Chapter 5:

61
Chapter 5: Chapter 5:

description

Chapter 5:. Digital Logic Design. Synchronous Sequential Logic. Combinational Circuit. Inputs. Outputs. Memory Elements. Combinational Circuit. Inputs. Outputs. Flip-flops. Clock. Sequential Circuits. Asynchronous Synchronous. Latches. SR Latch. Q = Q 0. 0. 0. 1. 0. - PowerPoint PPT Presentation

Transcript of Chapter 5:

Page 1: Chapter 5:

Chapter 5:Chapter 5:

Page 2: Chapter 5:

22 / 60 / 60

Sequential CircuitsSequential Circuits

CombinationalCircuit Memory

Elements

Inputs Outputs

Asynchronous

Synchronous

CombinationalCircuit

Flip-flops

Inputs Outputs

Clock

Page 3: Chapter 5:

33 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0

0

1

0

0

0 1 Q = Q0

Initial Value

Page 4: Chapter 5:

44 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1

1

0

0

0

1 0 Q = Q0

Q = Q0

Page 5: Chapter 5:

55 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0

0

1

1

0

1 Q = 0

Q = Q0

Page 6: Chapter 5:

66 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0 10 1 11

0

1

0

0 1Q = 0

Q = Q0

Q = 0

Page 7: Chapter 5:

77 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0 10 1 1 0 11 0 0

0

1

0

1

1 0

Q = 0

Q = Q0

Q = 1

Page 8: Chapter 5:

88 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0 10 1 1 0 11 0 0 1 01 0 1

1

0

0

1

1 0

Q = 0

Q = Q0

Q = 1Q = 1

Page 9: Chapter 5:

99 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0 10 1 1 0 11 0 0 1 01 0 1 1 01 1 0

0

1

1

1

0 0

Q = 0

Q = Q0

Q = 1

Q = Q’

0

Page 10: Chapter 5:

1010 / 60 / 60

LatchesLatches

SR Latch

R

S

Q

Q

S R Q0 Q Q’0 0 0 0 10 0 1 1 00 1 0 0 10 1 1 0 11 0 0 1 01 0 1 1 01 1 0 0 01 1 1

1

0

1

1

0 0

Q = 0

Q = Q0

Q = 1

Q = Q’

0

Q = Q’

Page 11: Chapter 5:

1111 / 60 / 60

LatchesLatches

SR LatchR

S

Q

Q

S R Q0 0 Q0

0 1 01 0 11 1 Q=Q’=0

No changeResetSet

Invalid

S

R

Q

Q

S R Q0 0 Q=Q’=10 1 11 0 01 1 Q0

InvalidSet

ResetNo change

Page 12: Chapter 5:

1212 / 60 / 60

LatchesLatches

SR LatchR

S

Q

Q

S R Q0 0 Q0

0 1 01 0 11 1 Q=Q’=0

No changeResetSet

Invalid

S’ R’ Q0 0 Q=Q’=10 1 11 0 01 1 Q0

InvalidSet

ResetNo change

S

R

Q

Q

Page 13: Chapter 5:

1313 / 60 / 60

Controlled LatchesControlled Latches

SR Latch with Control Input

C S R Q0 x x Q0

1 0 0 Q0

1 0 1 01 1 0 11 1 1 Q=Q’

No changeNo change

ResetSet

Invalid

S

R

Q

Q

S

R

C

S

RQ

QS

R

C

Page 14: Chapter 5:

1414 / 60 / 60

Controlled LatchesControlled Latches

D Latch (D = Data)

C D Q0 x Q0

1 0 01 1 1

No changeResetSet

S

R

Q

Q

D

C

C

Timing Diagram

D

Q

t

Output may change

Page 15: Chapter 5:

1515 / 60 / 60

Controlled LatchesControlled Latches

D Latch (D = Data)

C D Q0 x Q0

1 0 01 1 1

No changeResetSet

C

Timing Diagram

D

Q

Output may change

S

R

Q

Q

D

C

Page 16: Chapter 5:

1616 / 60 / 60

Flip-FlopsFlip-Flops

Controlled latches are level-triggered

Flip-Flops are edge-triggered

C

CLK Positive Edge

CLK Negative Edge

Page 17: Chapter 5:

1717 / 60 / 60

Flip-FlopsFlip-Flops

Master-Slave D Flip-Flop

D Latch(Master)

