppose , , then

Suppose , , , then

V T

V N T N T V

U UU f T V dU dT dVT V

U U UU f T V N dU dT dV dNT V N

∂ ∂⎛ ⎞⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Example: F of boiling the drinking water in a kettle = 1-2+2 = 1

Page 4: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

4

( )

(B) The triple product rule

1

Suppose , ,

For constant, 0,

Rearrang

Z

Z Y X

Z Y

Y

X Z YY X Z

X XX f Y Z d X dY d ZY Z

X XX d X dY d ZY Z

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

ement and one gets Z X Y

X dY XY d Z Z

∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Already Proved it using open system in “Preface to Ch 6”.

Page 5: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

5

6.2 The evaluation of thermodynamic partial derivatives

Define four thermodynamic properties

constant-volume heat capacity

constant-pressure heat capacity

(6.2-1)

(6.2-2)

1

VV

PP

U CT

H CT

∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠

coefficient of thermal expansion

1 isothermal compressibility

(6.2-3)

(6.2-4)

P

TT

VV T

VV P

α

κ

∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠∂⎛ ⎞− = =⎜ ⎟∂⎝ ⎠

Page 6: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

6

( ),

then (6.2-9

Also,

a)

(6.2-9 b)

V S

V

S

dU Td S PdVU f S V

U UdU d S dVS V

UTS

UPV

= −

=

⎛ ⎞ ⎛ ⎞∂ ∂= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂− = ⎜ ⎟∂⎝ ⎠

Partial derivativesFor close, reversible, no KE,PE,friction

Page 7: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

7

( = )

(6.2-5) (6.2-9a) (6.2-9b)

(6.2-6b) (6.2-10a) (6.2-10b)

(6

.2-7b

( )

V S

SP

dU Td S PdV U UT PS V

H HT VS P

d H Td S VdP

d A S

U H PV

U A T S

dT PdV

⎛ ⎞ ⎛ ⎞∂ ∂= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

=

=

= +

= − −

+

) (6.2-11b) (6.2-11a)

(6

( = )

.2-8b) (6.2-12b) (6.2-12a

( =

)

)

V T

P T

A AS PT V

G GS

G H T S

G A P

dG SdT VdP VT P

V

⎛ ⎞∂ ∂⎛ ⎞− = − = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂= − + ⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠

+⎝ ⎠

Basic relations

4 total derivatives

8 Partial derivatives

Page 8: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

8

( )2 2

Maxwell relationsFor an exact function , , the following relation hold,

or

For thermodynamic relation as follows,

W

yx y x

f x y

x y y x x y y x

dU Td S PdV

θ

θ θ θ θ

=

⎡ ⎤⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = ⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −

( )hen ,

And since and

One has

This is one

(6.2-13)

of

V SS V

V S

S V

U f S V

U UV S S V

U UT PS V

T PV S

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞∂ ∂= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

the Maxwell relations

Maxwell relation (commutative property)

Page 9: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

9

Maxwell relations

Maxwell relations

; UdU Td S PdV TS

⎛ ⎞∂= − = ⎜ ∂⎝

(6.2-9a); (6.2-9b) ; (6.2 -13)

=

(6.2-6b) (6.2-10a); (6.2-10b) ;

;

V S S V

SP

U T PPV V S

H Hd H Td S VdP

U H PV

T VS P

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂− = = −⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞= + = =

⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

(6.2-14)

(6.2-7b) (6.2-11b); (6.2-; 11a) ; (A1 )

S P

V VT T

S

T VP S

A Ad A SdT PdV P

U A T S

S PT V V T

⎛ ⎞∂ ∂⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎛ ⎞∂ ∂⎛ ⎞⎞= − − − = − = ⎜ ⎟⎜ ⎟∂ ∂⎝=⎜ ⎟ ⎜ ⎟∂ ∂⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

(6.2-15)

=

(6.2-8b) (6.2-12b); (6.2-1

; 2a) ; (6.2-16)

=

) (B1P T T P

G GdG SdT V S VG

P T

H T S

G

dP S VT P

A PV

∂ ∂⎛ ⎞ ⎛ ⎞= − + − = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟

+

⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

8 Partial derivatives

4 Total derivatives

4 commutative derivatives

Page 10: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

Graphical Plot of Basic Relations

i i

i i

i i

i i

dU TdS PdV dn

dH TdS VdP dn

dA SdT PdV dn

dG SdT VdP dn

μ

μ

μ

μ

= − +

= + +

= − − +

= − + +

∑∑∑∑

Total internal energy (U) is an essential thermodynamic function. All energies are derived from it. H, A, G are additional primary thermodynamic properties. After Legendre's transformation of U, all can be expressed in canonical variables (V, T, S, P, ni).

V T

*: Independent state variables in corner.*: Dependent properties in between of state variables.*: Properties (A/U/H/G) related to variables (V/T/S/P).

S: state variable indirectly measured by Cp and Cv

, , , ,, , ,,

partial molar Gibbs energy

: those values are not partial property themself.j i j i j i j i

i i iT V n S Pi i

i T P nn V S n

G Gn

No

A H Un

t

n n

e

μ≠ ≠≠ ≠

⎛ ⎞∂= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

=⎠

⎜ ⎟∂⎝ ⎠

OPEN system

Page 11: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

11

Two more relations

; Also Divide by

;

And let the op

dU Td S PdV d H TdS VdPdT

dU dS dV d H d S dPT P T VdT dT dT dT dT dT

= − = +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

eration at constant ; And let the operation at constant ,

; V V P P

VV

V P

V PU S dV H S dPT P T VT T T T T T

U SC TT T

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛= =⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝;

(A2) = (B 2)

PV P

V P

V P

P

C CS ST T T

H SC TT T

T

∂ ∂⎞ ⎛ ⎞ ⎛ ⎞= =⎟ ⎜ ⎟ ⎜ ⎟

∂ ∂

∂ ∂⎠ ⎝

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜

⎟∂

∂⎝ ⎠ ⎝ ⎠

Page 12: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

12

Four important relations

=

(

A1) (A2)

(B1) (B2)

V

V VT

P

T P P

CS P SV T T T

S V S CP T T T

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Page 13: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

13

( ),S f T V=

( ),

(6.2-7)

And

(6.2-18

)

(6.2-15 )

V T

V

V

VT

V

S f T V

S Sd S dT dVT V

CST T

S PV T

C Pd S dTT T

=

∂ ∂⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∂⎛= +∂

(6.2-19)V

dV⎞⎜ ⎟⎝ ⎠

Page 14: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

14

( ),S f T P=( ),

= and

And

(6 .2 2 - 0)

P T

P

P T P

P

P

S f T P

S SdS dT dPT P

S C S VT T P T

C VdS dT dPT T

=

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

( ) , ?What is the relationship of S f P V=

ideal fluid value at constant ?PV

CWhat is the S and TC

; VP

P P P P V V V V

VP

P V P V

CCS S T T S S T TV T V T V P T P T P

CCS S T Td S dV dP dV dPV P T V T P

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ POP Q

UIZCh 4.

4-4

Page 15: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

15

(6.2-21

)

(6.2-

VV

V

V

V

T

dU TdS PdV T PdV

PdU C dT

C PdT dV

T P dVT

U PT PV T

T T⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣

= − = −

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦⎛ ⎞∂ ∂⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

23)

(6.2-

22)

(6 )

.2-24

P

P

PP

T P

d H Td S VdP T VdP

Vd H C dT V T dP

C VdT dPT

T

H VV TP T

T= + = +

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂

⎡ ⎤∂⎛ ⎞−

∂⎝ ⎠ ⎝

⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

U(T, V) H(T, P)

Can I have U in terms of changing P at constant T? Answer is NO

it is the same with 6.2-21VT P V T

T T T V T

U U P VdU dP dT C dT T P d PP T T P

U U V P VT PP V P T P

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

Page 16: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

16

ILLUSTRATION 6.2-1Showing That Similar Partial Derivatives with Different State Variables Held Constant Are Not Equal. Obtain expressions for difference of two derivatives (∂U/∂ T)V - (∂U/∂T)P , show that they are not equal.

Starting from Eq. 6.2-21,

Using Eq. 6.1-7 yields

Again starting with Eq. 6.2-21, we obtai

Solution

n

VV

V VV V

P

V

PdU C dT T P dVT

U PC T P CT T

U C

V

T

T

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

(6.2-25)

0

VV

V PV P

P

PT PT

U U P VT PT T T T

VT

⎡ ⎤∂⎛ ⎞+ −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣

∂⎛ ⎞⎜ ⎟∂

⎝ ⎠

Page 17: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

17

The Joule-Thomson coefficient

0

(6.2-26)

(6.2-2 ) 7

H

PP

P

H P

TP

Vd H C dT V T dPT

VV TTT

P C

μ

μ

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

⎡ ⎤∂⎛ ⎞= = + − ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦⎡ ⎤∂⎛ ⎞− ⎜ ⎟⎢ ⎥∂∂ ⎝ ⎠⎛ ⎞ ⎣ ⎦= −⎜ ⎟∂⎝ ⎠

          

 =

Page 18: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

18

Partial derivation of Gwith respective to T

( )( ) ( )

( )( ) ( )

2 2 2

2 2 2

22

1 1

1 1

1 1 1;

(

6.2-28)

(6.2-29

or

)

P

P

V

V

GH T ST G G HS

T T T T T T T

AU T ST A A US

T T T T T T T

d dT dT T dT

y xdydxT T

⎛ ⎞∂ −⎜ ⎟ ∂⎛ ⎞= − = − − = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟⎝ ⎠

⎛ ⎞∂ −⎜ ⎟ ∂⎛ ⎞= − = − − = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = −−⎛ ⎞ =⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( ) ( )

( ) ( )

22

22

2

hence 1 1

h1

(6.2-30)

P P P

V V

G G GT T TH H

T TT d dT T

A AT T U

ydx

T TT dT

x

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − =⎜ ⎟∂ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟= = −⎜ ⎟∂ ⎛ ⎞⎜ ⎟⎜ ⎟ − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( )(6.2-3ence

10)

V

AT U

dT

⎛ ⎞∂⎜ ⎟

⎜ ⎟ =⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Page 19: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

19

Illustration 6.2-2Showing Again That Similar Partial Derivatives with Different State

Variables Held Constant Have Different Values, CP - CV= ??

this EQ divided by at constant P, the

Starting

(6.2-31) he

n:

re sh

from Eq. 6.2-19,

o

w:

V

V

VP V

P V P

C Pd S dT dVT T

CS P V PC C TT T T T T

dT∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

Now using the triple-product rule,

1

(6.2-32)

(6.2-33a )

V P

V T P

VP

P PT

VP

VT

P V TT P V

CC S P VT T T V T

CC VorT T P

∂⎛ ⎞⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∂⎛= − ⎜ ∂⎝

2

(6.2-3 3b ) T V

PT

∂⎞ ⎛ ⎞⎟ ⎜ ⎟∂⎠ ⎝ ⎠

VP

P V

CC S ST T T T

∂ ∂⎛ ⎞ ⎛ ⎞= ≠ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Page 20: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

20

( )

2

2

2

1

(6.2-33b)

(6.2-34)

Compare this with

VP

PT

VP

T

VP

T

V

V

P V VV P

CC P VT T V T

CC VT T V

CC VT T

CST T

P VC C T CT T

ακ

ακ

⎛ ⎞∂ ∂⎛ ⎞= − ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞= − ⎜ ⎟−⎝ ⎠

= +

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2

2 2

2

(6.2-35)

:

