Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of...

110
Chapter 5 Thermochemistry The energy of chemical reactions How do you keep track of it? Where does it come from?

Transcript of Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of...

Page 1: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Chapter 5 Thermochemistry

The energy of chemical reactions How do you keep track of it? Where does it come from?

Page 2: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy

•  Theabilityto:•  dowork•  transferheat.

Ø Work:Energyusedtocauseanobjectthathasmasstomove.

Ø Heat:Energyusedtocausethetemperatureofanobjecttorise.

Page 3: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Units of Energy

•  TheSIunitofenergyisthejoule(J).•  Anolder,non-SIunitissHllinwidespreaduse:Thecalorie(cal). 1cal=4.184J

Energyhasunitsof(mass)(velocity)2RememberkineHcenergywas1/2mv2

1 J = 1 ⎯⎯ kg m2

s2

Page 4: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Work •  Energyusedtomoveanobjectoversomedistance.

•  w=F� d,w=work,F=forced=distanceoverwhichtheforceisexerted.

Noteunits:F=ma,mass(distance/s2)W=F(d)=mass(distance2/s2)=mv2

Page 5: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Heat

•  Energycanalsobetransferredasheat.

•  Heatflowsfromwarmerobjectstocoolerobjects.

Page 6: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Kinetic Energy

EnergyanobjectpossessesbyvirtueofitsmoHon.

1 2

KE = ⎯ mv2

Page 7: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

PotenHalEnergy

EnergyanobjectpossessesbyvirtueofitsposiHonorchemicalcomposiHon.

More potential E

Less P.E. as bike goes down.

Page 8: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TransferalofEnergy

a)  AddP.E.toaballbyliUingittothetopofthewall

Page 9: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TransferalofEnergy

a)  AddP.E.toaballbyliUingittothetopofthewall

b)  Astheballfalls,P.E------>K.E.(1/2mv2)

Page 10: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TransferalofEnergy

a)  AddP.E.toaballbyliUingittothetopofthewall

b)  Astheballfalls,P.E------>K.E.(1/2mv2)Ballhitsground,K.E.=0,butEhastogo

somewhere.So1.  Ballgetssquashed2.  Heatcomesout.

Page 11: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy accounting

• WemustidenHfywheredifferenttypesofenergygo.

•  Therefore,wemustidenHfytheplaces.

Page 12: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

System and Surroundings

•  Thesystemincludesthemoleculeswewanttostudy(here,thehydrogenandoxygenmolecules).

•  Thesurroundingsareeverythingelse(here,thecylinderandpiston).

Page 13: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

First Law of Thermodynamics •  Energyisconserved.•  Inotherwords,thetotalenergyoftheuniverseisaconstant;ΔESystem=-ΛEsurroundings

Page 14: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

InternalEnergyTheinternalenergyofasystemisthesumofallkineHcandpotenHalenergiesofallcomponentsofthesystem;wecallitE.

Einternal,total= EKE + EPE + Eelectrons + Enuclei +…… Almost impossible to calculate total internal energy Instead we always look at the change in energy (ΔE).

Page 15: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

InternalEnergyBydefiniHon,thechangeininternalenergy,ΔE,isthefinalenergyofthesystemminustheiniHalenergyofthesystem: ΔE=Efinal−EiniHal

Page 16: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ChangesinInternalEnergy

•  IfΔE>0,Efinal>EiniHalØ Therefore,thesystemabsorbedenergyfromthesurroundings.

Ø Thisenergychangeiscalledendergonic.

Page 17: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ChangesinInternalEnergy

•  IfΔE<0,Efinal<EiniHalØ Therefore,thesystemreleasedenergytothesurroundings.

Ø Thisenergychangeiscalledexergonic.

Page 18: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ChangesinInternalEnergy

•  Whenenergyisexchangedbetweenthesystemandthesurroundings,itisexchangedaseitherheat(q)orwork(w).