D

C

Q D Latch(Slave)

D

C

Q QD

CLK CLK

D

QMaster

QSlave

Looks like it is negative edge-triggered

Master Slave

Page 18: Chapter 5:

1818 / 60 / 60

Flip-FlopsFlip-Flops

Edge-Triggered D Flip-Flop

D

CLKQ

Q

D Q

Q

D Q

Q

Positive Edge

Negative Edge

Page 19: Chapter 5:

1919 / 60 / 60

Flip-FlopsFlip-Flops

JK Flip-Flop

D Q

Q

Q

QCLK

J

K

J Q

QK

D = JQ’ + K’Q

Page 20: Chapter 5:

2020 / 60 / 60

Flip-FlopsFlip-Flops

T Flip-Flop

D = TQ’ + T’Q = T Q

J Q

QK

T D Q

Q

T

D = JQ’ + K’Q T Q

Q

Page 21: Chapter 5:

2121 / 60 / 60

Flip-Flop Characteristic TablesFlip-Flop Characteristic Tables

D Q

Q

D Q(t+1)0 01 1

ResetSet

J K Q(t+1)0 0 Q(t)0 1 01 0 11 1 Q’(t)

No changeReset

SetToggle

J Q

QK

T Q

Q

T Q(t+1)0 Q(t)1 Q’(t)

No changeToggle

Page 22: Chapter 5:

2222 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

D Q

Q

D Q(t+1)0 01 1

Q(t+1) = D

J K Q(t+1)0 0 Q(t)0 1 01 0 11 1 Q’(t)

Q(t+1) = JQ’ + K’QJ Q

QK

T Q

Q

T Q(t+1)0 Q(t)1 Q’(t)

Q(t+1) = T Q

Page 23: Chapter 5:

2323 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

Analysis / Derivation

J Q

QK

J K Q(t) Q(t+1)0 0 0 00 0 1 10 1 00 1 11 0 01 0 11 1 01 1 1

No change

Reset

Set

Toggle

Page 24: Chapter 5:

2424 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

Analysis / Derivation

J Q

QK

J K Q(t) Q(t+1)0 0 0 00 0 1 10 1 0 00 1 1 01 0 01 0 11 1 01 1 1

No change

Reset

Set

Toggle

Page 25: Chapter 5:

2525 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

Analysis / Derivation

J Q

QK

J K Q(t) Q(t+1)0 0 0 00 0 1 10 1 0 00 1 1 01 0 0 11 0 1 11 1 01 1 1

No change

Reset

Set

Toggle

Page 26: Chapter 5:

2626 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

Analysis / Derivation

J Q

QK

J K Q(t) Q(t+1)0 0 0 00 0 1 10 1 0 00 1 1 01 0 0 11 0 1 11 1 0 11 1 1 0

No change

Reset

Set

Toggle

Page 27: Chapter 5:

2727 / 60 / 60

Flip-Flop Characteristic EquationsFlip-Flop Characteristic Equations

Analysis / Derivation

J Q

QK

J K Q(t) Q(t+1)0 0 0 00 0 1 10 1 0 00 1 1 01 0 0 11 0 1 11 1 0 11 1 1 0

K

0 1 0 0J 1 1 0 1

Q

Q(t+1) = JQ’ + K’Q

Page 28: Chapter 5:

2828 / 60 / 60

Flip-Flops with Direct InputsFlip-Flops with Direct Inputs

Asynchronous Reset

D Q

Q

R

Reset

R’ D CLK Q(t+1)0 x x 0

Page 29: Chapter 5:

2929 / 60 / 60

Flip-Flops with Direct InputsFlip-Flops with Direct Inputs

Asynchronous Reset

D Q

Q

R

Reset

R’ D CLK Q(t+1)0 x x 01 0 ↑ 01 1 ↑ 1

Page 30: Chapter 5:

3030 / 60 / 60

Flip-Flops with Direct InputsFlip-Flops with Direct Inputs

Asynchronous Preset and Clear

PR’ CLR’ D CLK Q(t+1)1 0 x x 0D Q

Q

CLR

Reset

PR

Preset

Page 31: Chapter 5:

3131 / 60 / 60

Flip-Flops with Direct InputsFlip-Flops with Direct Inputs

Asynchronous Preset and Clear

PR’ CLR’ D CLK Q(t+1)1 0 x x 00 1 x x 1

D Q

Q

CLR

Reset

PR

Preset

Page 32: Chapter 5:

3232 / 60 / 60

Flip-Flops with Direct InputsFlip-Flops with Direct Inputs

Asynchronous Preset and Clear

PR’ CLR’ D CLK Q(t+1)1 0 x x 00 1 x x 11 1 0 ↑ 01 1 1 ↑ 1

D Q

Q

CLR

Reset

PR

Preset

Page 33: Chapter 5:

3333 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

The State● State = Values of all Flip-Flops

Example

A B = 0 0

D Q

Q

CLK

D Q

Q

A

B

y

x

Page 34: Chapter 5:

3434 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

State EquationsD Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = DA

= A(t) x(t)+B(t) x(t)

= A x + B x

B(t+1) = DB

= A’(t) x(t)

= A’ x

y(t) = [A(t)+ B(t)] x’(t)

= (A + B) x’

Page 35: Chapter 5:

3535 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

State Table (Transition Table)D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

y(t) = (A + B) x’

Present State Input Next

State Output

A B x A B y0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

t+1 tt

0 0 00 1 00 0 11 1 00 0 11 0 00 0 11 0 0

Page 36: Chapter 5:

3636 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

State Table (Transition Table)D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

y(t) = (A + B) x’

Present State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y0 0 0 0 0 1 0 00 1 0 0 1 1 1 01 0 0 0 1 0 1 01 1 0 0 1 0 1 0

t+1 tt

Page 37: Chapter 5:

3737 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

State Diagram

D Q

Q

CLK

D Q

Q

A

B

y

x

0 0 1 0

0 1 1 1

0/0

0/1

1/0

1/0

1/0

1/0 0/10/1

AB input/output

Present State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y

0 0 0 0 0 1 0 00 1 0 0 1 1 1 01 0 0 0 1 0 1 01 1 0 0 1 0 1 0

Page 38: Chapter 5:

3838 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

D Flip-Flops

Example: D Q

Q

x

CLK

yA

Present State Input Next

StateA x y A0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

01101001

0 100,11 00,11

01,10

01,10

A(t+1) = DA = A x y

Page 39: Chapter 5:

3939 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

JK Flip-Flops

Example:

J Q

QK

CLK

J Q

QK

x

A

B

JA = B KA = B x’JB = x’ KB = A x

A(t+1) = JA Q’A + K’A QA

= A’B + AB’ + AxB(t+1) = JB Q’B + K’B QB

= B’x’ + ABx + A’Bx’

Present State I/P Next

StateFlip-Flop

InputsA B x A B JA KA JB KB

0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 0 1 00 0 0 11 1 1 01 0 0 10 0 1 10 0 0 01 1 1 11 0 0 0

0 10 01 11 01 11 00 01 1

Page 40: Chapter 5:

4040 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

JK Flip-Flops

Example:

J Q

QK

CLK

J Q

QK

x

A

BPresent State I/P Next

StateFlip-Flop

InputsA B x A B JA KA JB KB

0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 0 1 00 0 0 11 1 1 01 0 0 10 0 1 10 0 0 01 1 1 11 0 0 0

0 10 01 11 01 11 00 01 1

0 0 1 1

0 1 1 0

1 0 1

0

1

0 0

1

Page 41: Chapter 5:

4141 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

T Flip-Flops

Example:

TA = B x TB = xy = A B

A(t+1) = TA Q’A + T’A QA

= AB’ + Ax’ + A’BxB(t+1) = TB Q’B + T’B QB

= x B

A

B

T Q

QR

T Q

QR

CLK Reset

xy

Present State I/P Next

StateF.F

Inputs O/P

A B x A B TA TB y0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 00 10 01 10 00 10 01 1

0 00 10 11 01 01 11 10 0

00000011

Page 42: Chapter 5:

4242 / 60 / 60

Analysis of Clocked Sequential CircuitsAnalysis of Clocked Sequential Circuits

T Flip-Flops

Example:

A

B

T Q

QR

T Q

QR

CLK Reset

xy

Present State I/P Next

StateF.F

Inputs O/P

A B x A B TA TB y0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 00 10 01 10 00 10 01 1