PT

V VT V T

P VV P PT

P VTV T

V P VC T C TP T

In Summary

P V P VC C T TT T V T

ακ

⎛ ⎞∂ ∂⎛ ⎞⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠−

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = = − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

1V P TT V PP VT

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

1 coefficient of thermal expansion

1 isothermal compressibility

P

TT

VV T

VV P

α

κ

∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠∂⎛ ⎞− = =⎜ ⎟∂⎝ ⎠

Page 21: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

21

Maxwell relations (commutative property)

2

2

;

Maxwell relation

VV

VV VT

VV

VT V

V

PdU C dT T P dVT

U U PC T PT V T

PT PTC P P PT

V T T T T

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

⎡ ⎤⎡ ⎤∂⎛ ⎞∂ −⎢ ⎥⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎢ ⎥ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎣ ⎦= = + −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦

2

2

2

2

(6.2-36)

Similarly,

(6.2-37 )

V V

P

T P

PTT

C VTP T

⎛ ⎞∂= ⎜ ⎟⎟ ∂⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞ = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Page 22: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

22

Page 23: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

23

U(T, V) H(T, P)

A(T, V) G(T, P)

6.2-23

6.2-24

μ =

Versus EQ(8.2-1) for multi-component system:

, , , ,, , ,,

partial molar Gibbs energy

: those values are not partial property themself.j i j i j i j i

i i iT V n S Pi i

i T P nn V S n

G Gn

No

A H Un

t

n n

e

μ≠ ≠≠ ≠

⎛ ⎞∂= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

=⎠

⎜ ⎟∂⎝ ⎠

Page 24: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

24

Illustration 6.2-3Use of Partial Derivative Interrelations to Obtain Useful ResultsDevelop expressions for the coefficient of thermal expansion α, the isothermal compressibility κT, the Joule-Thomson coefficient μ, and the difference CP-CV for (a) the ideal gas and (b) the gas that obeys the volumetric equation of state

where a and b are constants. (This equation of state was developed by J. D. van der Waals in 1873, and fluids the obey this equation of state are called van der Waals fluids.

2 (6.2-38a)RT aPV b V

= −−

Page 25: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

25

[ ]

Solutiona. For

1 1 1 so that = = =

1 1

the id

so that

eal

:

1

g s

F

a

P P

TT T

P

H P P

PV RTV R V V VT P T V T V T TV V VP P V P P

for real gas

VV TTT V T

P C C

α

κ

μ α

=

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂ ∂⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤∂⎛ ⎞− ⎜ ⎟⎢ ⎥∂∂ ⎝ ⎠⎛ ⎞ ⎣ ⎦= = − −⎜ ⎟∂⎝ ⎠ =-

[ ]* *

* *

or the ideal gas, 11 1 0

H P P

P V

T V VT TP C C T

C C R

μ α∂⎛ ⎞ ⎡ ⎤= − − = − − =⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦

= +

 =

Page 26: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

26

( )

( )

( )( ) ( ) ( ) ( ) ( ) ( )

( )

2 3

1

1 12 2 2

2

An expression for is obtained as follows:

2

2 2

1Consequently, 1 12

T

T

TT

T

H P P

P RT aV VV b

PVV

RTV a R TV a RV bV b V b V bV RVV b

T V VTP C C V a V b

V b RT V

κ

κ

κ α

μ α

− −

⎛ ⎞∂= − +⎜ ⎟∂ −⎝ ⎠

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

⎡ ⎤= − = − − =⎢ ⎥

− − −− ⎢ ⎥⎣ ⎦

∂⎛ ⎞= − − = − −⎜ ⎟∂ ⎛ −⎝ ⎠ −− ⎝

 =

( ) ( )

22

2

3

and 21

P V V VT

TV R RC C C TV CV b V ba

RT V

α ακ α

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎞⎢ ⎥⎜ ⎟⎢ ⎥⎠⎣ ⎦

⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟− −⎝ ⎠ −

-1 ( ) = VP

TV

α ⎛ ⎞∂⎜ ⎟∂⎝ ⎠

Page 27: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

27

Illustration 6.2-4Showing that a Fundamental Equation of State Contains All the Information About a FluidShow that from an equation of state relating the Gibbs energy, temperature, and pressure, equations of state for all other state functions (and their derivatives as well) can be obtained by appropriate differentiation.

Page 28: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

28

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Suppose we had an equation of state of the form

, and ,

, = , + , ,

, = , + , ,

,

,

P T

P

P

G GS T P V T PT P

GH T P G T

G G T P

P T S T P G T P TT

G GU T P G T P T S T P G T P T PT

PV T PP

∂ ∂⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞=

=

− −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠−

( ) ( ) ( ), = , ,

T

T

GA T P G T P PV G T P PP

∂⎛ ⎞− = − ⎜ ⎟∂⎝ ⎠

Page 29: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

29

( )( )

( ) ( )( )

( )( )

( )

2

2

2 2 12 2 2

2 2

2 2

2

,,

,

1

1

PP

P P

P

PV P

P TT

TT

T T

P T

GG T P TTH GC T P T

T T T

T V T G G GC T P C T TV P T T P P

G PVV P G P

GV T P

V T G P

κ

α

⎡ ⎤⎡ ⎤∂⎛ ⎞∂ −⎢ ⎥⎜ ⎟⎢ ⎥∂ ⎛ ⎞∂ ∂⎝ ⎠⎛ ⎞ ⎣ ⎦⎢ ⎥= = = − ⎜ ⎟⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∂ ∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂∂⎛ ⎞= − = −⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂⎛ ⎞ ∂ ∂= =⎜ ⎟∂ ∂ ∂⎝ ⎠

6.2-35

Page 30: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

30

QUESTIONSWhy do we need two equations, a volumetric equation of state P= P(T, V) and a thermal equation of stale U = U(T, V), to define an ideal gas?2. Can you develop a single equation of state that would completely specify all the properties of an ideal gas? (See Problem 7.7.) Although fundamental equations of state are, in principle,

the most useful thermodynamic descriptions of any substance, it is unlikely that such equations will be available for all fluids of interest to engineers. In fact, frequently only heat capacity and PVT data are available; in Sec. 6.4 we consider how these more limited data are used in thermodynamic problem solving.

What is Thermodynamics database Kingdom?

It is Mollier, T-S, P-H, diagrams; data tables, monographs of all pure substances.

Page 31: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

31

ILLUSTRATION 6.2-5Calculation of the Joule-Thomson Coefficient of Steam from Data in the Steam TablesUse the steam tables in Appendix A.III to evaluate the Joule-Thomson coefficient of steam at 600oC and 0.8 MPa.

Page 32: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

32

( ) ( ) ( )

( ) ( )

o 3

o o

At 0.8 MP

Solution

ˆˆ

ˆ

ˆˆ

ˆ ˆC m /kg kJ/kg

500 0.4443 3480.60.5018

700 0.5601 360

a

0 36924.2

ˆ ˆˆ 700 C 500

99.

,

00

4

Cˆ7

P P

H P P

P

P

P

P

VV V TV T TTTP C C

HCT

T V H

H HHCT

μ

⎡ ⎤⎛ ⎞∂⎡ ⎤∂⎛ ⎞ −⎢ ⎥⎜ ⎟− ⎜ ⎟⎢ ⎥ ∂∂∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎣ ⎦ ⎣ ⎦= − = −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠

−⎛ ⎞∂= ≈⎜ ⎟∂⎝ ⎠

 =

( )

( )o

kJ3924.2-3480.6kJkg 2.218

200 K kg K500 C= =

Page 33: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

33

( ) ( )( )

( )

( )

3

o o 34

o

34

33

m0.5601-0.4443ˆ ˆˆ 700 C 500 C mkg 5.84 10200 K kg K700 500 C

ˆˆ

ˆ

m0.5018 600 273.15 5.84 10kg K m K3.66 10kJ kJ2.218

kg KSince 1 kJ = 1

P

P

H P

V VVT

VV TTT

P Cμ

μ

−⎛ ⎞∂≈ = = ×⎜ ⎟∂ −⎝ ⎠

⎡ ⎤⎛ ⎞∂−⎢ ⎥⎜ ⎟∂∂ ⎢ ⎥⎝ ⎠⎛ ⎞ ⎣ ⎦= = −⎜ ⎟∂⎝ ⎠

⎡ ⎤− + ×⎢ ⎥

⎣ ⎦= − = ×

 

-3 30 MPa m , and 1 MPa = 10 bar,K K3.66 0.366

MPa barμ = =

Page 34: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

34

( )

( )

( )

o

o

Alternative methodkJˆ ; 600 C, kg

kJˆCkg

At 0.6 MPa, 500 3482.8600 3700.9

By interpolation we can find the temperature at 0.6 MPa at which

ˆ 0.6M,

0.8MPa 3699.41

P a

H

T HP

T H

H T

μ ∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠

⎛ ⎞⎜ ⎟⎝ ⎠

 

( )

( ) ( )( ) ( )

o

o

o

o o

kJ ˆ 600 C, kg

ˆ ˆ600 C,0.6MPa ,0.6MPa 3700.9 3699.4 600ˆ ˆ 3700.9 3482.8 600 500600 C,0.6MPa 500 C,0.6MPa

which gi

3699.41 0.8MPa

599.3023 Cves or . Therefore0.6977K

0.6977K

=0.2H

H

H H T T

TTT

H H

Δ

= =

− − −= =

− −−

∂ −⎛ ⎞= ⎜ ⎟∂ −⎝ ⎠

= −=

 K K3.49 0.349

MPa MPa bar= =

NOTE: Inversion temperature of a real fluid was occurred at Joule-Thomson coefficient = 0

Page 35: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

35

Illustration 6.2-6Calculation of Cp for waterThe constant-pressure heat capacity of liquid water at 25 oC at 1 bar is 4.18 J/(g K). Estimate the heat capacity of liquid water

at 25 oC and 100 bar.