•  Thatis,ΔE=q+w.

Page 19: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ΔE,q,w,andTheirSigns

+q -q

hot plate adds heat to water

Surroundings suck heat out of water.

Page 20: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Signofwork

Truck pushes block up. Does work on block wtruck- wblock+

block pushes truck down does work on truck wblock- wtruck+

Page 21: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Exchange of Heat between System and Surroundings

•  Whenheatisabsorbedbythesystemfromthesurroundings,theprocessisendothermic.

Page 22: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Exchange of Heat between System and Surroundings

•  Heatabsorbedbysystemfromsurroundings,isendothermic.

•  Heatreleasedbysystemtosurroundings,theisexothermic.

Page 23: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

State Functions

Totalinternalenergyofasystem:K.E.+Eelectrons+Enucleus+P.E.totalvirtuallyimpossibletomeasure/calculate

Page 24: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

StateFuncHons•  However,wedoknowthattheinternalenergyofasystemisindependentofthepathbywhichthesystemachievedthatstate.Ø Inthesystembelow,thewatercouldhavereachedroomtemperaturefromeitherdirecHon.

Page 25: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

StateFuncHons•  Therefore,internalenergyisastatefuncHon.•  becauseit’sPATHINDEPENDENT•  Andso,ΔEdependsonlyonEiniHalandEfinal.

Page 26: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

StateFuncHons

•  However,qandwarenotstatefuncHons.

•  Whetherthebaceryisshortedoutorisdischargedbyrunningthefan,itsΔEisthesame.Ø Butqandwaredifferentinthetwocases.

Page 27: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Work

processinanopencontainer(chemicalreacHoninabeaker)w?(cantherebeanywork)?Yes, evolving gases could push on the surroundings.

Page 28: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Catch the work, do the same process in a cylinder

Process evolves gas, pushes on piston, work done on piston

Page 29: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Catch the work, do the same process in a cylinder

w = F*d, F = P*A, d=Δh

w = -P*AΔh= -PΔV

Negative because an increase in Volume means that the system is doing work on the surroundings.

ΔE=q+w=q-PΔV qP = ΔE + PΔV

Page 30: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example•  Gasinsidecylinderwith

electricheater.•  Add100jheatwith

heater.•  1.Pistoncangoupand

down•  2.Pistonstuck.•  a.WhathappenstoTin

eachcase?•  b.Whataboutqandw

foreachcase?•  c.WhataboutΔEineach

case?

Page 31: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example•  Gasinsidecyclinderwithelectricheater.•  Add100jheatwithheater.•  1.Pistoncangoupanddown•  2.Pistonstuck.•  a.WhathappenstoTineachcase?•  b.Whataboutqandwforeachcase?•  c.WhataboutΔEineachcase? a.1. Piston goes up, some E

goes to expand gas, do work. T goes up less

a.2 T goes up more, all E goes to q.

b.1. both q and w positive

b.2. w 0, q larger c. ΔE the same & + in each case

Page 32: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

WorkNowwecanmeasurethework: w=−PΔV

Zn + 2HCl ---------> H2(g) + ZnCl2

Page 33: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Work

Zn+2HCl--------->H2(g)+ZnCl2ImoleofZnreacts.Howmuchworkisdone(P=1atm,

densityofH2=0.0823g/L)?1moleofH2isproduced.

Page 34: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Work

ImoleofZnreacts.Howmuchworkisdone(P=1atm,densityofH2=

0.0823g/L)?1moleofH2isproduced.Zn+2HCl--------->H2(g)+ZnCl21mol 1mol2.014g/mol2.014gd=m/VV=m/dV=2.014g/0.0823g/L=24.47LW=-PΔV=1atm(24.47L)=-24.47L(atm)

Page 35: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Enthalpy(H)

H = E + PV

This is the definition of Enthalpy for any process Buy why do we care?