0 00 10 11 01 01 11 10 0

00000011

0 0 0 1

1 1 1 0

0/01/0

0/0

1/0

1/0

1/1

0/00/1

Page 43: Chapter 5:

4343 / 60 / 60

Mealy and Moore ModelsMealy and Moore Models

Present State I/P Next

State O/P

A B x A B y0 0 0 0 0 00 0 1 0 1 00 1 0 0 0 10 1 1 1 1 01 0 0 0 0 11 0 1 1 0 01 1 0 0 0 11 1 1 1 0 0

MealyMealy

For the same statestate,the outputoutput changes with the inputinput

Present State I/P Next

State O/P

A B x A B y0 0 0 0 0 00 0 1 0 1 00 1 0 0 1 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 01 1 0 1 1 11 1 1 0 0 1

MooreMoore

For the same statestate,the outputoutput does not change with the inputinput

Page 44: Chapter 5:

4444 / 60 / 60

Moore State DiagramMoore State Diagram

State / Output

0 0 / 0 0 1 / 0

1 1 / 1 1 0 / 0

0

1

1

1

00

01

Page 45: Chapter 5:

4545 / 60 / 60

Timing DiagramTiming Diagram

0 0 / 0 0 1 / 0

1 1 / 1 1 0 / 0

0 0

1

1

0 0

1

1

CLK

StateA

B

y

x

No effect

0

0

0

1

1

0

0

0

0

1

0

1

A

Bx y

Page 46: Chapter 5:

4646 / 60 / 60

Timing DiagramTiming Diagram

0 0 0 1

1 1 1 0

0/0 0/0

1/0

1/1

0/0 0/0

1/1

1/0

CLK

StateA

B

y

x

1

0

A

Bx y

Page 47: Chapter 5:

4747 / 60 / 60

Design of Clocked Sequential CircuitsDesign of Clocked Sequential Circuits

Example:Detect 3 or more consecutive 1’s

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0 0

1

0

1

State A BS0 0 0S1 0 1S2 1 0S3 1 1

Page 48: Chapter 5:

4848 / 60 / 60

Design of Clocked Sequential CircuitsDesign of Clocked Sequential Circuits

Example:Detect 3 or more consecutive 1’s

Present State Input Next

State Output

A B x A B y0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 0 00 1 00 0 01 0 00 0 01 1 00 0 11 1 1

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0 0

1

0

1

Page 49: Chapter 5:

4949 / 60 / 60

Design of Clocked Sequential CircuitsDesign of Clocked Sequential Circuits

Example:Detect 3 or more consecutive 1’s

Present State Input Next

State Output

A B x A B y0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

0 0 00 1 00 0 01 0 00 0 01 1 00 0 11 1 1

A(t+1) = DA (A, B, x)

= ∑ (3, 5, 7)

B(t+1) = DB (A, B, x)

= ∑ (1, 5, 7)

y (A, B, x) = ∑ (6, 7)

Synthesis using DD Flip-Flops

Page 50: Chapter 5:

5050 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with DD F.F. F.F.

Example:Detect 3 or more consecutive 1’s

DA (A, B, x) = ∑ (3, 5, 7)

= A x + B x

DB (A, B, x) = ∑ (1, 5, 7)

= A x + B’ x

y (A, B, x) = ∑ (6, 7)

= A B

Synthesis using DD Flip-FlopsB

0 0 1 0A 0 1 1 0

x B

0 1 0 0A 0 1 1 0

xB

0 0 0 0A 0 0 1 1

x

Page 51: Chapter 5:

5151 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with DD F.F. F.F.

Example:Detect 3 or more consecutive 1’s

DA = A x + B x

DB = A x + B’ x

y = A B

Synthesis using DD Flip-Flops

D Q

Q

A

CLK

x

BD Q

Q

y

Page 52: Chapter 5:

5252 / 60 / 60

Flip-Flop Excitation TablesFlip-Flop Excitation Tables

Present State

Next State

F.F.Input

Q(t) Q(t+1) D0 00 11 01 1

Present State

Next State

F.F.Input

Q(t) Q(t+1) J K0 00 11 01 1

0 0 (No change)0 1 (Reset)0 x

1 xx 1x 0

0101

1 0 (Set)1 1 (Toggle)0 1 (Reset)1 1 (Toggle)0 0 (No change)1 0 (Set)

Q(t) Q(t+1) T0 00 11 01 1

0110

Page 53: Chapter 5:

5353 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with JKJK F.F. F.F.