4 -1 6 -

3

2

SolutionData:

ˆ1 1 2.56 10 K , ˆ

ˆand

9.6 10 K (

1.003 cm /

g v n)i e

g

P P P

V VV V TT T

V

αα − −∂⎛ ⎞ =⎛ ⎞∂ ∂⎛ ⎞= = = × ×⎜⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎟∂⎝ ⎠

=

Page 36: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

36

2

2

2

2

2

2

From Eq. 6.2-37, we haveˆ ˆ

= or equilivalent =

ˆ ˆˆ or ˆ=

ˆ =

ˆ

PP

P P

T PT

P P

P

T P

C C VT TP P T

VT

V VT

V VVT T

C VTP T

α

αα

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞ − +⎜ ⎟⎜ ⎟

⎛ ⎞∂⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞+⎜ ⎟ ⎜

∂ ∂⎝ ⎠ ⎝ ⎠

⎟∂ ∂⎝ ⎠⎝ ⎠

2

38 6 -2

33 4

3

ˆ ˆ ˆ

cm298.15 K 1.003 6.5536 10 9.6 10 Kg

cm 1 J J2.89 10 2.890 10g K 10 bar cm g K bar

P PTV T V V

Tα αα

− −

− −

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ = − +⎢ ⎥⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= − × × +

×⎣ ⎦

= − × ×

⎛ ⎞⎜ ⎟

= −

×

∂⎝

Page 37: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

37

( )( ) ( )

( ) ( )

( )

o o 4

o

, we have

ˆˆ ˆ, ,

J Jˆ ˆ25 C,100bar 25 C,1bar 2.890 10 99bar= 0.0286g K bar g K

ˆTherefore, 25 C,10

ˆAssuming that is reasonably constant with pressu

0bar 0.024 18

e

.

r

PP P

P T

T

P P

P

CC T P P C T P PP

C C

C

C P

⎛ ⎞∂+ Δ − = Δ⎜ ⎟

∂⎝ ⎠

− = − × −

= −

×

J86g K

and we see that the heat capacity of water at these conditions (and indeed that of most liquidsand solids) only very weakly dependent on

4.1514

press is .ure

=

Page 38: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

38

Gibbs-Helmholtz relation

( )( )

( )

2 2 2

2

1 1

( 6.2- 39

1

)

P

P

P

dG SdT VdPG ST

G G G H TS HT ST T T T T T T

G HTT T

dT

= − +

∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ −⎛ ⎞⎜ ⎟ = − = − − = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟⎝ ⎠

⎛ ⎞∂⎜ ⎟ = −⎜ ⎟∂⎜ ⎟⎝ ⎠

⎛ ⎞⎜ ⎟⎝ ⎠

( )( )

22

1;

(6.2-41/

0)

P

dT dT T dT T

GT HT

⎛ ⎞= − = − ⎜ ⎟⎝ ⎠

⎛ ⎞∂⎜ ⎟ =⎜ ⎟∂⎜ ⎟⎝ ⎠

G-H relationship can be represented by dimensionless as well

Page 39: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

39

6.4 THE EVALUATION OF CHANGES IN THE THERMODYNAMIC PROPERTIES OF REAL SUBSTANCES ACCOMPANYING A CHANGE OF STATE

The Necessary DataIn order to use the energy and entropy balances for any real substance for which thermodynamic tables are not available, we must be able to compute the changes in its internal energy, enthalpy, and entropy for any change of state. The equations of Sec. 6.2 provide the basis for such computations. However, before we discuss these calculations it is worthwhile to consider the minimum amount of information needed and the form in which this information is likely to be available.(A) Volumetric Equation-of State Information(B) Heat Capacity Data

Page 40: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

40

(A) Volumetric Equation-of State Information

The van der Waals equation of state (1873)The Redlich-Kwong equation of state (1949)The Peng-Robinson equation of state (1976)The general cubic equations of stateThe Virial equation of state (1901)The BWR (Benedict, Webb, and Rubin, 1940) equation of stateThe Bender equation of state (1970)

Page 41: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

41

The van der Waals equation of state

( )2

2

(6.2-38

was proposed by

a)

J

(6.2-

.

38

b)

aP V b RTVRT aP

V b V

⎛ ⎞+ − =⎜ ⎟

⎝ ⎠

= −−

D. van der Waals in to describe the volumetric or PVT behavior of both vapors and liquids, work for which he was awarded the Nobel Prize in Physics in 1910. The constants and can be dete

1

r e

8 3

n

7

mia b deither by fitting this equation to experimental data or, more commonly, from critical-point data. Values for the parameters for several gases appear in Table 6.4-1. The van der Waals equation of stat not very accurate

the first equation capablee is and is mainly of his

of predicting the transittori

ion c

interest in that betweenvapor and

it waliq

s uid.

Page 42: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

42

Page 43: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

43

The Redlich-Kwong equation of state (1949)

( )1/ 2 (6.4-1

the temperature dependence of was introduced in the attractive

)

term.

RT aPV b T V V b

a

= −− +

What is the meaning of the first term of RHS?

Page 44: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

44

The Peng-Robinson equation of state (1976)

( )( ) ( )

( ) ( )2 2

0.45724

(6.

4-2)

0.07780

(6

.7-1)c

c

c

c

a TRTPV b V V b b V b

R Ta T TP

RTbP

α

= −− + + −

=

=

1 1

(6.7-2)

(6.7-3)

0.37464 1.54226c

TT

α κ

κ

⎛ ⎞= + −⎜ ⎟⎜ ⎟

⎝ ⎠= + 20.26992 (6 - .7 4)ω ω−

Page 45: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

45

The general cubic equations of state

( )( )( )2

where each of the five parameters , , , , and can depend on temperat

(

ure. Inpractice however, generally only

3

6.4- )VRTP

V b V b V V

b

η θδ ε

θ δ ε η

−= −

− − + +

is taken to be a function of temperature, and it isadjusted to give the correct boiling temperature as a function of pressure.Table 6.4-2 gives the parameters of Eq. 6.4-3 for some commonequations o

θ

the hundreds of this classf state from among that have been publi shed.

Page 46: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

46

Page 47: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

47

The Virial equation of state (1901)( ) ( )

( ) ( )

21

where and are the temperature-dependent second and third virial coeffi-cients. A

(6.

lthough higher-order te

4-5)

rm

B T C TPVRT V V

B T C T

= + + +L

( ) ( )( ) ( )

only for the second virial coeffics can be defined in a similar fashion, data generally

are available two body interactions

three body interactionsWhen truncated at the (T) te

ie

rm, the

t

v

n .

iri

B T f

C T fB

=

=

al equation of state can be used only at low densities; as a general rule, it be used at pressshould not above 10ures for most flu

barids.

Leiden-Z form

{ }2

2

2

Berlin-Z form and Leiden-Z form:

Berlin- and Leiden- Residual volume as follows:

'( ) '[ ] ' '[ ]

1 '[ ] '[ ]

1

R IG

R IG

RT RT RTV V V B RT C P B RT C PRTP P P

RT RT RTV V V BP P PV

PVZ B P C PRT

Z B Cρ ρ

⎧ ⎫⎡ ⎤Δ = − = − + + = − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

⎡ ⎤Δ = − = − + +⎢ ⎥

⎣ ⎦

= = + +

= + +

2 2

RT RT RTC B CPVPV PV

⎧ ⎫ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎢ ⎥= − −⎢ ⎥⎨ ⎬ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

{ },0 0

, 20 0 0V

1

At zero pressure, Berlin- and Leiden- residual volume of a real gas:

lim( ) lim ' '[ ] '

lim( ) lim lim

RT xp p

V V

RT xp p p

V VZ

V B RT C PRT B RT

RT RTV B CPV PV

→ →→∞ →∞

→ → →→∞ →∞ →∞

=

⎧ ⎫⎪ ⎪Δ = − − = −⎨ ⎬⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤⎡ ⎤ −⎪ ⎪Δ = − − =⎨ ⎬⎢ ⎥⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

B BZ

⎧ ⎫ = −⎨ ⎬⎩ ⎭

Page 48: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

48

The BWR (Benedict, Webb, and Rubin, 1940) equation of state

( )

23

25 23

1 11

1 exp / (6.4-6a

wherc the eight constants , , , , , , , and are specific

)

PV A C aB bRT RT RT V RT V

a VRT VRTV V

a b A B C

α β γ γ

α β γ

⎛ ⎞ ⎛ ⎞= + − − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + + −⎜ ⎟

⎝ ⎠to each fluid and

arc obtained by fitting the equation of state to a variety experimental da of ta.

Page 49: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

49

The Bender equation of state (1970)

( )2202 3 4 5 2 2

2 3 41 2 3 4 5

26 7 8

9 10

11 12

133 4 5

14 15 153 4 5

17 18 19

1 exp /

/ / / /

/ ///

/

/ / /

/ / /

(6.4-6b)

with

T B C D E F HP R G a VV V V V V V V V

B a a T a T a T a T

C a a T a TD a a TE a a TF a T

G a T a T a T

H a T a T a T

⎡ ⎤⎛ ⎞= + + + + + + + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

= − − − −

= + += += +=

= + +

= + +

Page 50: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

50

Heat Capacity Data

( ) ( )2 2

1 1

2

2

2

2

1 2

2, ,

2 1 2, ,

At each temperature we can integrate Eq. 6.2-37 to obtain

At constant ,

Integrate from to ,

, ,

P

T P

PP

P T P

P P PP T P TP

C VTP T

VT dC T dPT

P P

VdC C P T C P T T dPT

⎛ ⎞∂ ∂⎛ ⎞ = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂= − = − ⎜ ⎟∂⎝ ⎠

( ) ( )

( ) ( )

2

1

2,

2 1 2,

2

2 1 2

, ,

Similarly,

, ,

(6.4-7)

(

6.4-8)

T

P T

P P P TP

V VV

VC P T C P T T dPT

PC V T C V T T dVT

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂= + ⎜ ⎟∂⎝ ⎠

2

1

,

,(6.4-9 )

V T

V T∫

Page 51: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

51

( ) ( )

( ) ( )

1

2,*

*

20,

2

2

For an ideal gas, 0, ,

,

,

(6.4-10)

(6.4-11

P T

P P TP

V

P

VV

P V

VC P T T T dPT

PC V T T T V

C

C dT

=

→ → ∞

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂= + ⎜ ⎟∂⎝ ⎠

∫,

,)

V T

V T=∞∫

Which one is easy for calculation of 6.4-10 or 6.4-11?

It is the latter because a cubic volumetric EOS is generally explicit in pressure not in volume!

Using 6.4-10 and 6.4-11, and then 6.4-8 and 6.4-9 can be employed to get Cp and Cv values at the state 2.

Page 52: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

52

Ideal gas heat capacity

* 2 3P

*PSee Appendix A.II for for some compounds.

C a bT cT dT

C

= + + + +L

Note:Ideal gas relationships are not fade out since you need them for calculations from given state-1 to unknown state-2!

Page 53: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic
Page 54: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

54

Evaluation of ΔH, ΔU, and ΔS( ) ( )

( ) ( ) 2 2

1 1

1 1 2 2

,

2 2 1 1 ,

To compute the change in enthalpy in going from the state , to the state , , we start from

(2,1) , , (6.4-12)

(2,1)

T P

T P

PVd H

T P T P

H H T P H T P

d V T

d

C TT

H

∂⎛ ⎞=

Δ = −

+ −∂

=

⎜⎝

( )

( )

( )

( )

1

1 1

2

2

1

2

2

, 0

,

,

, 0

, 0 *P, 0

Three steps calculation procedure (solid l

(2,1)

(6.2-22

ine

)

)

T P

T PP

T

T P

P

P

T PP

P

T

VV T d

dP

PT

VV

H C dT

T dPT

=

=

=

= ⎡ ⎤∂⎛ ⎞−⎢ ⎥⎜ ⎟∂Δ = +

⎝ ⎠⎣ ⎦

⎡ ⎤∂⎛ ⎞−⎢ ⎥⎜ ⎟∂⎝

⎠⎣

⎤⎢ ⎥⎟

+

⎣ ⎦

(6.4 -13)

Introducing Residual functions (Departure functions)

“Evaluation of ΔH, ΔU, and ΔS” requires the IDEAL GAS calculation and the residual function calculation. Then Thermodynamics database kingdom can be built up.

Figure 6.4-1 Integration path in the P-T plane.

Cancel U&L limits and de-Integrate reduced to 6.2-22!