Page 36: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Enthalpy

•  atconstantpressure,ΔH,is(Δ = change in thermodynamics) ΔH=Δ(E+PV)

•  Thiscanbewricen(ifPconstant) ΔH=ΔE+PΔV

H = E + PV

Page 37: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Enthalpy

•  SinceΔE=q+wandw=−PΔV(Pconst.)subsHtutetheseintotheenthalpyexpression: ΔH=ΔE+PΔV ΔH=(q+w)−w ΔH=q

•  Note:trueatconstantpressure•  qisastatefuncHonatconstP&onlyPVwork.

Page 38: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

H=E+PV•  Because:•  Ifpressureisconstant(likeopentoatmosphere,i.e.mostthings)and

w=ΔPV.heatflow(q)=H(enthalpy)ofsystem.And:HisastatefuncHon,soqisalso.butonlyintherightcondi6ons

Page 39: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Endothermicvs.Exothermic

•  AprocessisendothermicwhenΔHisposiHve.

Page 40: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

EndothermicityandExothermicity

•  AprocessisendothermicwhenΔHisposiHve.

•  AprocessisexothermicwhenΔHisnegaHve.

Page 41: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Enthalpies of Reaction

Thechangeinenthalpy,ΔH,istheenthalpyoftheproductsminustheenthalpyofthereactants:

ΔH=Hproducts−Hreactants

Page 42: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

EnthalpiesofReacHonThisquanHty,ΔH,iscalledtheenthalpyofreacHon,ortheheatofreacHon.

Page 43: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Reaction Enthalpy summary

1.  Enthalpyisanextensiveproperty.2.  ΔHforareacHonintheforwarddirecHon

isequalinsize,butoppositeinsign,toΔHforthereversereacHon.

3.  ΔHforareacHondependsonthestateoftheproductsandthestateofthereactants.

Page 44: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Enthalpy of reaction example

ConsiderthereacHon:2KClO3------->2KCl+3O2ΔH=-89.4kJ/mola.WhatistheenthalpychangeforformaHonof0.855molesofO2?

Page 45: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

EnthalpyofreacHonexampleConsiderthereacHon:2KClO3------->2KCl+3O2ΔH=-89.4kJ/mola.WhatistheenthalpychangeforformaHonof0.855molesofO2?

2KClO3 -------> 2KCl + 3O2 ΔH = -89.4 kJ/mol 0.855 mol ΔH = -89.4 kJ/3 mol O2(.855 mol O2) = -25.5 kJ

Page 46: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Calorimetry

Sincewecannotknowtheexactenthalpyofthereactantsandproducts,

wemeasureΔHthroughcalorimetry,themeasurementofheatflow.

Page 47: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

HeatCapacityandSpecificHeat

• heatcapacity:amountofErequiredtoraisethetemperatureofsomethingby1K

• specificheat:amountofErequiredtoraisethetemperatureof1gofasubstanceby1K.

Page 48: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Heat Capacity and Specific Heat

Specificheatis:

Specific heat = heat transferred

mass × temperature change

s = q

m ΔT

smΔT = q

Page 49: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Constant Pressure Calorimetry

indirectlymeasuretheheatchangeforthesystembymeasuringtheheatchangeforthewaterinthecalorimeter.

Page 50: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Constant Pressure Calorimetry

Becausethespecificheatforwateriswellknown(4.184J/g-K),wecanmeasureΔHforthereacHonwiththisequaHon:q=m×s×ΔT

m=masss=specificheat

Page 51: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ExampleWhena3.88gsampleofsolid

ammoniumnitratedisolvesin60.0gofwaterinacoffeecupcalorimeter,thetemperaturedropsfrom23.0°Cto18.4°C.(a)CalculateΔH(inkJ/molammoniumnitrate)forthesoluHonprocess.Assumethatthespecificheatisconstantand=1.0cal/gC.(b)Isthisprocessendothermicorexothermic?