Example:Detect 3 or more consecutive 1’s

Present State Input Next

StateFlip-Flop

InputsA B x A B JA KA JB KB

0 0 0 0 00 0 1 0 10 1 0 0 00 1 1 1 01 0 0 0 01 0 1 1 11 1 0 0 01 1 1 1 1

0 x0 x0 x1 xx 1x 0x 1x 0

JA (A, B, x) = ∑ (3)dJA (A, B, x) = ∑ (4,5,6,7)KA (A, B, x) = ∑ (4, 6)dKA (A, B, x) = ∑ (0,1,2,3)JB (A, B, x) = ∑ (1, 5)dJB (A, B, x) = ∑ (2,3,6,7)KB (A, B, x) = ∑ (2, 3, 6)dKB (A, B, x) = ∑ (0,1,4,5)

Synthesis using JKJK F.F.

0 x1 xx 1x 10 x1 xx 1x 0

Page 54: Chapter 5:

5454 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with JKJK F.F. F.F.

Example:Detect 3 or more consecutive 1’s

JA = B x KA = x’

JB = x KB = A’ + x’

Synthesis using JKJK Flip-FlopsB

0 0 1 0A x x x x

x

B

x x x xA 1 0 0 1

xB

0 1 x xA 0 1 x x

x

B

x x 1 1A x x 0 1

x

CLK

J Q

QK

x

A

B

J Q

QK y

Page 55: Chapter 5:

5555 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with TT F.F. F.F.

Example:Detect 3 or more consecutive 1’s

Present State Input Next

StateF.F.

InputA B x A B TA TB

0 0 0 0 00 0 1 0 10 1 0 0 00 1 1 1 01 0 0 0 01 0 1 1 11 1 0 0 01 1 1 1 1

00011010

Synthesis using TT Flip-Flops01110110

TA (A, B, x) = ∑ (3, 4, 6)TB (A, B, x) = ∑ (1, 2, 3, 5, 6)

Page 56: Chapter 5:

5656 / 60 / 60

Design of Clocked Sequential Circuits with Design of Clocked Sequential Circuits with TT F.F. F.F.

Example:Detect 3 or more consecutive 1’s

TA = A x’ + A’ B x

TB = A’ B + B x

Synthesis using TT Flip-Flops

B

0 0 1 0A 1 0 0 1

x

B

0 1 1 1A 0 1 0 1

x

A

B

y

T Q

Q

x

CLK

T Q

Q

Page 57: Chapter 5:

5757 / 60 / 60

HomeworkHomework

Mano● Chapter 5

♦ 5-1

♦ 5-3

♦ 5-6

♦ 5-8

♦ 5-9

Page 58: Chapter 5:

5858 / 60 / 60

HomeworkHomework

5-1 The D latch is constructed with four NAND gates and an inverter. Consider the following three other ways for obtaining a D latch. In each case, draw the logic diagram and verify the circuit operation.

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be needed.

(b) Use NOR gates for all four gates. Inverters may be needed.

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output of the upper gate that goes to the SR latch to the input of the lower gate instead of the inverter output.

Page 59: Chapter 5:

5959 / 60 / 60

HomeworkHomework

5-3 Show that the characteristic equation for the complement output of a JK flip-flop is

Q’(t+1) = J’Q + K Q5-6 A sequential circuit with two D flip-flops, A and B; two

inputs, x and y; and one output, z, is specified by the following next-state and output equations:

A(t+1) = x’ y + x A B(t+1) = x’ B + x A z = B

(a) Draw the logic diagram of the circuit.

(b) List the state table for the sequential circuit.

(c) Draw the corresponding state diagram.

Page 60: Chapter 5:

6060 / 60 / 60

HomeworkHomework

5-8 Derive the state table and the state diagram of the sequential shown circuit. Explain the function that the circuit performs.

A B

CLK

T

Q Q

T

Q Q

Page 61: Chapter 5:

6161 / 60 / 60

HomeworkHomework

5-9 A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

JA = x KA = B’

JB = x KB = A

(a) Derive the state equations A(t+1) and B(t+1) by substituting the input equations for the J and K variables.

(b) Draw the state diagram of the circuit.