Page 55: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

55

Isobaric heating followed by isothermal compression(dash line in Fig 6.4-1)

1 2 2 2

1 1 1 2

2 2 1 2 2

1 1 1 2

1

, ,

, ,

2 ,*P 20 ,

2

20

(6.4-14

:

a)

P T P T

PP T P TP

T T P P T

T T P TP

P

VH C dT V T dPT

V VC dT T dP dT V T dPT T

Since

VT dPT

⎡ ⎤∂⎛ ⎞Δ = + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦⎧ ⎫ ⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪ ⎛ ⎞= − + −⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭

⎧ ⎫⎛ ⎞∂⎪ ⎪⎨ ⎬⎜ ⎟∂⎪ ⎝ ⎠⎩

∫ ∫

∫ ∫ ∫ ∫

suuuuuuuuuur

2 1 2

1 1

1 2

1

1 2 1 1

2 1

2

20

0

, ,

0, 0,

=

T P T

T TP

P T

TP P

P T P T

P T P TP P

VdT T dT dPT

VT V dT dPT T

V VT V dP T V dPT T= =

⎧ ⎫⎛ ⎞∂⎪ ⎪= ⎨ ⎬⎜ ⎟∂⎪ ⎪ ⎪⎝ ⎠⎭ ⎩ ⎭⎧ ⎫⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪ ⎪ ⎪⎛ ⎞ −⎨ ⎨ ⎬ ⎬⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫

∫ ∫

∫ ∫ (6.4 -15)

6.2-37

6.4-15 + 6.4-14a = 6.4-13

( )

( )2 2

2

,

, 0Sum =

(6.4 13)

T P

T PP

VV T dPT

in EQ

=

⎡ ⎤∂⎛ ⎞−⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦−

Page 56: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

56

Entropy change between two states

( )

( )

( )

( )

( )

( )

( )

( )

1 2 2

1 1 2

2

1

2

1

1 2 2

1 21

, 0 ,

, , 0

*, 0 P, 0

*, 0

,,

, ,V, 0

For and

(6.4-16

are state variables,

a)

T P T P

T P T PP

T P

T PP

T T P

T P

V T V

T V T VV V

V VdP dPT T

P

CS dT

PdV dVT

T

T VCS dTT T

=

=

=

=

=

=

=∞

=∞

∂ ∂⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛

Δ = + −

Δ = + +⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫∫ ∫

∫∫∫ (6.4 -17a)

Figure 6.4-2 Integration path in V-T plane.

Again, dV is easy for EOS calculation since EOS is explicit in pressure not in volume!

Cancel U&L limits and de-Integrate reduced to 6.2-20.

6.2-19

6.2-20

Page 57: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

57

Internal energy change between two states (T, V) from state 1 to state 2

( )

( )

( )

( )

1

1 1 1

2

2

2

2

,

,

, 0 *

,

V,

,

0

(6

For and are state variables,

. - 8) 4 1

T V

T VV

T P

T V

T VV

T P

T V

U C dTPT P dVT

PT P dVT

=∞

=

=

=

⎡ ⎤∂⎛ ⎞ −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤∂⎛ ⎞ −⎢ ⎥⎜ ⎟∂

Δ = +

+⎝ ⎠⎢ ⎥⎣ ⎦

∫6.2-22

Page 58: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

58

Ideal gas results

( ) ( )

( ) ( )

2

1

IG IG IG IGIG

0,IG IG *2 2 1 1 P0,

IG IG *2 2 1 1 VV ,

; 0 = ;

, ,

U ,

(6.4-14b

V U ,V

)

P P V V

P T

P T

V V R V P P R PV T T PT T P T T T V T

H T P H T P C dT

T T C dT

=

=

=∞

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− =

− =

( ) ( )

( ) ( )

( ) ( )

2

2

1

1 2 2 2

1 1 1 2

1 2 2 2

11 1

1

1 2

V= ,

*0, ,IG IG P2 2 1 1 , 0,

*, ,IG IG

*IG IG P

V2 2 1 1 ,

22 2 1 1

1

G2

,

I

(6.4-16, ,

, ,

, ,

b)

ln

T

T

P T T P T

P T T P T

V T T V T

V T T V T

T

T

CR RS T P S T P dP dT dPP T P

CR RS T V S T V dV dT dVV T

C PS T P S T P dT RT P

S T

V

=

=

=∞

=∞

− = − + −

− = +

− = −

+

∫ ∫

∫ ∫

( ) ( ) 2

1

*IG V 2

2 1 11

(6.4-17, , ln b ) T

T

C VV S T V dT RT V

− = +∫

Combine and cancel Infinity terms

What will be the ? V

, ,

; V

IGIGP

T x T x

CCP

∂∂ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Page 59: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

59

Enthalpy departure function (T, P)( ) ( ) ( ) ( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

1 2 2

1

2 1

1 2

2 1

IG IG2 2 1 1 2 2 1 1

IG IG IG IG2 2 1 1,

, 0 ,

, , 0

,

I

, , , ,

(6.4-1 ), , 9

T P T P

T P T PP

T T P

P

P

H T P H T P H T P H T P

V VV T dP V T dPT T

H H

H H H T P H T P H H

=

=

− = −

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎡ ⎤− −+ ⎦ −= −⎣

∫ ∫

( ) ,G

, 0,(6.4-22)

Re in tegration of the following term at constant T :

T P

T PT

PP

PP

call

Vd H C dT V T dPT

VV

ed

T dPT=

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎡ ⎤∂⎛ ⎞= −⎢ ⎥

⎜ ⎟∂⎝

∂⎝ ⎦

⎣ ⎦

(6.2-22)

6.4-14a + b

Residual functions (Departure functions)

6.4-13

Page 60: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

60

Entropy departure function (T, P)( ) ( ) ( ) ( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

1 2 2

1

2 1

2

2

1

1

IG IG2 2 1 1 2 2 1 1

IG IG IG IG2 2 1 1, ,

, 0 ,

, , 0

I

, , , ,

(6., , 4 -20)

T P T P

T P T

T P T P

PP P

S T P S T P S T P S T P

V R V R

S S S T P S T P S S

dP dPT P T P

S S

=

=

− = −

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

= ⎡ ⎤− + −− −⎣ ⎦

∫ ∫

( ) ,G

, 0, (6.4-23)

Re in tegration of the following term at constant T ::

T P

T PTP

P

P

P

caC Vd S dT d

V R dPT

lled

PT T

P=

⎡ ⎤∂⎛ ⎞= − −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

∂⎛ ⎞= − ⎜

⎟∂⎝ ⎠

(6.2-20)

6.4-16a + b

Residual functions (Departure functions)

Page 61: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

61

Entropy departure function (T, V)( ) ( ) ( ) ( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

1 21 2

1

2 12

21

1

IG IG2 1 2 12 1 2 1

, ,

, ,

IG IIG IG

, ,

G2 12 1

, , , ,

+

(6.4-2 , , 1

T V T V

T V T VV

T V T V

V

S T V S T V S T V S T V

P R P RdV dVT V T V

S T V S STS SVS

=∞

=∞

− = −

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤= + − −− ⎣ ⎦ −

∫ ∫

( ) ( ) ( ),IG IG

,,

)

(6.4-24)

Re in tegration of the following term at cons

, ,

tant T ::

T V

T VT V

V

V

V

C

P RS S S T V S

Pd S dT dVT T

called

T V dVT V=∞

⎡ ⎤∂⎛ ⎞− = − = −⎢ ⎥⎜ ⎟∂⎝

∂⎛ ⎞= + ⎜ ⎟∂⎝

⎢⎣

⎠ ⎥⎦

(6.2-19)

6.4-17a + b

Residual functions (Departure functions)

Page 62: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

62

Converting H(T, P) to H(T, V)data measurement <=> EOS calculation

( ) ( );

The triple produc

1 (6.4-25)

d

t rule among , and

1 ; at const ant , P VT P

d PV PdV VdP

P T V

PdP d PV dVV V

V PT

V P T TT V P

= +

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠

= −

∂ ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

( )

( ) ( )

( )

IG

, 0 0 0

0 0 0 0

0

(6.4-

1

26)

T P

P P P

P P PP P

P P P P

P P P PV V

P

P

V

V VV T dP VdP T dPT T

P P PV d PV dV T dV

H

d PV PdV T dVV V T T

Pd PV

P

H

TT

dVT

= = =

= = = =

=

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎡ ⎤ ∂ ∂⎛ ⎞ ⎛ ⎞⎡ ⎤= − + = − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

⎛ ⎞⎜ ⎟∂

⎝ ⎠

= ∫ ∫ ∫

∫ ∫ ∫ ∫

( ) ( )

( ) ( ),IG

,,

0

0

1

1 (6.4-2 )

1

7

P

PV

z V V

T P V

T P VT PP V

z V VV V

V PH H V T dP RT Z T P dVT

P dV

P Pd ZRT T P dV RT Z T P dVT T

T

=

= =∞

= ∞

=∞

=

⎡ ⎤⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− = − = − + −⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤−⎢ ⎥

⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= + − = − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝

⎢ ⎥⎣

⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎦

⎦ ⎣ ⎦

∫ ∫

∫ ∫ ∫

Page 63: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

63

Converting from S(T, P) to S(T, V)

( ) ( );

The triple product rule among

d

, and

1 ; at constant , P V P VT

V PP dVT

d PV PdV R R RdP d PV dVdP

P T V

V P T TT

VP P V

V

V

TP

= +

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎠⎝ ⎠

= −

( )

( ) ( )

( )

IG

0 0 0

1

,

ln

ln

(6.4-26)

P P P

P P PP P

V V V V

V V V VV V

z

zV

T P

R V R VdP dP dPP T P T

R R P P Rd PV dV dV R d PV dVPV V T T V

P RR d

S

RTT V

S

Z

= = =

=∞ =∞ =∞ =∞

=

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎡ ⎤⎡ ⎤ ∂ ∂⎛ ⎞ ⎛ ⎞= − + = + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠⎣

− = ∫ ∫ ∫

∫ ∫ ∫ ∫

( ) ,IG

, 0,ln (6.4-28)

ln

T P V

T P VT PP V

V V

V VV

R V P RS S dP R z

P RdV R z dVT

dV

V

P T T V

=∞ =∞

= =∞

⎡ ⎤⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− = − = + −⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣

⎤ ⎡ ⎤∂⎛ ⎞= + −⎢ ⎥ ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥ ⎢ ⎥⎦ ⎣

⎦ ⎣

Easy for data measurement Easy for cubic EOS calculation

Page 64: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

64

Enthalpy and entropy changes for Peng-Robinson equation of state (PR-EOS)

( ) ( )( )( )

( ) ( )( )( )

IG

,

IG

,

1 21 ln (6

2 2 1 2.4-2

1 2ln ln

2 2 1 2

where

9)

(6.4-

3

=

)

/

0

Z

T P

T P

daT a Z BdTH H RT Zb Z B

daZ BdTS S R Z B

b Z B

PV

⎛ ⎞ − ⎡ ⎤⎜ ⎟ + +⎝ ⎠ ⎢ ⎥− = − +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +⎢ ⎥− = − +⎢ ⎥+ −⎣ ⎦

( ) ( )

2 2

2 2

2

and / ; A /

0.45724 ; 0.07780 ; 1 1

0.37464 1.54226 0.26992

c c

c c c

RT B Pb RT Pa R T

R T RT Ta T T bP P T

α α κ

κ ω ω

= =

⎛ ⎞= = = + −⎜ ⎟⎜ ⎟

⎝ ⎠= + −

6.4-28

6.4-27

Recalled “Evaluation of ΔH, ΔU, and ΔS” requires the IDEAL GAS calculation and the residual function calculation. Then Thermodynamics database kingdom can be built up.

Page 65: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

65

ILLIJSTRATION 6.4-1Construction of a Thermodynamic Properties Chart using the PR EOSAs an introduction to the problem of constructing a charter (able of the thermodynamic properties of a real fluid, develop a thermodynamic properties chart for oxygen over the temperature range of -100 oC to + 150 oC and a pressure range of 1 to 100 bar. In particular, calculate the compressibility factor (Z), specific volume (V), molar enthalpy (H), and molar entropy (S) as a function of temperature and pressure. Also, prepare a pressure-volume plot, a pressure-enthalpy plot, and a temperature-entropy plot for oxygen.