Page 52: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

ExampleWhena3.88gsampleofsolidammoniumnitratedisolvesin60.0gofwaterina

coffeecupcalorimeter,thetemperaturedropsfrom23.0°Cto18.4°C.(a)CalculateΔH(inkJ/molammoniumnitrate)forthesoluHonprocess.Assumethatthespecificheatisconstantand=4.184J/g°C.(b)Isthisprocessendothermicorexothermic?

Reaction: NH4NO3(s) ------> NH4

+(aq) + NO3-(aq)

gr 3.88 g MW 80.04 g/mol #Mol 3.88 g/80.04 g/mol = 0.0484 mol Mass of solution = 3.88 g + 60 g = 63.88 g.

System: Solid AmNO3 Surroundings: Solution

q = s(specific heat)m(mass)ΔT q = s(J/g°C)m(grams)(Tfinal - Tinitial) qsolution = 4.184(J/g°C)(63.88 g)(18.4°C - 23.0°C) = -1229 J qwater=-qammonium nitrate = +1229 J ΔH(per mol NH4NO3) = 1.229 kJ/.0484 mol = 25.39 kJ/mol (b) Endothermic

Page 53: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Bomb Calorimetry

ReacHonscanbecarriedoutseparatedfromthewaterina“bomb,”suchasthisone,

AndsHllmeasuretheheatabsorbedbythewater.

Page 54: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Bomb Calorimetry

•  Becausethevolumeinthebombcalorimeterisconstant,whatismeasuredisreallytheΔE,notΔH.

•  FormostreacHons,•  ΔE≈ΔH•  Why?

Page 55: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

BombCalorimetry

H = E + PV ΔH = ΔE + ΔPV In a bomb calorimeter, ΔV = 0 For a process that doesn’t evolve gas: ΔP ≈ 0 as well. ΔH = ΔE + ΔPV = ΔE

Page 56: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example •  A50gsampleofgasolinewasburnedbycombusHon

(withexcessoxygen)inacalorimeterwithaheatcapacityof10kJ/°C.Thetemperatureincreasedby100°C.CalculatethechangeinEpergofgasoline.

•  qsurroundings=CΔΤ =10kJ/°C(100°C)=1000kJ

•  qsurroundings=-qsystem•  qsystem=-1000•  -1000kJ/50g=-20kJ/g

•  DoesΔΕ =ΔΗ inthiscase?

Page 57: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example •  A50gsampleofgasolinewasburnedbycombusHon

(withexcessoxygen)inacalorimeterwithaheatcapacityof10kJ/°C.Thetemperatureincreased100°C.CalculatethechangeinEpergofgasoline.

•  qsurroundings=CΔΤ =10kJ/°C(100°C)=1000kJ

•  qsurroundings=-qsystem•  qsystem=-1000•  -1000kJ/50g=-20kJ/g

•  DoesΔΕ =ΔΗ inthiscase?•  NO!Pressurecan’tstayconstantinthiscase.

Page 58: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hess’s Law

•  ΔHisknownformanyreacHons.• measuringΔHcanbeapain•  CanweesHmateΔHusingΔHvaluesforotherreacHons?

Page 59: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hess’sLaw

Hess’slaw:statesthat:

ΔHfortheoverallreacHonwillbeequaltothesumoftheenthalpychangesfortheindividualsteps.

Yes!

Page 60: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hess’s Law

Why? BecauseΔHisastatefuncHon,

andispathwayindependent.OnlydependsoniniHalstateof

thereactantsandthefinalstateoftheproducts.