( ) ( )( )

* 2 5 2 9 3P

IG

o

IGo o

reference state of oxygen to be the ideal gas state at 25 C and 1 bar

J 25.64 1.519 10 0.7151 10 1.311 10mol K

Choose the ,

25 C, 1 bar 0; 25 C, 1 bar 0

0.45724

C T T T

H T P S T P

a T

− − −⎛ ⎞ = + × − × + ×⎜ ⎟⎝ ⎠

= = = = = =

= ( )2 2

2

; 0.07780

1 1 ; 0.37464 1.54226 0.26992 =0.4069

=154.6 K; =5.046 MPa

c c

c c

c

c c

R T RTT bP P

TT

T P

α

α κ κ ω ω

=

⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟

⎝ ⎠

Building up Thermodynamics database for Oxygen!

Must be given !

Page 66: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

66

( ) ( )

( )( ) ( )

2 2

2 2

Solution.

For each temperature, calculate 0.45724 and , then at each pressure

solve the equation

for t

I. Volume

/ ; A /

he volume. or equiva

c

c

B

R Ta T T bP

a TRTPV b V V b

Pb RT P RV b

a Tb

α=

= −−

= =+ + −

( ) ( ) ( )3 2 2 2 31 3 2 2 0

lently (and preferably), so

;

lve the equation for Z

:

Mention: Illustration-6.7-1 + problem 6.7-PRPROP programs +NBS-soft

Z B Z A B B B Z AB B B

big root Vapor small root Liquid

+ − + + − − − + − + + =

− − − −

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( )

IG IG IG IGo o

IG *P298.15K,

IG IG IG IGo o

*IG P

298.15K,

II. Enthalpy

III. En

, 25 C,1 bar , , , 25 C,1 bar

, 25 C,1 bar , , , 25 C,1 bar

ln1 b

tropy

ar

ware

T

T P

T

T P

H T P H H T P H T P H T P H

H H C dT

S T P S S T P S T P S T P S

C PS S dT RT

− = − + −

= − +

− = − + −

⎛ ⎞= − + − ⎜ ⎟⎝ ⎠

Page 67: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

67

Given P, T values ==== Calculated Z, V, H, S values, Compared it with Table 7.5-1 covered from -100 to -200 C, which used PR-EOS as well.

How accurate of these data compared to experimental data?PR-EOS (or other EOS) is applicable for non-polar compounds (hydrocarbons), but not for polar compounds (waters). Keep in mind that steam table was established by 59 EOS constants correlated with many experimental data, which can be applied for power plant boilers and turbines.

Page 68: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

68

Page 69: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

69

Figure 6.4-3 Pressure-volume diagram for oxygen calculated Using Peng-Robinson equation of state.

V

Near straight line,Ideal gas behavior!

Page 70: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

70

Figure 6.4-4 Pressure-Enthalpy diagram for oxygencalculated using Peng-Robinson equation of state.

H

Reference at25 C and 1 bar (not 0 bar)Check EQ 4.4-3.

Page 71: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

71

Figure 6.4-5 Temperature-entropy diagram for oxygencalculated using Peng-Robinson equation of state.

SUsing these mentioned methods, Can you be able to obtain all thermodynamics properties for new coolant-R134a or for new heating media-Dowtherm at V&L phases?

Reference at25 C and 1 bar (not 0 bar)Check EQ 4.4-3.

Page 72: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

72

For liquids or solids

pressure

1

1

are weak function of or . Thus,tempertufor

liquid o

Both useful coefficients as follows:

these two values may be con

r

s

solid p

idered a

h

s

ases.

con ntresta

TT

P

VV P

VV T

κ

α

∂⎛ ⎞− =⎜ ⎟∂⎝ ⎠∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

Mentioned that pressure have little effect on L&S properties!

Page 73: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

73

Page 74: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

74

For Volume of liquids or solids

( ) ( )

( ) ( )( )[ ]

, ,

, ,

, 1 (6.4-31)

T

T

T

VV T P P V T P PP

V T P V T P P

V T P P

κ

κ

∂⎛ ⎞+ Δ = + Δ⎜ ⎟∂⎝ ⎠= − Δ

= − Δ

From definition

Page 75: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

75

ILLUSTRATION 6.4-2Effect of Pressure on the Volume of Liquids and SolidsCompute the change in the molar volume of copper, sodium chloride, ethanol, and mercury for the very large pressure change of going from 1 bar to 1000 bar at 20oC.

( ) ( )[ ]

( )

[ ]

( )

o 6 -1Cu

oNaCl

SOLUTION, , 1

Using the equation, we havecc20 C, 1000 bar 7.12 1 0.77 10 bar 999 bar

molcc cc 7.12 1 0.000769 7.115

mol mol

20 C, 1000 bar 2

TV T P P V T P P

V

V

κ

+ Δ = − Δ

⎡ ⎤= × − × ×⎣ ⎦

= × − =

=

( )

( )

6 -1

o 6 -1EtOH

o 6 -1Hg

cc cc7.02 1 4.15 10 bar 999 bar 26.91 mol molcc cc20 C, 1000 bar 58.04 1 109 10 bar 999 bar

mol molcc cc20 C, 1000 bar 14.81 1 3.80 10 bar 999 bar 14.75

mol m

52.

o

04

l

V

V

⎡ ⎤× − × × =⎣ ⎦

⎡ ⎤= × − × × =⎣ ⎦

⎡ ⎤= × − × × =⎣ ⎦

Page 76: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

76

COMMENT

We see that the change in volume with a factor of 1000 change in pressure is very small for the two solids and the liquid metal considered, but that there is an 8.9 percent change in volume for the more compressible liquid ethanol.

Page 77: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

77

Enthalpy

[ ]

( ) ( )

(6.

At constant temperature

Therefore, assuming that and are essentially constant with pressure give

4

s,

-32)

1,

PP

P

Vd H C dT V T dPT

Vd H V T dP V TV dPT

V

H T H T VP P P

α

α

⎡ ⎤∂⎛ ⎞= + −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

⎡ ⎤∂⎛ ⎞= − = −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

+ Δ − = −[ ] (6.4-33 ) T Pα Δ

From definition

Page 78: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

78

ILLUSTRATION 6.4-3Effect of Pressure on the Enthalpy of Liquids and SolidsCompute the change in enthalpy of the four substances considered in the previous example on going from 1 bar to 1000 bar at 20oC .

( ) ( ) [ ]

( ) ( )

[ ]

( ) ( )

o o 4 -1Cu Cu

o oNaCl NaCl

, ,

cc20 C,1000 bar 20 C,1 bar 7.12 1 293 K 0.492 10 K 999 barmol

cc cc bar J=7.12 1 0.0144 999 bar=7010.3 701 mol mol mol

cc20 C,1000 bar 20 C,1 bar 27.02 1 29

1

3 mol

H T P P H T P

H

V T

H

H H

+ Δ − =

⎡ ⎤− = − × × ×⎣ ⎦

− × =

− = −

− Δ

( ) ( )

( ) ( )

4 -1

o o 4 -1EtOH EtOH

o o 4 -1Hg Hg

JK 1.21 10 K 999 bar=2604 mol

cc J20 C,1000 bar 20 C,1 bar 58.04 1 293 K 11.2 10 K 999 bar=3919 mol mol

cc20 C,1000 bar 20 C,1 bar 14.81 1 293 K 1.81 10 K 999 bar=mol

H H

H H

⎡ ⎤× × ×⎣ ⎦

⎡ ⎤− = − × × ×⎣ ⎦

⎡ ⎤− = − × × ×⎣ ⎦J1401

mol

Page 79: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

79

COMMENT

Note that in each case the enthalpy change due to the pressure change is large and cannot be neglected.

Page 80: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

80

Internal energy

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) [ ]

, ,

[ , , ] , ,

, , ,

(6.4-3 )

4

, , 1

U T P P U T P

H T P P P P V T P H T P PV T P

H T P P H T P V T P P

V P VT P V P

H T

VT P

VP TP P PH T

α

α

α − Δ

+ Δ −

⎡ ⎤= + Δ − + Δ − −⎣ ⎦

⎡ ⎤= + Δ − − Δ⎣ ⎦

= Δ

− Δ − Δ =

+ = ΔΔ −

Recalled: [ ]P

Vd H V T dP V TV dPT

α⎡ ⎤∂⎛ ⎞= − = −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

Page 81: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

81

ILLUSTRATION 6.4-4Effect of Pressure on the Internal Energy of Liquids and SolidsCompute the change in internal energy of the four substances considered in the previous illustrations on going from 1 bar to 1000 bar at 20oC.

( ) ( )

( ) ( )

( ) ( )

( )

o oCu Cu

4 -1

o oNaCl NaCl

o oEtOH EtOH

, ,

20 C,1000 bar 20 C,1 bar

cc 1 J J7.12 293.15 K 0.492 10 K 999 bar 10.3 mol 10 cc bar mol

J20 C,1000 bar 20 C,1 bar 95.7 mol

20 C,1000 bar 20 C,1

U T P P U T P

U U VT P

U U

U U

VT Pα

α

+ Δ − =

− = − Δ

= − × × × × × = −

− = −

− Δ

( )

( ) ( )o oHg Hg

Jbar mol

J20 C,1000 bar 20 C,1 ba

1915

r 78.5 mol

.5

U U

=

− = −

Page 82: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

82

CommentWith the exception of ethanol, the changes in internal energy are small, much smaller than the changes in enthalpy for these substance. Indeed, for moderate changes in pressure, rather than the large pressure change considered here, the change in internal energy with pressure can be neglected.

Page 83: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

83

Entropy

( ) ( )

At constant temperature:

(6.4-35

, ,

)

(6. 4-36)P

Vd S dPT

T P P S T PS V Pα

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠+ Δ − = − Δ

From definition

Page 84: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

84

ILLUSTRATION 6.4-5Effect of Pressure on the Entropy of Liquids and SolidsCompute the change in enthalpy of the four substances considered in the previous example on going from 1 bar to 1000 bar at 20oC .

( ) ( )( ) ( )

( ) ( )

o oCu Cu

4 -1

o oNaCl NaCl

oEtOH

, ,

20 C,1000 bar 20 C,1 bar

cc 1 J 0.492 10 K 7.12 999 barmol 10 cc bar

J= 0.035 701 mol K

J20 C,1000 bar

(

20 C,1 bar 0.327 mol K

2

6.4-36

0

)

0 C,1 0

T P P S T P V P

S

S

S

S S

S

α

+ Δ − = − Δ

⎡ ⎤= − × × ×⎣ ⎦

− = −

( ) ( )

( ) ( )

oEtOH

o oHg Hg

J0 bar 20 C,1 bar mol KJ20 C,1000 bar 20 C,1 bar 0.268

mol K

6.534S

S S

− =

= −

Page 85: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

85

CommentsAgain, with the exception of ethanol, the changes in entropy are quite small. For moderate changes in pressure the entropy change of a condensed phase with pressure is negligible.

Page 86: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

86

The illustrations shows that unless the pressure change is large, and the condensed phase is quite compressible (as is the case for ethanol here), the changes in volume, internal energy, and entropy with changing pressure are quite small.

However, the change in enthalpy can be significant and must be accounted for. Indeed, it is this enthalpy difference that is important in computing the work required to pump a liquid from a lower pressure to a higher pressure.