Page 61: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hess’slaw,example:•  Given:•  N2(g)+O2(g)---->2NO(g) ΔH= 180.7kJ•  2NO(g)+O2(g)---->2NO2(g)ΔH=-113.1kJ•  2N2O(g)---->2N2(g)+O2(g)ΔH= -163.2kJ•  useHess’slawtocalculateΔHforthereacHon:•  N2O(g)+NO2(g)---->3NO(g)

Page 62: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hess’slaw,example:•  Given:•  N2(g)+O2(g)---->2NO(g)ΔH= 180.7kJ•  2NO(g)+O2(g)---->2NO2(g) ΔH= -113.1kJ•  2N2O(g)---->2N2(g)+O2(g) ΔH= -163.2kJ•  useHess’slawtocalculateΔHforthereacHon:•  N2O(g)+NO2(g)---->3NO(g)

• N2O(g) ----> N2(g) + 1/2O2(g) ΔH = -163.2/2 =-81.6kJ • NO2(g) ----> NO(g) + 1/2O2(g) ΔH = 113.1 kJ/2=56.6kJ • N2(g) + O2(g) ----> 2NO(g) ΔH = 180.7

• N2O(g)+NO2(g)---->3NO(g) ΔH = 155.7 kJ

Page 63: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

EnthalpiesofFormaHonAnenthalpyofformaHon,ΔHf,isdefinedastheΔHforthereacHoninwhichacompoundismadefromitsconsHtuentelementsintheirmoststableelementalforms.

• 2Al + Fe2O3 -------> Al2O3 + 2Fe

• What is the heat of reaction given: • 2Fe + 3/2O2 -----> Fe2O3 ΔH = -825.5 KJ (heat of formation) • 2Al + 3/2O2 -----> Al2O3 ΔH = -1675.7 KJ (heat of formation)

Page 64: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH

• Imaginethisasoccurringin3steps:

C3H8 (g) + 5 O2 (g) ⎯→ 3 CO2 (g) + 4 H2O (l)

C3H8 (g) ⎯→ 3 C(graphite) + 4 H2 (g)

3 C(graphite) + 3 O2 (g) ⎯→ 3 CO2 (g) 4 H2 (g) + 2 O2 (g) ⎯→ 4 H2O (l)

Page 65: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH

• Imaginethisasoccurringin3steps:

C3H8 (g) + 5 O2 (g) ⎯→ 3 CO2 (g) + 4 H2O (l)

C3H8 (g) ⎯→ 3 C(graphite) + 4 H2 (g)

3 C(graphite) + 3 O2 (g) ⎯→ 3 CO2 (g) 4 H2 (g) + 2 O2 (g) ⎯→ 4 H2O (l)

Page 66: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH

• Imaginethisasoccurringin3steps:

C3H8 (g) + 5 O2 (g) ⎯→ 3 CO2 (g) + 4 H2O (l)

C3H8 (g) ⎯→ 3 C(graphite) + 4 H2 (g)

3 C(graphite) + 3 O2 (g) ⎯→ 3 CO2 (g) 4 H2 (g) + 2 O2 (g) ⎯→ 4 H2O (l)

Page 67: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

C3H8 (g) + 5 O2 (g) ⎯→ 3 CO2 (g) + 4 H2O (l)

C3H8 (g) ⎯→ 3 C(graphite) + 4 H2 (g)

3 C(graphite) + 3 O2 (g) ⎯→ 3 CO2 (g) 4 H2 (g) + 2 O2 (g) ⎯→ 4 H2O (l)

C3H8 (g) + 5 O2 (g) ⎯→ 3 CO2 (g) + 4 H2O (l)

CalculaHonofΔH

•  ThesumoftheseequaHonsis:

Make each reactant or product from its elements This is called the heat of formation of a compound

Page 68: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH

WecanuseHess’slawinthisway:

ΔH=Σ n ΔHf(products)-Σ m ΔHf(reactants)wherenandmarethestoichiometriccoefficients.

° °

Page 69: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

StandardEnthalpiesofFormaHon

StandardenthalpiesofformaHon,ΔHf,aremeasuredunderstandardcondiHons(25°Cand1.00atmpressure).

°

Page 70: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH•  CalculateΔHusingthetable:•  C3H8(g)+5O2(g)----->3CO2(g)+4H2O(l)

Page 71: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

CalculaHonofΔH•  C3H8+5O2----->3CO2+4H2OΔH = [3(ΔHfCO2) + 4(ΔHfH2O)] - [(ΔHf C3H8) + (5ΔHf O2)]

= [3(-393.5 kJ) + 4(-285.8 kJ)] - [(-103.85 kJ) + 5(0)

= [-1180.5 kJ + (-1143.2 kJ)] - [(-103.85 kJ)+ 0 kJ

= [-2323.7 kJ] - [-103.85 kJ)

= -2219.9 kJ

Page 72: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Phase Changes •  Conversionfromonestateofmacertoanotherisaphasechange.

•  Energyiseitheraddedorreleasedinaphasechange.

•  .

Page 73: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Why is E (Q,H) transferred in phase change? •  Atoms/molecules

sHcktoeachotherinliquid/solid,alwayssHckmoreinsolid.

•  Atoms/moleculesdon’ttouchingas.

•  Liquidtogas,Eisneededtopulltheatoms/moleculesfromeachother.

Page 74: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Heating Curves

•  AplotofTvs.q•  Withinaphase:•  q=ms•  Thetemperatureofthesubstancedoesnotriseduringaphasechange.

•  For the phase changes, the product of mass and the heat of fusion of vaporization is heat.

Page 75: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Heating Curves

•  AplotofTvs.q•  Withinaphase:•  q=ms•  Thetemperatureofthesubstancedoesnotriseduringaphasechange.

•  For the phase changes, the product of mass and the heat of fusion of vaporization is heat.

Page 76: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Heating Curves

•  AplotofTvs.q•  Withinaphase:•  q=msΔT•  DuringmelHng:•  q=ΔHFusm•  Duringboiling:•  q=ΔHvapm

•  For the phase changes, the product of mass and the heat of fusion of vaporization is heat.

Page 77: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example:

•  For the phase changes, the product of mass and the heat of fusion of vaporization is heat.

•  Calculateqfortaking10gicefromAtoF:

Page 78: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example:

ΔHFus water: 334 J/g Δhvap water: 2444 J/g s water: 4.184 J/g°K s ice: 2.05 J/gK s vapor: 2.00 J/gK

Page 79: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Example:

•  Calculateqfortaking10gicefromAtoF:•  A->B:(10g)2.05J/gK(25°C)=512.5J•  B->C:10g(334J/g)=3340J•  C->D:10g(4.184J/gK)(100K)=4184J•  D->E:10g(2444J/g)=24440J•  E->F:10g(2.00J/gK)(25K)=500J•  TOTAL =32977J

ΔHFus water: 334 J/g Δhvap water: 2444 J/g s water: 4.184 J/g°K s ice: 2.05 J/gK s vapor: 2.00 J/gK

Page 80: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

EnergyinFoodsMostofthefuelinthefoodweeatcomesfromcarbohydratesandfats.

Page 81: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

What’sthedealwithfat?•  Carbohydrates:•  CnH2nOn+nO2-->-->-->nCO2+nH2O+Energy

•  Fats:•  CnH2nO2+mO2-->-->-->-->-->-->nCO2+nH2O

Fat storage.

more steps

It also clogs your arteries.

Page 82: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy and oxidation states

•  OxidaHonstateofCinafacyacid:

•  OxidaHonstateofCinglucose:

•  C6H8O6

CO2-

H3C

CO2-

HH

HH

HH

HH

HHHH

HHHH

Page 83: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy and oxidation states

•  OxidaHonstateofCinafacyacid:

•  OxidaHonstateofCinglucose:

•  C6H12O6

•  O

•  BothgotoCO2C:+4

CO2-

H3C

CO2-

HH

HH

HH

HH

HHHH

HHHH

-3 -2 -2 -2 -2 -2 -2 -2 +3

Page 84: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

FuelsThevastmajorityoftheenergyconsumedinthiscountrycomesfromfossilfuels.