Short Summary

Page 87: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

87

ILLUSTRATION 6.4-6Energy Required to Pressurize a LiquidCompute the minimum work required and the heat that must be removed to isothermally pump liquid ethanolfrom 20oC and 1 bar to 1000 bar in a continuous process.

How much work required in compressing air in Chapter 4?Recalled 4.5-1 (3.4-4)- from 1 to 10 bar needs 7834 J/mol.

Page 88: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

88

1 2 1 2

1 21 2

SOLUTlONConsider the pump and its contents to be the systemThe steady-state balance is

0 or =

The steady-state e balance is

=

nergy

mass

0= + + ;

dN N N N N Ndt

dU W QN H N H Q WdT N N

= = + = − −

+ = − +

& & & & &

&&&& & &

& & ( )

( )

( ) ( )

2 1

gen

1 2 2 11 2

o o2 1

The steady-state balance (with = 0 for minimum work) is

=0= + + or

From the previous illustratio

, we ha

ent

veJ20 C, 1000 bar 20 C, 1 bar 6.534

rop

mol

n

s

y

H H

S

dS Q QN S N S T S SdT T N

S S S S

= −

− = − = −

&

& && &

&

( ) ( )

( ) ( )

( )

o o2 1

2 1

2 1

KJ20 C, 1000 bar 20 C, 1 bar 3919

molJ JTherefore, 293.15 K 6.534 1915

mol K molJ 1915 3919 5834

mol

H H H H

Q T S SNW Q H HN N

− = − =

= − = × − = −

= − + − = + =

&

&

&&

& &

Page 89: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

89

Comment

( ) ( ) [ ]

( ) ( )

( )o

the effect of thermal expansion, that is, , then from Eq.If

6.4-33 , , 1

and from Eq. 6.4-36,, , 0

Then, for the problem here,

20

set

we n

C,1000

eglecte

ba

d = 0

r 20

H T P P H T P V T P V P

S T P P S T P V P

H H

αα

α

+ Δ − = − Δ = Δ

+ Δ − = − Δ =

− ( )o C,1 bar

cc 1 J J58.40 999 bar 5834 mol 10 cc mol mol

= × × =

Page 90: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

90

( ) ( )o oand 20 C,1000 bar 20 C,1 bar 0

Jso that 0 and 5834 mol

Note that the total work is the same as before for this isothermal pressurization (why?), but inthis case no heat would have to be re

S S

Q WN N

− =

= =& &

& &

moved to keep the liquid at constant temperature.To pressurize liquid , which is closer to being incompressible than ethanol, over thesame conditions one obtains (without making the assum

merpt

curyion

Much less work is n

that a = 0)J J2

eeded for this

93.15 K 0.286 78.6 mol K mol

J J 78.6 1401 1478.6 mol mol

since very little work is being done less compressible f to

c

luid (H

g)

hange

QNWN

α

⎛ ⎞= × − = −⎜ ⎟⎝ ⎠

= + =

&

&

&

&

the volume of the liquid; the work is mainly going to change the fluid pressure.

Works required in compressing fluids in descending order of Mercury, Ethanol, more compressible gases.

Page 91: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

91

ILLUSTRATION 6.4-7Computing the Difference between CP and CV valuesCompute the difference between the constant-pressure and constant-volume heat capacities at 20oC for the four condensed phases considered in the previous illustrations.

( ) ( )

( )

( )

( )

2

P V

24

P V 2 6Cu

P V NaCl

P V EtOH

P V Hg

SOLUTIONFrom Eq. 6.2-35 we have

0.492 10cc bar 1 J J293.15 K 7.12 0.656 mol K 0.77 10 10 bar cc mol K

J2.795mol K

J19.7mol K

J3.742mol K

T

C C TV

C C

C C

C C

C C

ακ

− =

×− = × × × =

×

− =

− =

− =

Page 92: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

92

COMMENTNote that the difference between the constant-pressure and constant-volume heat capacities is significant.

In fact (CP-CV) of ethanol can be quite large if the fluid has a large coefficient of thermal expansion, as is the case for ethanol.

For comparison, the difference between CP and CV for an ideal gas isR =8.314 J/(molK).

Page 93: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

93

ILLUSTRATION 6.4-8

o

4

The coefficient of thermal expansion of liquid water at 25 C was given in Illustration 6.2-6 to be

ˆ1 2.56 10 Kˆ

Use this information an

Effect of Pressure on the Enthalpy of Liquid Water

P

VTV

α −⎛ ⎞∂= = ×⎜ ⎟

∂⎝ ⎠

o 3

o

o

d the fact that ˆ(25 C, saturated liquid at 3.169 kPa) = 0.001003 m /kg and ˆ (25 C, saturated liquid at 3.169 kPa) = 104.89 kJ/kg

to determine the enthalpy of liquid water at (a) 25 C and 1 bar and

V

H

o(b) 25 C and 10 bar.

Page 94: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

94

ILLUSTRATION 6.4-8

( ) ( ) [ ]( )o o

33 4

3

3

SolutionUsing Eq. 6.4-33, on a mass basis we haveˆ ˆ ˆ25 C, 25 C,3.169 kPa 1 3.169 kPa

kJ m=104.89 1.003 10 1 298.15 2.56 10 96.83kPakg kgkJ Pa m kJ kJ=104.89 0.0897 1 104.98kg kg kPa m k

1 bar 100H H V Tα

− −

= + − −

⎡ ⎤+ × − × × ×⎣ ⎦

+ × =

( )( )

o

33 4

gˆ 25 C,

kJ m104.89 1.003 10 1 298.15 2

10 bar

1000.56 10 3.169 kPakg kg

kJ=104.89+0.92=105.81kg

H

− −⎡ ⎤= + × − × × × −⎣ ⎦

Page 95: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

95

COMMENTWe see from this that for modest pressure changes, the liquid enthalpy changes little with pressure. Therefore, little error is incurred if, at fixed temperature, one uses the saturated liquidenthalpy in the steam tables at higher pressures.

However, this will lead to errors near the critical point (C.P.), where the density of the liquid changes rapidly with small changes in both temperature and pressure.

Near or above C.P.:When pressure increases, it becomes worse!

Page 96: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

96

6.5 AN EXAMPLE INVOLVING THE CHANGE OF STATE OF A REAL GAS

Given low-density heat capacity data and volumetric equation-of-state information for a fluid, we can use the procedures developed in this chapter to calculate the change in the thermodynamic properties of the fluid accompanying any change in its state (state 1 to state 2).

Thus, in principle, we can use the mass, energy, and entropy balances to solve energy flow problems for pure fluids, such as those heating media(Dowtherm) and cooling media(Refrigerant).

Thermodynamic properties of pure fluids may obtained from

1. Thermodynamic properties plots.2. An equation of state such as van der Waals equation.

Page 97: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

97

ILLUSTRATION 6.5-1Comparing Solutions to a Problem Assuming the (a) Gas Is Ideal, (b) Using a Thermodynamic Properties Chart, and (c) Assuming That the Gas Can Be Described by the van der Waals Equation of State

Nitrogen gas is being withdrawn from a 0.15 m3 cylinder at the rate of 10 mol/min. The cylinder initially contains the gas at a pressure of 100 barand 170 K. The cylinder is well insulated, and there is a negligible heat transfer between the cylinder walls and the gas. How many moles of gas will be in the cylinder at any time? What will the temperature and pressure of the gas in the cylinder be after 50 minutes?

a. Assume that nitrogen is an ideal gas.b. Use the nitrogen properties chart of Fig. 3.3-3.c. Assume that nitrogen is a van der Waals fluid.

Data: For parts (a) and (c) use [ ]* 3J/(mol K) 27.2 4.2 10 (K)PC T−= + ×

Page 98: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

98

( ) ( )

( )

SolutionThe mass and energy balances for the contents of the cylinder are

or (a)0

and

dN N N t N t Ntdt

d NUN H

dt

= = = +

=

& &

&

that portion of the gas that always remains in the cylinder

where = 10 mol/min., the result of wFollowing Illustrati riting an entropy balance on 4.5-

for is

0

(b)

2N

dSdt

=

&

( ) ( )

( ) ( ) ( )3

cyl

or 0

Also, from = , we have 0.15 m0

0 0Equati

(c

ons a, b,

)

(d)

S t S t

V N VV

N tV t V t

= =

= = == =

c. and d apply to both ideal and nonideal gases.

Illustration 4.5-3 (3.4-5)

Referred to Illustration 4.5-3 (3.4-5)-closed, adiabatic, reversible system assumption.

Page 99: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

99

( ) ( )( )

( )

( )

35

4 3

( )a. Using the ideal gas equation of state

m8.314 10 bar 170 K0 mol K0 =0 100 bar

1.4134 10 m / molso that

0 1061.3moland

1061.3 10 mol

Computation of N t

RT tV t

P t

N t

N t t

× ×== =

=

= ×

= =

= −

Page 100: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

100

( ) ( )

( )

( )

( ) ( )

3

3 35

3

35

b. Using Figure 3.3-3mˆ ˆ170 K, 100 bar 170 K, 10 MPa 0.0035kg

g m 1 kg m170 K, 10 MPa 28.014 0.0035 9.80 10mol kg 1000 g mol

so that0.15m0 1529.8 mol

m9.80 10mol

and 1529.8 10 m

V T P V T P

V T P

N t

N t t

= = = = = ≈

= = = × × = ×

= = =×

= − ol

Page 101: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

101

( ) ( )

2

725

c. Using the van der Waals equation of state

The van der Waals equation is

With the consiants given in Table 6.4-1, we have8.314 170 0.1368100 bar=1 10 Pa0 3.864 10 0

Solving t

RT aPV b V

V t V t−

= −−

×× = −

= − × ⎡ ⎤=⎣ ⎦

( ) ( )

( ) ( )

( )

35

3

his cubic equation, we obtainm0 9.435 10 and 0 1589.8molmol

and 1589.8 10 mol

Note also that since the volume of the cylinder is constant (0.15 m ), and as is known,we can compute the

V t N t

N t t

N t

−= = × = =

= −

( ) ( )3

molar volume of the gas at any later time from

0.15m= (e)

In particular, we can use this equation to compute ( = 50 min

V tN t

V t ). These results, togetherwith other information gathered so far, and some results from the following sections, arelisted in Table 6.5-1.

Page 102: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

102

Summary in table

Which calculated values can not be accepted?

It demonstrated that calculated density of fluids is usually poor by EOS model, especially by ideal gas calculation.

Page 103: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

103

Since we know the specific volume after 50 minutes, we need to determine only onefurther state property to have the final state of the system completely specified. In principle, either the energy or entropy balance could be used to find this property. The entropybalance is more convenient to use, especially for the nonideal gas calculations. Thus, allthe calculations here are based on the fact (se ( ) ( )

* *V V P

a. Using the ideal gas equa

e Eq. c) that 0 50 min

Computation of ( = 50min) and ( = 50 min)

From Eq. 4.4-1,

Now for the ideal gas

27.2 8

tion of

.

state

V

V

S t S t

T t P t

C Pd S dT dVT T

C C C R

= = =

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

= = − = −( )

( )

( )

4

4

3 3

32.672 10

170 1.413 10

43

4

J314 4.2 10 18.9 4.2 10mol K

Also, since = constant, or = 0, we have

18.9 4.2 108.314 0

2.672 10or 18.9ln 4.2 10 170 8.314ln 0170 1.413 1

The0

T V

T V

T T

S S

T dVdTT V

T T

− −

−= ×

= = ×

−−

+ × = + ×

Δ

+ ×+ =

×+ × − + =

×

∫ ∫

( ) ( )( )

, so that solution to this equation is 130.3 K

50 min50min 40.5 bar

50 min RT t

P tV t

== = =

=

Referred to Illustration 4.5-3 (3.4-5)-closed, adiabatic, reversible system assumption.

Page 104: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

104

( )3 3

4 3m 1mol g m50min 1.457 10 1000 5.20 10mol 28.014g kg kg

To find the final temper

b. Using Fig. 3.3-3

Fig. 3.3-3ature and pressure using , we locate the initial point( = 170 K, = 10 MPa) and follow

V t

T P

− −= = × × × = ×

-3 3

a line of constant entropy (dashed line) throughˆthis point to the intersection with a line of constant specific volume = 5.2 10 m /kg.

This intersection gives the pressure and temperature of the V ×

( )( )

= 50 min state. We find

This construction is shown in the following diagr

50min 1

am, which is a portion of Fig.

33K

50min 3.9MPa = 39

3.3-3.

bar

T t

t

i

P

= ≈

= ≈

Page 105: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

105

Page 106: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

106

( )

c. Using the van der Waals equation of stateHere we start with Eq. 6.2-19,

and note that for the van der Waals gas

The integration path to be followed isi. 0 ,

V

V

V

C Pd S dT dVT T

P RT V b

T t V t

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ =⎜ ⎟∂ −⎝ ⎠

= ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

( )

( ) ( )

*V V

*50min 50minV0 170K

0 0 ,

ii. 0 , 50min ,

iii. 50 min , 50 min , 50 min

so that 50 min 0 0V T t V t

V t T V

T t V

T t V T t V C C

T t V T t V t

S t S t

CdV dVR dT RV b T V b

=∞ = =

= = =∞

= → = = ∞

= = ∞ → = = ∞ =

= = ∞ → = =

= − = =

= + +− −∫ ∫ ∫

T=Constant

V=Constant

T=Constant

6.4-21 for ΔS calculation

Page 107: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

107

( )

( ) ( )

( )( ) ( )

350 min 50 min

0 170K

35

53

5

18.9 4.2 10or 0=

mThus. using b = 3.864 10 , we havemol

13.77-3.864 100=8.314 ln 18.9 ln 4.2 10 170

9.437 3.864 10 170

The solution to the equ

V t T t

V t T

dV TR dTV b T

T T

−= =

= =

−−

+ ×+

×

⎡ ⎤×+ + × −⎢ ⎥− ×⎣ ⎦

∫ ∫

( )

( )

35

ation is 50min 133.1KNow, using the van der Waals equation of state with

m = 133.1 K and = 13.76 10 ,mol

we find 50min 39.5 bar

T t

T V

P t

= =

×

= =

Page 108: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

108

Summary in table

Which one can not be accepted (V or T or P)?

Page 109: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

109

COMMENTS(1) one cannot assume that a high-pressure gas is idealand expect to make useful predictions. E.G. predicting specific volume (density) using ideal gas is poor.

(2) thermodynamics calculations involving real fluids, the use of a previously prepared thermodynamic properties chart for the fluid is the most rapid way to proceed.

(3) the use of a simple volumetric equation of state for the fluid- accurately or (4) The following corresponding-states correlations-approximately is tedious and possible.

Page 110: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

110

6.6 THE PRINCIPLE OF CORRESPONDING STATES

Page 111: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

111

Page 112: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

112

6.6 THE PRINCIPLE OF CORRESPONDING STATES

we consider here the principle of corresponding states, which allows one to predict some predict some thermodynamic properties of fluids from thermodynamic properties of fluids from generalized property correlationsgeneralized property correlations based on available experimental data for similar fluids.

Page 113: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

113

Two types of information needed in thermodynamic calculations

(1) the ideal gas heat capacityThe ideal gas heat capacity is determined solely by the intra-molecular structure (e.g., bond lengths, vibration frequencies, configuration of constituent atoms) of only a single molecule, as there is no intermolecular interaction energy in an ideal gas.

Page 114: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

114

Two types of information needed in thermodynamic calculations

(2) the volumetric equation of a stateIt has also been found that the volumetric equations of state obeyed by all members of a class are similar in the sense that if a given equation of state (e.g., Peng-Robinson or Benedict-Webb-Rubin) fits the volumetric data of this class (e.g. low-polar paraffins), the same equation of state, with different parameter values, is likely to fit the data for other molecular species in the same class (e.g. middle-polar paraffins).

Page 115: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

115

The van der Waals equation of stateas an example

It is useful to review the van der Waals generalized correlation scheme since, although not very accurate, it does indicate both the structure and correlative parameters used in modern fluid property correlations.

Page 116: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

116

A plot of P versus V for various temperatures for a van der Waals fluid is given in Fig. 6.6-1.

A brief list of measured critical temperatures, critical pressures Pc and critical volumes Vc (i.e., the pressure and volume of the highest-temperature liquid) for various fluids is given in Table 6.6-1.

Page 117: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

117

Figure 6.6-1 The pressure volume behavior of the van der Waals equationof state

Page 118: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

118

Page 119: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

119

Parameters (a, b) of EOS for each substance determined from characteristics of critical point (C.P.) and inflection point (I.P.) of the P-V diagram

What will be the (a, b) values for the mixture used in EOS?

The mixing rule for the mixture should be considered!

)x(b),x(a

( ) ( ) (1 ) 0 at

( ) 2 reduced to 2

m m

i j ii jj ij iji j

m mii jj

i j i ii i iii j

a x x x a a k k i molecule j molecule

b bb x x x x b i x b

= − = − = −

+⎛ ⎞= = Σ = = Σ⎜ ⎟

⎝ ⎠

∑∑

∑ ∑

An quadratic mixing rule can be used for mixture parameters of :

Page 120: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

120

Critical-point characteristics2

2

2

. . : 0 and . .: 0 at and

(6.6-1)

c c

c cT T

cc

c

RT

P PC P I P P T

aPV b

V V

RTP

V

V

⎛ ⎞⎛ ⎞∂ ∂= =⎜ ⎟⎜ ⎟∂ ∂

⎠ ⎝ ⎠

=

=

( )

2

2 3

2

(6.6- 2a )

(6.6-2b)

evaluated at 20 , ,

c

c

cc c cT c

ab V

RTP aT P VV VV b

P

−−

⎛ ⎞∂= = − +⎜ ⎟∂ −⎝ ⎠

∂∂ ( )2 3 4

evaluated at 2 60 , ,

Thus, three equations interrelate the two unknow

(6.6-2c)

ns and .

c

cc c cT c

RT aT P VV VV b

a b

⎛ ⎞= = − −⎜ ⎟

−⎝ ⎠

Page 121: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

121

Critical-point characteristicsSolving for a and b:Eqs. 6.6-2b divide by 6.6-2c to ensure that the critical-point conditions of Eqs. 6.6-1 are satisfied, we obtain

9 8c cV RTa =

3

By direct substitution into 6.6-2a, the compressibility at the critical point is3 0.375

(6.6-

8

3a)

c

ccc

c

Vb

P VZRT

=

= = =

2

Using these results in Eq. 6.6-3c yields

=

(6.6-3c)

(6 27

.6-3b)caPb

Page 122: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

122

2 2

2

6.6-3 ,6.6 3 :27 and 64 8

or in terms of the critical pressure and volume

(6.6-4

3

a)

and

c c

c c

cc

From b cR T RTa bP P

Va P V b

= =

= =

2

3

substitute 6.6-4b into 6.6-1 and divide it by Pc(Vc):

3 3 1 8

(6.6-4b

)c

c

cc c

r rc c

VP V TP V V T

T PT PT P

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞+ − =⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

= =

[ ]

( )

3 3 1 8

(6.6-5)

(6.6-6)

, 8 Corresponding

r

rc

rr r

r rr

P V T

VV

f P V T

V

V =

⎡ ⎤+ −⎥

=

=⎢⎣ ⎦

states principle

Page 123: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

123

6 -5 3

7

ILLUSTRATION 6.6-1Simple Example of the Use of Corresponging states Assume that oxygen ( =154.6 K, = 5.046 10 Pa, and = 7.32 10 m /mol) and

water ( = 647.3 K, = 2.205 10 Pa, and =cc c

cc c

T P V

T P V

× ×

× -5 3 5.6 10 m /mol) can be considered.

a. Find the value of the reduced volume both fluids would have at = 3/2 and = 3.b. Find the temperature, pressure,

van de

and v

r Waals fluid

olume of each gas

s

r rT P

×

o 62 2

at = 3/2 and = 3.

c. If O and H O are both at a temperature of 200 C and a pressure of 2.5 10 Pa, find their

specific volumes.

SOLUTIONa. Using E = 3/2 and = 3 i q. 6.6n , one finds6 h- t at

r r

r r r

T P

T P V

×

= 1 for both fluids.

Page 124: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

124

2

35

O

ILLUSTRATION 6.6-1Solutionb. Since = 1 at these conditions [see part (a)], the specific volume of each fluid is equal to the critical volume of that fluid. So

m7.32 10 mol

rV

V −= ×2

2 2 2 2

2 2 2 2

35

H O

7 7O c,O H O c,H O

O c,O H O c,H O

6

6

m 5.6 10mol

1.514 10 Pa 6.615 10 Pa

232.2 K 971 K

c. For oxygen we have2.5 10 0

3 3

.495; 473.5.046

1.5

10

1.5

r r

V

P P P P

T T T T

P T

−= ×

= × = × = × = ×

= × = = × =

×= = =

×3

3

6

7

33

2 /154.6 3.061; 16.5

mand 1.208 10mol

2.5 10Similarly, for water, 0.113; 473.2 / 647.3 0.703 and 15.95 2.205 10

m8.932 10mol

r

r r r

V

V

P T V

V

= =

= ×

×= = = = =

×

= ×

EQ 6.6-6

Page 125: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

125

The limitations of the van der Waals EOS

(1) Zc = 3/8= 0.375, But for most fluids, Zc= 0.23~0.31. It is bad prediction near the critical region using the vdW EOS.

(2) Two parameters, Pc, and Tc may noteffectively characterize the behaviors of non-spherical molecules.

(3) Third parameter (Zc or ω) that accounts for un-symmetric molecules, needed to be defined andthree-parameters equations of state were applied for real fluids.

Page 126: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

126

As has been already indicated, the accuracy of the van der Waals equation is not

very good. This may be verified by comparing the results of the previous illustration

with experimental data, or by comparing the compressibility factor Z = / forthe van der Waals equation of stale with experimental data for a variety of gases.In particular, at the critical point (see Eq. 6.6-3c); van der Waals = c

PV RT

Z / 0.375 3 / 8

(Table

6.6

w

-

hi

1)

le f

, so

or most

that th

fluids the criti

e van der Waals

cal compressibility is in the

fails to pre

range 0.23 to 0.

dict accurateequation critical-point behav

31

ior.

cc

c

c

Z

P V RT = =

(however, a great improvement over the ideal gas equation of state, whichpredicts that = 1 for all conditions.)The fact that the critical compressibility of the van der Waals not fluid is equal toth

Z

different values for the van der Waals parame-ters are obtain

at for most real fluids also means that , depending on whether Eqs. 6.6-3a, Eqs. 6.6-4a, or

Eqs. 6.6-ed for an

4b are usy

e o

d ne

to f

luid

rela In practice, thecritical temperature or critical pressure, so that Eqs. 6.6-4a and critical-point data ar

te these parameters to thee

most frequently used to o

critical pro

btain the van

pertie

de

s.

r Waa Indeed, the entries inTables and 6.6-1 are related in this way. Thus, if the parameters in Table 6.4-1are used in the van der Waals equation, the critical temper

ls paramet

ature and

ers.6

pres.4-1

sure will becorrectly predicted, but will be by the fa

where is the real fluid critical compressibili

the ctor

van der Waals 3

critical volume too hig

.

h

8ty

c

cc

cZ

ZZZ

=

Page 127: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

127

Page 128: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

128

( )Z= / , where the functional relationsh

(6.6-7)ip between , and Z is d

Two parameters corresponding states

r r

r r

PV RT Z P TT P

=

etermined from experimental data, or from a very accurate equation of state. That such a procedure has some merit is evident from , where the compressibility data for different fluiF dig. 6. sha

6-2ve been made to almost superimpose by plotting each as a function of its reduced

temperature and pressure.Two parameters corresponding states equations are good for nonpolar spherical molecules,

however, onl

( )c

c

y fair representations for nonspherical molecules.

Z= / , , Alternatively, fluid characteristics other than can be used as the additional p

Three parameters corresponding states equation

r rPV RT Z P T ZZ

=

c

since formany substances the cri

arameterin the generalization of

tical density, and hence , isthe simple corresponding

known with limited accu-states principle, in fact,

, if

at a

racy

ll, there is a rZ

c.eason in avoiding the use of Z

Page 129: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

129

( )vap10 0.7 /

Vapor pressure measurement is required.

1.0 log

Three-parameter correspondi

Acentric Factor defined by professor Pitzer (Founder of Swiss Phamaceutical

ng st

Company

es

)

at

:

r cP T Pω ⎡ ⎤=⎣ ⎦= − −

( ), ,proposed:

r rT PZ Z ω=

The third parameter was found unanimously as

Page 130: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

130

Figure 6.6-3 Z = f(Tr, Pr) at Zc = 0.27

Two-parameter C.S. calculation

Page 131: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

131

( )

( )

( )

( )r

,IG

, 0,

r r

2

22, ,IGr, 0 , 0,

r r

IG

started from 6.2-22 at constant T

,

r r

r r

T P

T PT PP

P P

T P T P rcT P T PT P

P P

VH H V T dPT

RTV Z T PP

V RT ZV TT P T

TRT Z ZH H dP RT dPP T P T

H H

=

= =

⎡ ⎤∂⎛ ⎞− = −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

=

∂ ∂⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞− = − = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

( )( )

r

2,,r, 0

r

IG

,r r

r

i.e. Fig. 6.6.-4 (6.6-8)

,

r r

r r

T PT P rT P

c P

T P

c

H H

T ZR

f

dPT P

PT

T

T

=

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

−=

Enthalpy departure (residual)

Z = PV / nRT

Divided by Tc and Pc

Z = C CC

C

P VRT

Page 132: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

132

Figure 6.6-4 HR = f(Tr, Pr) at Zc = 0.27

Two-parameter C.S. calculation

Page 133: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

133

Enthalpy difference (H2-H1)

( ) ( ) ( ) ( ) ( ) ( ){ }( ) ( )

0from Fig. 6

IG IG0 0

.6-4

IG*P

, , 0 , , 0 , ,

, , (6.

Enthalpy change obtianed from corresponding s

6 9)

t

-

a

T

cTc

H T P H T P H T P H T P H T P H T P

H T P H T PC dT T

T

− = = − = + −

⎡ ⎤−= + ⎢ ⎥

⎢ ⎥⎣ ⎦∫

( ) ( ) ( ) ( ) ( ) ( )

r2

2

1

2 r1 1, ,

IG IG*

2 2 1 P

, , , ,, ,

tes

r rT

T

c cTc PcP T

H T P H T P H T P H T PH T P H T P C dT T T

T T

⎡ ⎤ ⎡ ⎤− −− = + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫

(6.6-10)6.4-19

Page 134: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

134

Entropy departure (residual)/Entropy difference (S2-S1)

( )

( ) ( )

r r

r rr

,IG r

IGr r,

r, 0,

r r r

1 started from 6.2-20 (Prob. 6.6) (6.6-11)

, Fig. 6.

6-5T P

T P

T PT PP

TZ ZS S R d

S

PP P T

Entropy diffe

S T

r n

f

e

P

=

⎡ ⎤⎛ ⎞− ∂⎢ ⎥− = − + ⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

− =

( ) ( ) { }2 2

1 1 r2 2 r1 1

*IG IGP

2 2from Fig. 6.6-, 5

1 ,

state:

, ,

r rT P T P

T P

T P

ce obtained from CorrespondingC dPS T P S T P dT R S S S ST P

⎡ ⎤ ⎡ ⎤− = − + − −⎣ ⎦ ⎦− ⎣∫ ∫ (6. 6-12)6.4-20

P

P

C VdS dT dPT T

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

Z = C CC

C

P VRT

Page 135: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

135

Figure 6.6-5 SR = f(Tr, Pr) at Zc = 0.27

Two-parameter C.S. calculation

Page 136: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

136

Rework of ILLUSTRATION 6.5-1

Comparing Solutions to a Problem Assuming the (a) Gas Is Ideal, (b)Using a Thermodynamic Properties Chart, and (c) Assuming That the Gas Can Be Described by the van der Waals Equation of State

Nitrogen gas is being withdrawn from a 0.15 m3 cylinder at the rate of 10 mol/min. The cylinder initially contains the gas at a pressure of 100 bar and 170 K. The cylinder is well insulated, and there is a negligible heat transfer between the cylinder walls and the gas. How many moles of gas will be in the cylinder at any time? What will the temperature and pressure of the gas in the cylinder be after 50 minutes?a. Assume that nitrogen is an ideal gas.b. Use the nitrogen properties chart of Fig. 3.3-3.c. Assume that nitrogen is a van der Waals fluid.Data: For parts (a) and (c) use

[ ]* 3J/(mol K) 27.2 4.2 10 (K)PC T−= + ×

Page 137: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

137

ILLUSTRATION 6.6-2Using Corresponding States to Solve a Real Gas ProblemRework Illustration 6.5-1, assuming that nitrogen obeys the generalized correlations of Figs. 6.6-3, 6.6-4, and 6.6-5.

r r

SOLUTIONFrom Table 6.6-1 we have for nitrogen = 126.2 K and = 33.94 bar, and from the initialconditions of the problem,

170 1001.347 2.94

From

6126.2 33.94

, Z = 0.741Fig. 6.6-3 , so

c cT P

T P

V t

= = = =

=( ) ( )( ) ( )

( ) ( )

( ) ( )

3IG 4

3 34

0 m0 0 1.047 100 mol

Therefore, following Illustration 6.5-1,0 1432.7 mol and 1432.7 10 mol

0.15 m m50min 1.6082 101432.7 50 mol mol

RT tZ ZV t

P t

N t N t t

V t

== = = = ×

=

= = = −

= = = ×−

Page 138: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

138

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

IG IG0 0

IG IG50 min 50 min

IG50 min

SOLUTION ( )To compute the temperature and pressure at the end of the 50 minutes, we

conuse

0 50min

0 ,

50 min ,

50 min

i ue

0

t d

,

n

t t

t t

t

S t S t

S t S T P S S

S t S T P S S

S t S t S T P

= =

= =

=

= = =

= = + −

= = + −

= − = = − ( )

( ) ( )( ) ( ) ( )

( ) ( )

IG0

IG IG

50 min 0

IG IG50 min 0

3

,

+

50min, , 27.2 ln

17050 min

4.2 10 50min 170 8.314ln100

t

t t

t t

S T P

S S S S

T tS T P S T P

P tT t

=

= =

= =

− − −

=− =

=⎡ ⎤+ × = − −⎣ ⎦

6.4-16b

Page 139: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

139

IG IGt=0

r r

Both of the ( ) terms are obtained from the corresponding-states charts, ( ) iseasily evaluated, since the initial state is known; that is, = 1.347 and = 2.946, so that,

fr Figom .

S S S ST P

− −

IG I

r

Gt=

0

r

( ) = 2.08 cal/(mol K) = 8.70 J/(mol K). To compute ( )

at = 50 minutes is m

6.6-5

because neither nor is ore difficult . The procedure to be

followed is1.

known

( = 50 min) i

S S S S

t

V t

T P

− − − −

s known, so ( = 50 min). (A reasonable first guess is the ideal gas solution obtained earlier.)2. Use ( = 50 min) and ( = 50 min) to compute, by trial a

guess

nd er

a value o

ror, ( = 50 mi

f

n

t

V t T t P t

T

( )r rc

IGt=50 min

) from

, ,

3. Use the values of and from steps 1 and 2 to compute ( - )4. Determine whether ( = 50 min) = ( = 0) is satisfied with the trial

c

RT T P RTP Z Z T PV T P V

P T S SS t S t

⎛ ⎞= =⎜ ⎟

⎝ ⎠

Our solu

values

tion aft

of and .

er a number ofIf not, guess another value of ( = 50 min) and go back to step 2.

is ( = 50 min) = 136 K ( = 50 min)

tri

= 41 bar

als

TP T t

T tP t

( ) ( ) 0S t S t= =Fig. 6.6-5

Page 140: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

140

COMMENT

Because of the inaccuracy in reading numerical values from the corresponding-states graphs, this solution cannot be considered to be of high accuracy.

It should be pointed out that although the principle of corresponding states and Eqs. 6.6-7(residual UR), 6.6-8 (HR), and 6.6-11(SR) appear simple, the application of these equations can become tedious, as is evident from this illustration. Also, the use of generalized correlations will lead to results that are not as accurate as those obtained using tabulations of the thermodynamic properties for the fluid of interest.

Therefore, the corresponding-states principle is used in calculations only when reliable thermodynamic data are not available.

Page 141: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

141

6.7 GENERALIZED EQUATIONS OF STATE

2

2 2

(6.2-38b)

(1) van der Waals equation of state

27 and 64 8

(2) Peng-Robinson equation

(6.6-4a)

o

c c

c c

RT aPV b V

R T RTa bP P

= −−

= =

( )( ) ( )

( ) ( )2 2

f state

0.45724

0.07780

(6.4-2)

(6.7-1)

(6 .7 - 2

1 1

)

-

c

c

c

c

c

a TRTPV b V V b b V b

R Ta T TP

RTbP

TT

α

α κ

= −− + + −

=

=

⎛= + ⎜

⎝2

0.37464 1.5

(6.7-3)

(6.4226 0.26992 7-4)

κ ω ω

⎞⎟⎜ ⎟⎠

= + −

Better and Accurate

Get these EQs usingC.P. and I.P. criteria.

Can you get these EQs as 6.6-6 using C.P. and I.P. criteria?

2

2

. .: 0

. .: 0

c

c

T

T

PC PV

PI PV

⎛ ⎞∂=⎜ ⎟∂⎝ ⎠

⎛ ⎞∂=⎜ ⎟

∂⎝ ⎠

Page 142: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

142

For the thermodynamic properties calculations for process design, the equations of state method is normally applied and accurate results can be obtained.

However, a digit computer will normally be used when using the complicated equation of states approach.

Introducing the Illustration 6.7-1 program solved by MathCad. i.e. Reworked 6.5-1.

Page 143: Chapter 6 Calculation of Properties of Pure Fluidsweb.nchu.edu.tw/pweb/users/cmchang/lesson/10174.pdf1 Chapter 6 Calculation of Properties of Pure Fluids 2012/4/13. 2 Thermodynamic

143

Homework for Chap 6

Problems6.3, 6.5, 6.7a&b, 6.8, 6.16, 6.46a