Page 85: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Majorissues•  Portablefuel(liquid,relaHvelylight),transportaHon•  Non-portablefuel(makeselectricity).

transportation

Page 86: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheEnergycycle:•  Us(andalmosteverythingelsealiveontheearth):•  C6H12O6+6O2---->6CO2+6H2O

•  FossilfuelproducHon:•  CH4+2O2---->CO2+2H2O(formethane)

•  Plants:•  6CO2+6H2O+light---->C6H12O6+6O2

Net CO2 production could therefore be 0.

Page 87: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy research on Campus ADREC

Anaerobic digestor

Page 88: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Energy research on Campus ADREC

Anaerobic digestor •  AnaerobicDigesHon:

•  C6H12O6---->3CO2+3CH4

Basically:Poop---àCO2+CH4

bacteria

https://www.egr.msu.edu/bae/adrec/feature/south-campus-anaerobic-digester

Page 89: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hydrogen,theperfectfuel?2H2 + O2 -----> 2H2O ΔH = -285 kJ/mol H2(1mol/2g)= -142 kJ/g

This is literally what fuel cells do. You get nothing but water!

Page 90: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Theproblemwithoil

•  Not“renewable”(willrunout)•  PolluHon(combusHonnotperfect).•  Globalwarming

CO2absorbsheat.CnH2n+2+(3n+1/2)O2----->nCO2+(n+1)H2O

Page 91: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the
Page 92: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Efficiency/conservaHon

•  U.S.coulddecreaseenergyneedsby20-50%bybeinglesswasteful.

•  Highmileagecars• moreenergyefficientbuilding/homes.

Page 93: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hybridcar

•  Gasenginepluselectricmotor• Why?•  AlltheenergyissHllcomingfromburninggasoline.

Page 94: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hybrids•  Electricmotorsareway

moreefficientthangasengines.(94%)

•  Note,yourengineisveryhot,

•  Itmustbecooled•  FlushallthatEdowndrain.

Nowork,onlyheat.gas engines are 24-30% efficient

Problem: batteries suck! Heavy, expensive, limited recharging cycles, limited current etc.

Page 95: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Liionbacery

x e- +xLi+ + Li1-xCo(IV)O2 -----> LiCo(III)O2

LixC6 ------> xLi+ + xe- + C6

Lithium is really light. Dissolves in organic solvents which are also light. Li is at the top of the activity series. Means a higher potential (more voltage per battery cell)

Page 96: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Hybrids•  Electricmotorsworkatlowspeeds•  gasengineshutsoffwhennotneeded•  atlowspeeds,stoplights,etc.•  (infinitetorque,reallygofrom0-15)•  Gasenginechargesbaceryandisusedathigherspeeds

•  HybridsgetBETTERgasmilageintownversushighway

Page 97: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

OthersourcesHowmuchbangforyourbuck?

Page 98: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheproblemwithHydrogenStorage

gas, less dense, hard to get enough in the car and have trunk space

Kaboom (Hindenburg)

Where do you get the hydrogen?

Page 99: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheproblemwithHydrogenWhere do you get the hydrogen? (petroleum)

CH4(g) + H2O(g) ---à CO(g) + H2(g)

CO(g) +H2O(g) -à CO2(g) + H2(g)

Page 100: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Ethanol,wheredoesitcomefrom

•  AlcoholicfermentaHon:•  C6H12O6---->2CO2+2C2H5OH(ethanol)ΔH=-76 kJ/mol •  -1270 2(-393) 2(-280) •  (anaerobic, bacteria & yeast can do this, we can’t)

Exactly the same place it comes from in your beer.

Page 101: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Ethanol•  AlcoholicfermentaHon:•  C6H12O6---->2CO2+2C2H6O(ethanol)ΔH=-76 kJ/mol •  -1270 2(-393) 2(-280) •  (anaerobic, yeast can do this, we can’t) only to 10%. •  Distillation (requires energy) to purify.

bug

Alcohol combustion: C2H6O + O2 ---> 2CO2 + 3H2O ΔH = -1367 kJ/mol(1mol/46g)=-29.7kJ/g

But why would this be better for global warming?

Page 102: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Ethanol,problems•  Lotsoflandtogrow(yield2-4tons/acre)•  AllpresentagriculturallandinU.S.wouldnotbeenoughforall

transportaHonneeds.•  requiresferHlizer,tractors,etc.forgrowing(energy)•  DisHllaHonrequiresenergy•  Forevery1.4kJneed1.0kJ,muchmorethanoil•  Brazil,however,isapproaching50%ethanolfortransportaHon•  Why?Sugarcane,largeststarchorsugaryield/acre.•  But,youcan’tgrowsugarcaneonthegreatplains.

Page 103: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Ethanol

•  However,presentlyweonlyuseStarch,

O

H

HO

H

HO

H

OHH

HO

O

H

O

H

HOH

OH

H

H

OH

O

H

O

H

HOH

HO

OH

H

H

OH

O

H

HO

H

HO

H

H

OHH

OH

O

H

O

H

HO

H

H

OHH

OH

O

H

O

H

HO

H

H

OHH

OH

OH

not cellulose Most stuff in plants is cellulose

Two major types of carbohydrates in plants

Page 104: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Cellulosicethanol

•  10+tons/acre(asopposedto2-4tons/acre)•  Canuseanycrop,notjustfoodcropswithhighstarch(“switchgrass”).

•  Problem:Breakingitdowntosmallsugarsthatyeastcanferment.

•  Needcellulase,theenzymethatbreaksthisup.•  ThisisacomparaHvelyeasyproblemtosolve•  (comparedtohydrogen.)

Ethanol can work.

Page 105: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

Thingstoconsider

•  Energyyield(howmuchEoutversusEin)?•  Breakevenprice(howmuch/gallonofgasequivalents(presentcornethanolis2.25/gallonjusttomake).

•  WhereisthetechnologyNOW?•  Isstoragerequired,&ifso,howyougonnadoit•  (solarwhenthesundoesn’tshine)•  Remember,atpresentBaceriessuck!

Page 106: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheChemistryNobelPrize

•  DanielShechtman,•  Technion,Israel•  For:•  Thediscoveryof“quasi-crystals”in1984

Page 107: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the
Page 108: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheChemistryNobelPrize•  AnHo-Mg-Znquasi-crystal

Note, the five-fold symmetry of the faces! This was thought to be impossible! Is this a solid?

Page 109: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheThermitereacHon

•  2Al+Fe2O3------->Al2O3+2Fe

•  WhatkindofreacHonisthis?•  Whydoesithappen?•  Usedforweldingrailroadtracks•  WhatistheheatofreacHongiven:

•  2Fe+3/2O2----->Fe2O3ΔH=-825.5KJ•  2Al+3/2O2----->Al2O3 ΔH=-1675.7KJ

Page 110: Chapter 5 Thermochemistry - Michigan State University · Chapter 5 Thermochemistry The energy of chemical reactions ... in the calorimeter. Constant Pressure Calorimetry Because the

TheThermiteReacHon •  2Al+Fe2O3------->Al2O3+2Fe

•  WhatistheheatofreacHongiven:•  2Fe+3/2O2----->Fe2O3ΔH=-825.5KJ•  2Al+3/2O2----->Al2O3 ΔH=-1675.7KJ

•  2Al+3/2O2----->Al2O3 ΔH=-1675.7KJ•  Fe2O3----->2Fe+3/2O2ΔH=825.5KJ

•  2Al+Fe2O3------->Al2O3+2FeΔH=-850.2KJ

http://www.youtube.com/watch?v=BnHR4cMXiyM

A thermite mystery: