Chapter 4Filter Design Techniques

149
Chapter 4 Filter Design Techniques 7.0 Introduction 7.1 Design of Discrete-Time IIR Filters From Continuous-Time Filters 7.2 Design of FIR Filters by Windowing 7.3 Examples of FIR Filters Design by the Kaiser Window Method 7.4 Optimum Approximations of FIR Filters 7.5 Examples of FIR Equiripple A ppro ximation 7.6 Comments on IIR and FIR Discrete-Time Filters 1

Transcript of Chapter 4Filter Design Techniques

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 1/149

Chapter 4 Filter Design Techniques

• 7.0 Introduction

• 7.1 Design of Discrete-Time IIR Filters FromContinuous-Time Filters

• 7.2 Design of FIR Filters by Windowing

• 7.3 Examples of FIR Filters Design by the KaiserWindow Method

• 7.4 Optimum Approximations of FIR Filters

• 7.5 Examples of FIR Equiripple Approximation

• 7.6 Comments on IIR and FIR Discrete-TimeFilters

1

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 2/149

Filter Design Techniques

7.0 Introduction

2

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 3/149

Introduction

• Frequency-selective filters pass only certain

frequencies

• Any discrete-time system that modifies certain

frequencies is called a filter. 

• We concetrate on design of causal Frequency-

selective filters

3

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 4/149

Stages of Filter Design• The specification of the desired properties of the

system.

• The approximation of the specifications using a

causal discrete-time system.

• The realization of the system.

• Our focus is on second step

• Specifications are typically given in the frequency

domain.

4

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 5/149

Frequency-Selective Filters

• Ideal lowpass filter

 ww

wwe H 

c

c jw

lp,0

,1

5

0cw

cw     2 2

 jwe H 

1

nn

nwnh clp ,sin

 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 6/149

Frequency-Selective Filters

• Ideal highpass filter

0,

1,

c jw

hp

c

w w H e

w w  

0

6

cwcw     2 2

 jwe H 

1

sin

,c

hp

w n

h n n nn   

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 7/149

Frequency-Selective Filters

Ideal bandpass filter

others

wwwe H  cc jw

bp,0

,121

0

7

1cw1cw   

 jwe H 

1

2cw2cw

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 8/149

Frequency-Selective Filters

Ideal bandstop filter

others

wwwe H  cc jw

bs,1

,021

0

8

1cw1cw   

 jwe H 

1

2cw2cw

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 9/149

• If input is bandlimited and sampling frequency is

high enough to avoid aliasing, then overall systembehave as a continuous-time system:

T e H  j H 

T  j

eff 

 

 

,0

,

9

Linear time-invariant discrete-time system

,eff 

 jw w

 H H j wT e  

continuous-time specifications are converted to discretetime specifications by:

T w

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 10/149

Example 7.1 Determining Specifications for a

Discrete-Time Filter

Specifications of the continuous-time filter:• 1. passband

• 2. stopband

20002001.0101.01   for  j H eff 

30002001.0   for  j H eff 

10

sT 410

max12 22

2 5000

 f T T 

   

 

T e H  j H 

T  j

eff  

 

,0

,

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 11/149

Example 7.1 Determining Specifications for a

Discrete-Time Filter

Specifications of the continuous-time filter:• 1. passband

• 2. stopband

20002001.0101.01   for  j H eff 

30002001.0   for  j H eff 

11

sT 410

max12 22

2 5000

 f T T 

   

 

1 0.01 

2 0.001 

2 (2000) p  

2 (3000)s 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 12/149

Example 7.1 Determining Specifications for a Discrete-

Time FiltersT  410

T  

12

Specifications of the

discrete-time filter in  

1 0.01 

20.001 

2 (2000) p   2 (3000)s 

0.4 p   0.6s  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 13/149

Filter Design Constraints• Designing IIR filters is to find the approximation by a

rational function of z.

• The poles of the system function must lie inside the

unit circle(stability, causality).

• Designing FIR filters is to find the polynomial

approximation.

• FIR filters are often required to be linear-phase.

13

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 14/149

Filter Design Techniques

7.1 Design of Discrete-Time IIR Filters

From Continuous-Time Filters

14

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 15/149

7.1 Design of Discrete-Time IIR Filters From Continuous-

Time Filters

• The traditional approach to the design of 

discrete-time IIR filters involves the

transformation of a continuous-time filter into a

discrete filter meeting prescribed specification.

15

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 16/149

Three Reasons

1. The art of continuous-time IIR filter design is

highly advanced, and since useful results can

be achieved, it is advantageous to use the

design procedures already developed for

continuous-time filters.

16

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 17/149

Three Reasons

2. Many useful continuous-time IIR designmethod have relatively simple closed form 

design formulas. Therefore, discrete-time IIR

filter design methods based on such standardcontinuous-time design formulas are rather

simple to carry out.

17

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 18/149

Three Reasons

3. The standard approximation methods that

work well for continuous-time IIR filters do

not lead to simple closed-form designformulas when these methods are applied

directly to the discrete-time IIR case.

18

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 19/149

Steps of DT filter design by transforming a prototype

continuous-time filter

• The specifications for the continuous-time filterare obtained by a transformation of thespecifications for the desired discrete-time filter.

Find the system function of the continuous-timefilter.

• Transform the continuous-time filter to derivethe system function of the discrete-time filter.

19

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 20/149

Constraints of Transformation

• to preserve the essential properties of the

frequency response, the imaginary axis of the s-plane is mapped onto the unit circle of the z-

plane.  jwe z js

20

 planes plane z Im Im

Re Re

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 21/149

Constraints of Transformation

• In order to preserve the property of stability, If 

the continuous system has poles only in the

let half of the s-plane, then the discrete-time

filter must have poles only inside the unitcircle.

21

 planes Im

Re

 plane z Im

Re

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 22/149

7.1.1 Filter Design by Impulse

Invariance•

The impulse response of discrete-time system isdefined by sampling the impulse response of a

continuous-time system.

d cd  nT hT nh

22

d c T  j H if    ,0    

   w

T w j H e H then

c

 jw ,

  w for T w d 

 

  

 

k  d d 

c

 jwk 

T  j

w j H e H 

 2Relationship of frequencies

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 23/149

23

,,        d T 

relation between frequencies

S plane Z plane

3 / d 

T  

 j

 /  d T  

 / d 

T  

  

  

k  d d 

c jw k 

T  j

T w j H e H   2Relationship of 

frequencies

d c T  j H if    ,0  

 

 

 

  w

w j H e H then

c

 jw ,

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 24/149

Aliasing in the Impulse Invariance

24

 

 

 

 

k  d d 

c

 jwk 

 j

w j H e H 

 2

d c T  j H if    ,0

, jw

c

wthen H e H j

w  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 25/149

periodic sampling

[ ] ( ) | ( )c t nT c x n x t x nT 

25

T:sample period; fs=1/T:sample rateΩs=2π/T:sample rate

n

nT t t s  

s c c c

n n

 x t x t s t x t t nT x nT t nT   

Review

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 26/149

26

Time domain:  )(t  x

Complex frequency

domain: 

dt et  xs X  st )()(

Laplace transform

js  

 f  2  

s pl ane

 

 j

0

Relation between Laplace Transformand Z-transform

Review

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 27/149

27

dt et  x j X t  j)()(

Fourier Transform 

frequency domain : 

s- pl ane

 

 j

0

Fourier Transform is the Laplace transform when s

have the value only in imaginary axis, s=jΩ 

js  Since

So 0  s j

dt et  xs X  st )()(

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 28/149

28

( ) ( ) ( ) ( ) ( )n n

 x n x t t nT x nT t nT   

For discrete-time signal, 

( ) ( ) st 

n

 x nT t nT e dt  

( ) ( )snT sT  

n

 x nT e X e

[ ( )] ( ) st  x n x n e dt 

L

sT  z e: ( ) ( )

n

n

 x n z X z

z-transform

of discrete-

time signal

the Laplace transform

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 29/149

29

( )sT j T T j T j z e e e e re  

n

n zn x z X  )()(

so: 

T r e

 

 

 relation between

s zand

Laplace transform continuous time signal

z-transform discrete-time signalrelation

[ ( )] ( ) ( )snT sT  

n

 x n x nT e X e

L

sT  z elet: 

( )sT j T T j T j

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 30/149

30

2s

T f f   

DTFT :

Discrete Time

Fourier Transform

( )sT j T T j T j z e e e e re

 

( ) ( )

 j j n

n X e x n e

 

S plane Z plane

3 / s

T  

 j

 / s

T  

 / s

T  

1| j j

r  z re e  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 31/149

31

2 2s sT f f f    

 zplane

Re[ ] z

Im[ ] z

0

r  

0 2 / 2

0 2

2

s

s s

s s

 f 

 f 

 

 

: 0

0 2

2 4

 

 

 

s f f f 

 j

s pl ane

 0

22

s

s

 f T   

sT 

 

3

sT 

 

3

sT 

 

di i fil d i b i l i i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 32/149

• If input is bandlimited and f s>2f max , :

d cd  nT hT nh

T T e H  j H 

T  j

eff  

 ,0

,

32

discrete-time filter design by impulse invariance

  w for T w d 

 

 

 

 

k  d d 

c

 jwk 

 j

w j H e H 

 2

d c T  j H if    ,0

, jw

cd 

wthen H e H j w

T   

l i b f i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 33/149

33

,,        d T 

relation between frequencies

S plane Z plane

3 / d 

T  

 j

 /  d T  

 / d 

T  

  

  

k  d d 

c jw k 

T  j

T w j H e H   2Relationship of 

frequencies

d c T  j H if    ,0  

 

 

 

  w

w j H e H then

c

 jw ,

i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 34/149

periodic sampling

[ ] ( ) | ( )c t nT c

 x n x t x nT 

1 1 2*

2 2s c c s

 X j X j S j X j k d T 

 

 

34

T:sample period; fs=1/T:sample rate

Ωs=2π/T:sample rate

n

nT t t s  

s c c c

n n

 x t x t s t x t t nT x nT t nT   

2

s

k S j k T 

  

1

c s

k  X j k T 

Review

2

R i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 35/149

proof of 

35

T:sample period; fs=1/T:sample rate;Ωs=2π/T:sample rate

n nT t t s  

2s

S j k T 

  

Review

2s

S j k T 

  

s jk t 

k n a e

s(t)为冲击串序列,周期为T,可展开傅立叶级数 

1s jk t 

neT 

2 ( )s jk t  F 

se k  

2

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 36/149

periodic sampling

36

s c c c

n n

 x t x t s t x t t nT x nT t nT   

j Tn

c

 x nT e

( ) j t 

s c

n

 X j x nT t nT e dt  

[ ] ( ) | ( )c t nT c

 x n x t x nT  ( ) j j n

cn

 X e x nT e  

( ) ( ) ( )

 j j T 

s T  X j X e X e

 

 

1( ) j T c s

 X e X j k T 

1 2

( ) c

 j k  X X j

T T T 

e    

2s

 

( ) 0, j T i f X eT  

1( ) c

 jthen X X j

T T 

e    

1

s c s

 X j X j k T 

di t ti filt d i b i l i i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 37/149

[ ] ( ) | ( )c t nT c x n x t x nT 

d cd  nT hT nh

37

discrete-time filter design by impulse invariance

 

 

 

 

k  d d 

c

 jwk 

 j

w j H e H 

 2

d c T  j H if    ,0

, jw

cd 

wthen H e H j w

T   

1 2( ) c

 j k  X X j

T T T e    

1( ) c

 j X X j

T T e    

1 2

( ) c

 j k 

 H H jT T T e   

1

( ) c

 j

 H H jT T e   

[ ] ( )ch n h nT  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 38/149

Steps of DT filter design by transforming a prototype

continuous-time filter

• Obtain the specifications for continuous-time

filter by transforming the specifications for the

desired discrete-time filter.• Find the system function of the continuous-time

filter.

• Transform the continuous-time filter to derivethe system function of the discrete-time filter.

38

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 39/149

Transformation from discrete to continuous

• In the impulse invariance design procedure,

the transformation is

• Assuming the aliasing involved in the

transformation is neglected, the relationship

of transformation is

39

  

 

 

 

wT 

w

 j H e H d 

c

 jw

,

d T w

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 40/149

Steps of DT filter design by transforming a prototype

continuous-time filter

• Obtain the specifications for continuous-time

filter by transforming the specifications for the

desired discrete-time filter.

• Find the system function of the continuous-time

filter.

• Transform the continuous-time filter to derive

the system function of the discrete-time filter.

40

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 41/149

Continuous-time IIR filters

• Butterworth filters

• Chebyshev Type I filters

•Chebyshev Type II filters

• Elliptic filters

41

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 42/149

Steps of DT filter design by transforming a prototype

continuous-time filter

• Obtain the specifications for continuous-time

filter by transforming the specifications for the

desired discrete-time filter.

• Find the system function of the continuous-time

filter.

Transform the continuous-time filter to derivethe system function of the discrete-time filter.

42

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 43/149

Transformation from continuous to discrete

43

 N 

k  k 

ss

 As H 

1

0,0

0,1

t e At h

 N 

t sk 

c

: k d s T 

k  pole s s z e

two requirements for transformation

 N 

nT s

k d 

 N 

nT sk d cd  nue AT nue AT t hT nh d k d k 

11

 N 

k  T s

k d 

 ze

 AT  z H 

d k 1 11

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 44/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

Specifications for the discrete-time filter:

44

  

 

we H 

we H 

 jw

 jw

3.0,17783.0

2.00,189125.0

d d  T wT let  1

 Assume the effect of aliasing is negligible

 

 

3.0,17783.0

2.00,189125.0

 j H 

 j H 

c

c

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 45/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

45

0.89125 1, 0 0.2

0.17783, 0.3c

c

 H j

 H j

 

 

0.2 0.8912

0.3 0.1778c

c

 H j

 H j

 

 

0.3 0.2 

2 20.2 1

1

0.89125

 N 

c

 

2 2

0.3 11

0.17783

 N 

c

 

2

2

1

1 N c c

 H j j j

2

2

1

1

cc j j  H j

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 46/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

46

2

21

1N c

c

 H j j j

22

0.2 11 1.258930.89125

 N 

c

 

7032.0,6 c N 

2

20.3 11 31.62204

0.17783

 N 

c

 

2

0.2 0.25893

 N 

c

 

2

0.3 30.62204

 N 

c

 

2

3 118.263782

 N 

70470.0,8858.5 c N 

0.2 0.89125

0.3 0.17783

c

c

 H j

 H j

 

 

l l h

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 47/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

2

2

1

1 N c

c H j  j j

47

2

2

1

1 N c c c

c H s H s H s

s j

0,1, , 2 1k N  2 2 11 21 ,

 j N k N  N 

c cs j e 

6, 0.7032c N 

0.182 0.679, j 0.497 0.497, j

0.679 0.182 j

Plole pairs: c H s

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 48/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

48

4945.03585.14945.09945.04945.03640.0

12093.0222

ssssss

s H c

22

2 2 2

1

1

 N 

 N  N N 

c

cc c c

c H s H s H s ss j

0.182 0.679, j

0.497 0.497, j

0.679 0.182 j

Plole pairs: c H s

0.12093

0.182 0.679 0.182 0.679 0.497 0.497c

 H ss j s j s j

1

0.497 0.497 0.679 0.182 0.679 0.182s j s j s j

60.7032 N 

c

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 49/149

Example 7.2 Impulse Invariance with a

Butterworth Filter

1d T 

49

1 1

1 2 1 2

1

1 2

0.2871 0.4466 2.1428 1.1455

1 1.2971 0.6949 1 1.0691 0.3699

1.8557 0.6303

1 0.9972 0.2570

 z z

 z z z z

 z

 z z

0.12093

0.182 0.679 0.182 0.679 0.497 0.497c H s s j s j s j

1

0.497 0.497 0.679 0.182 0.679 0.182s j s j s j

1

 N 

k  k 

 As s

1 1

1 11 1

 N N d k k 

k k k d  k s T  s

T A A H z

e z e z

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 50/149

Basic for Impulse Invariance• To chose an impulse response for the discrete-

time filter that is similar in some sense to theimpulse response of the continuous-time filter.

• If the continuous-time filter is bandlimited, thenthe discrete-time filter frequency response will

closely approximate the continuous-timefrequency response.

• The relationship between continuous-time anddiscrete-time frequency is linear; consequently,

except for aliasing, the shape of the frequencyresponse is preserved.

50

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 51/149

7.1.2 Bilinear Transformation

51

Bilinear transformation can avoid the

problem of aliasing.

Bilinear transformation maps

onto

   w

1

1

2 1

1d 

c z

 H z H T z

 

  

 

1

1

1

12

 z

 z

T s

Bilinear transformation:

c H s 

  

 

1

1

1

12

 z

 z

T s

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 52/149

7.1.2 Bilinear Transformation

 

 

 

 

1

1

1

12

 z

 z

T sd 

52

sT 

sT 

 z d 

21

21

js  221

221

d d 

d d 

T  jT 

T  jT  z

 

 

any for  z 10 

any for  z 10 

1 12 (1 ) 1d T s z z

11 2 ] 1 2d d T s z T s

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 53/149

7.1.2 Bilinear Transformation

jsaxis j

53

2121

T  jT  j z

1 z 1 21 2

 jw j T  j T 

e

 planes Im

Re

 plane z Im

Re

221

221

d d 

d d 

T  jT 

T  jT 

 z

 

  any for  z 10 

any for  z 10 

js  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 54/149

7.1.2 Bilinear Transformation

 

 

 

 

1

1

1

12

 z

 z

sd 

54

2 1

1d 

 jw

 jw j

e

e

2

tan 2d 

 j wT 

2 2 sin 2

2cos 2d 

 j w

T w

2tan

2w

T d 

2tan2 1

d T w

 /2 /2 /2

 /2 /2 /2

2 ( )

( )d 

 jw jw jw

 jw jw jwT 

e e e

e e e

relation between frequency response of Hc(s), H(z)

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 55/149

55

 

  

 

 

 

 

 

2tan

2

2tan

2

:

s

d s

 p

d  p

 prewarp

 

 

 

  

 

2tan

2)()(   

d T 

c j  j H e H 

q y p c( ), ( )

 

 

Comments on the Bilinear Transformation

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 56/149

Comments on the Bilinear Transformation

• It avoids the problem of aliasing encountered

with the use of impulse invariance.

• It is nonlinear compression of frequency axis.

56

S plane Z plane

3 / d 

T  

 j

 / d 

T  

 / d 

T  

2tan2 wT d 

2tan21

d T w

Comments on the Bilinear Transformation

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 57/149

Comments on the Bilinear Transformation

• The design of discrete-time filters using bilinear

transformation is useful only when this

compression can be tolerated or compensated for,

as the case of filters that approximate ideal

piecewise-constant magnitude-responsecharacteristics.

57

0cw

cw

  

 2 2

 jwe H 

1

Bilinear Transformation ofs

e  

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 58/149

Bilinear Transformation of 

58

 

 

 

 

1

1

1

12

 z

 z

sd 

2tan2

w

T d 

e j

2tan 2

wT 

  

d T 

 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 59/149

Comparisons of Impulse Invariance and Bilinear

Transformation

• The use of bilinear transformation is restricted tothe design of approximations to filters with

piecewise-constant frequency magnitude

characteristics, such as highpass, lowpass andbandpass filters.

• Impulse invariance can also design lowpass filters.

However, it cannot be used to design highpassfilters because they are not bandlimited.

59

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 60/149

Comparisons of Impulse Invariance and Bilinear

Transformation

• Bilinear transformation cannot design filter

whose magnitude response isn’t piecewise

constant, such as differentiator. However,Impulse invariance can design an bandlimited

differentiator.

60

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 61/149

• Butterworth Filter,

Chebyshev Approximation,• Elliptic Approximation

61

7.1.3 Example of  Bilinear

Transformation

  

 

we H 

we H 

 jw

 jw

6.0,001.0

4.0,01.199.0

xamp e . near

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 62/149

pTransformation of a Butterworth

Filter

0.89125 1, 0 0.2

0.17783, 0.3

 jw

 jw

 H e w

 H e w

 

 

620.0160.01

2 0.20.89125 1, 0 tan

2

2 0.30.7783, tan

2

c

c

 H j

 H jT 

 

 

, 1d For convenience we choose T  ,17783.015.0tan2

,89125.01.0tan2

 

 

 j H 

 j H 

c

c

2tan2 wT d 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 63/149

Example 7.3 Bilinear Transformation of a Butterworth Filter

,17783.015.0tan2

,89125.01.0tan2

 

 

 j H 

 j H 

c

c

63

c

c j j

 j H  2

2

11

2 2

2 2

2tan 0.1 1

1 0.89125

3tan 0.15 11

0.17783

 N 

c

 N 

c

 

 

305.5 N 

766.0

,6

c

 N 

0.0160.01

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 64/149

Locations of Poles

64

0,1, , 2 1k N  2 2 11 21 ,

 j N k N  N 

c cs j e 

0.1998 0.7401, j

0.5418 0.5418, j

0.7401 0.1998 j

Plole pairs: c H s

2

2

1

1 N c

c

 H j j j

2

2

1

1

 N c c c

c

 H s H s H s

s j

6, 0.766c N 

Examp e 7.3 Bi inear

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 65/149

pTransformation of a Butterworth

Filter

5871.04802.15871.00836.15871.03996.0

20238.0222

ssssss

s H c

65

21

2121

61

2155.09904.01

1

3583.00106.117051.02686.11

10007378.0

 z z

 z z z z

 z

 z H 

22

2 2 2

1

1

 N 

 N  N N 

c

cc c cc

 H s H s H s ss j

0.1998 0.7401, j 0.5418 0.5418, j 0.7401 0.1998 j

Plole pairs: c H s

 

 

1

1

1

12

 z

 z

T s

. . time filter

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 66/149

time filter

66

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 67/149

Example 7.4 Butterworth Approximation (Hw)

67

  

 

we H 

we H  jw

 jw

6.0,001.0

4.0,01.199.014 N order 

Example 7.4 frequency response

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 68/149

p q y p

68

Chebyshev filters 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 69/149

69

y

C Chebyshev filter (type I)

) / (1

1|)(|22

2

c N 

cV 

 j H 

 

)coscos()( 1 x N  xV  N 

c

1

 1

Chebyshev polynomial

Chebyshev filter (type II)

122

2

)] / ([1

1|)(|

c N 

cV 

 j H  

1

 

c

E l 7 5 Ch b h T I II A i i

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 70/149

Example 7.5 Chebyshev Type I , II Approximation

70

   

we H we H 

 jw

 jw

6.0,001.04.0,01.199.0 8 N order 

Type I Type II

.Cheb she

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 71/149

Chebyshev

71

Type I Type II

elliptic filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 72/149

72

E

p f

Elliptic filter

)(1

1|)(|

22

2

 N 

c

 j H 

 

s p

1

11  

2 Jacobian elliptic function

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 73/149

Example 7.6 Elliptic Approximation

73

  

 

we H 

we H 

 jw

 jw

6.0,001.0

4.0,01.199.0

6 N order 

.Elliptic

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 74/149

Elliptic

74

*Comparison of Butterworth, Chebyshev, elliptic filters: Example

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 75/149

75

p f , y , p f p

-Given specification

    0.4|| .011 |)(| 99.0 je H 

     ||0.6 0.001 |)(|   j

e H 

       6.0 ,4.0 001.0 ,01.0  s21 p

)( s 

-Order

Butterworth Filter : N=14. ( max flat)

Chebyshev Filter : N=8. ( Cheby 1, Cheby 2)Elliptic Filter : N=6 ( equiripple)

B

C

E

-Pole-zero plot (analog)

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 76/149

76

p ( g)

-Pole-zero plot (digital)

B C1 C2 E

B C1 C2 E

(14) (8)

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 77/149

77

-Magnitude -Group delay

B

C1

C2

E

B

C1

C2

E

 4.0  6.0   4.0  6.0  

5

20

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 78/149

7.2 Design of FIR Filters by Windowing

•FIR filters are designed based on directlyapproximating the desired frequency response

of the discrete-time system.

Most techniques for approximating themagnitude response of an FIR system assume a

linear phase constraint.

78

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 79/149

Window Method• An ideal desired frequency response

79

n

 jwn

 jw

d  enhe H 

 

  dwee H nh jwn jw

d d 2

1

Many idealized systems are defined by

piecewise-constant frequency response withdiscontinuities at the boundaries. As a result,these systems have impulse responses that

are noncausal and infinitely long.

 ww

wwe H 

c

c jwlp

,0

,1

sinc

lp

w nh n

0cw

cw     

 jw

e H 1

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 80/149

Window Method

80

otherwise

 M nnhnh

,0

0,

nwnhnh d 

otherwise

 M n

nw ,0

0,1

 

 

    

d eW e H e H  w j jw

 jw

2

1

The most straightforward approach toobtaining a causal FIR approximation is totruncate the ideal impulse response.

Windowing in Frequency Domain

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 81/149

• Windowed frequency response

81

deWeH21eH j j

d j

The windowed version is smeared version

of desired response

Window Method

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 82/149

82

1

2

 j w jw j jw

d d  H e H e W e d H e

    

  

 

If  nnw 1

k n

 jwn jwk wenweW      22

0cw

cw   

 jwe H 

1

0 5 10510 1515

2 4  4  6   

 jwW e

h f d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 83/149

Choice of Window• is as short as possible in duration. This

minimizes computation in the implementation of the filter.

83

nw

approximates an impulse.  jweW 

0

 M  jw jwn jwn

n n

W e w n e e

1

2sin 1 21

1 sin 2

 jw M 

 jwM 

 jw

w M ee

e w

otherwise

 M nnw

,0

0,1

1 M 

2

1 M 

 

2

1 M 

 

 jwW e

d h d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 84/149

Window Method

84

 jw

w j jw

 jw e H d eW e H e H 

 

 

    21

then would look like , exceptwhere changes very abruptly.

 jwe H   jw

d  e H 

 jw

d  e H 

nw  jweW 

0w

If is chosen so that is concentrated

in a narrow band of frequencies around

0cwcw   

 jw

d  H e

1

1 M 

2

1 M 

 

2

1 M 

 

 jwW e

R l Wi d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 85/149

Rectangular Window• for the rectangular window has a

generalized linear phase.

85

 jweW 

 As M increases, the width of the “main lobe” decreases. 4 1

mw M  

While the width of each lobe decreases with

M, the peak amplitudes of the main lobe andthe side lobes grow such that the area undereach lobe is a constant.

2sin 1 2

sin 2

 jw jwM w M 

W e ew

1 M 

2

1 M 

 

2

1 M 

 

1

 M 

 M 

 

1

 M 

 M 

 

R l Wi d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 86/149

Rectangular Window

86

will oscillate at

the discontinuity.

 

 

   d eW e H w j jw

The oscillations occur more rapidly, butdo not decrease in magnitude as Mincreases.

The Gibbs phenomenon can bemoderated through the use of a lessabrupt truncation of the Fourier series.

R l Wi d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 87/149

Rectangular Window• By tapering the window smoothly to zero at

each end, the height of the side lobes can bediminished.

• The expense is a wider main lobe and thus a

wider transition at the discontinuity.

87

.Method

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 88/149

Method• To design an ilowpass FIR Filters

88

  wwwwe H 

c

c jw

lp,0

,1

sinc

lp

w nh n

0cw

cw     

 jwe H 

1

Review

d h n h n w n

1, 0

0,

n M w n

otherwise

 

 

    

d eW e H e H  w j jw

 jw

2

1

1 M 

2

1 M 

 

2

1 M 

 

 jwW e

sin 2

2

cw n M 

n M  

02 M 0

2 M 0

 M 

 M 

2 M 0 M 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 89/149

7.2.1 Properties of Commonly Used Windows• Rectangular

89

otherwise

 M nnw

,0

0,1

otherwise

 M n M  M n M n M n

nw

,0

2,2220,2

Bartlett (triangular)

7 2 1 P i f C l U d Wi d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 90/149

7.2.1 Properties of Commonly Used Windows

Hanning

90

otherwise

 M n M nnw

,0

0,2cos5.05.0  

otherwise

 M n M nnw

,0

0,2cos46.054.0  

Hamming

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 91/149

7.2.1 Properties of Commonly Used Windows

• Blackman

91

otherwise

 M n M n

 M n

nw

,0

0,4cos08.0

2cos5.042.0

 

 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 92/149

7.2.1 Properties of Commonly Used Windows

92

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 93/149

93

Frequency Spectrum of Windows

(a) Rectangular, (b) Bartlett,(c) Hanning, (d) Hamming,

(e) Blackman , (M=50)

(a)-(e) attenuation of sidelobe increases,

width of mainlobe increases.

7 2 1 P i f C l U d Wi d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 94/149

7.2.1 Properties of Commonly Used Windows

94

biggest,high oscillations

at discontinuity

smallest,

the sharpest transition

Table 7.1

7 2 2 I i f G li d Li Ph

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 95/149

7.2.2 Incorporation of Generalized Linear Phase

• In designing FIR filters, it is desirable to obtain

causal systems with a generalized linear phase

response.

95

otherwise M nn M wnw

,00,

The above five windows are allsymmetric about the point ,i.e.,2 M 

7 2 2 I ti f G li d Li Ph

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 96/149

7.2.2 Incorporation of Generalized Linear Phase

• Their Fourier transforms are of the form

96

2 M  jw jw

e

 jweeW eW 

wof  functionevenand realaiseW  jw

e

causalnwnhnh d  :

d d d if h M n h n h n h n w n

2 M  jw jw

e

 jwee Ae H 

:h M n h n generalized linear phase

2 M 

 M 

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 97/149

7.2.2 Incorporation of Generalized Linear Phase

phaselinear d generalizenhn M h

nwnhnhnhn M hif  d d d 

:

97

2 M  jw jwo jw ee jAe H 

2 M 

M

Frequency Domain Representation

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 98/149

Frequency Domain Representation

98

nhn M hif  d d  2 M  jw jw

e

 jw

d  ee H e H 

1

2

 jw

 j w j H e H W d e e

 

 

   

 

1

2e e

 j w jw jwewhere A H W d  e e e

 

 

  

 

221

2e e

 j w j w M  j j M  H W d e e e e

 

 

    

 

2 M  jw jw

e

 jweeW eW 

w n w M n

2 jw jwM e A e e

d h n h n w n

Example 7 7 Linear Phase Lowpass Filter

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 99/149

Example 7.7 Linear-Phase Lowpass Filter

• The desired frequency response is

99

 ww

wwee H 

c

c jwM 

 jw

lp,0

,2

lph M n

nw

Mn

 M nwnh c

2

2sin

21

2

sin 2

2

c

clp

c

w

w

 jwM jwn

h n dw

w n M  for n

n M 

e e 

 

2 M 

  

 

wwe H 

wwe H 

s

 jw

 p

 jw01

magnitude frequency response

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 100/149

magnitude frequency response

100

 pw

sw

1 0 jw

 p p

 jw

s s

 H e w w

 H e w w

 

 

s pw w w

1020log p p  

0.1 0.15 jw

 H e w  

1 0.05 0 0.25 jw H e w  

0.1s p

w w w   10

20log 0.05 26 p

dB 

1020logs s  

20s dB 

7 2 1 Properties of Commonly Used Windows

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 101/149

7.2.1 Properties of Commonly Used Windows

101

smallest,the sharpest

transitionbiggest,high oscillations

at discontinuity

7 2 3 The Kaiser Window Filter Design Method

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 102/149

7.2.3 The Kaiser Window Filter Design Method

102

1 22

0

0

1, 0

0,

 I nn M w n

 I 

otherwise

   

  

2,where M   

0 : I u zero order modified Bessel function of the first kind 

2

0

1

21

!r 

r u I u

: 1,length M   : parameter shape

:two parameters

Trade side-lobe amplitude for main-lobe width

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 103/149

103Figure 7.24

As increases, attenuation of 

sidelobe increases, width of 

mainlobe increases.

As M increases, attenuation of 

sidelobe is preserved, width of mainlobe decreases.

M=20

(a) Window shape, M=20,

(b) Frequency spectrum, M=20,

(c) beta=6

 =6

Table 7.1

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 104/149

104

Transition width is a little less than

mainlobe width

Comparison

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 105/149

Comparison• If the window is tapered more, the side lobe of the

Fourier transform become smaller, but the mainlobe become wider.

105

Increasing M wile holding constant causes the mainlobe to decrease in width,but does not affect theamplitude of the side lobe.

M=20

 =6

M=20

Filter Design by Kaiser Window

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 106/149

Filter Design by Kaiser Window

106

 pw

sw

  

 

wwe H 

wwe H 

s

 jw

 p

 jw

01

 ps www

 10log20 A

Filter Design by Kaiser Window1 2

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 107/149

Filter Design by Kaiser Window

1 22

0

0

1

, 0

0,

 I n

n M w n  I 

otherwise

   

  

107

 ps www  10log20 A

21,0.0

5021,2107886.0215842.0

50,7.81102.04.0

 A

 A A A

 A A

  

2285.2

8

w

 A M M=20

Example 7.8 Kaiser Window Design of a Lowpass

Filt

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 108/149

Filter

  

 

we H 

we H 

 jw

 jw

6.0,001.0

4.0,01.199.0

108

 ps

www  10log20 A

1 22

0

0

1

sin , 0c

 I n

w n n M n I 

   

   

0,

h notherwise

5.182 M where  

21,0.0

5021,2107886.0215842.0

50,7.81102.04.0

 A

 A A A

 A A

  

8

2.285

 A M 

w

Example 7.8 Kaiser Window Design of a Lowpass

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 109/149

p g p

Filter

  

 

we H 

we H 

 jw

 jw

6.0,001.0

4.0,01.199.0

109

001.0,min,001.0,01.0,6.0,4.0

:1

2121

        s p ww

step

0.52

s p

c

w wcutoff frequency w  

2 :step

3:step100.2 20log 60

0.5653 37

s pw w w A

 M 

 

  

Example 7.8 Kaiser Window Design of a Lowpass

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 110/149

Filter

2

0

1

21

!r 

r u

 I ur 

110

0.5653  

5.182 M where  

1 22

0

0

1

sin , 0c

 I n

w n n M n I 

   

   

0,

h notherwise

21,0.0

5021,2107886.0215842.0

50,7.81102.04.0

 A

 A A A

 A A

  

837

2.285

 A M 

w

10

3:

0.2 20log 60s p

step

w w w A  

. .Filter

1 2

2

0 1sin

 I nw n

   

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 111/149

111

0

0

sin, 0

cw nh n n M

n I 

 

 

7.3 Examples of FIR Filters Design by the Kaiser

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 112/149

Window Method• The ideal highpass filter with generalized linear

phase

112

 wwe

wwe H 

c

 M  jw

c jw

hp

,

,02

 jw

lp

 M  jw jw

hp e H ee H  2

n M n

 M nw M n

 M nnh chp ,

22sin

22sin

   

hph n h n w n

Example 7.9 Kaiser Window Design of a Highpass

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 113/149

Filter• Specifications:

113

   

 

wwe H 

wwe H 

 p

 jw

s

 jw

,11

,

11

2

021.0,5.0,35.0 211        ps wwwhere

24,6.2 M   

By Kaiser window method

Example 7.9 Kaiser Window Design of a Highpass

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 114/149

Filter• Specifications:

114

   

 

wwe H 

wwe H 

 p

 jw

s

 jw

,11

,

11

2

021.0,5.0,35.0 211        ps wwwhere

24,6.2 M   

By Kaiser window method

7.3.2 Discrete-Time Differentiator

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 115/149

7.3.2 Discrete Time Differentiator

115

   we jwe H  M  jw jw

diff  ,2

n

 M n

 M n

 M n

 M nnhdiff  ,

2

2sin

2

2cos2

 

  

nwnhnh diff 

phaselinear d generalize IV typeor  III typen M hnh :

Example 7.10 Kaiser Window Design of a

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 116/149

Differentiator

• Since kaiser’s formulas were developed forfrequency responses with simple magnitude

discontinuities, it is not straightforward to

apply them to differentiators.

• Suppose

116

4.210   M 

Group Delay

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 117/149

Group Delay

• Phase:

• Group Delay:

117

25

22   ww M 

samples M 

5

2

Group Delay

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 118/149

Group Delay

• Phase:

• Group Delay:

• Noninteger delay

118

225

22   ww M 

samples M 

2

5

2

7 4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 119/149

7.4 Optimum Approximations of FIR Filters

• Goal: Design a ‘best’ filter for a given M 

• In designing a causal type I linear phase FIR filter,

it is convenient first to consider the design of a

zero phase filter.

Then insert a delay sufficient to make it causal.

119

nhnh ee

7.4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 120/149

7.4 Optimum Approximations of FIR Filters

nhnh ee

120

2, M  Lenhe A L

 Ln

 jwn

e

 jw

e

function periodicevenrealwnnhhe A

 L

n

ee

 jw

e ,,:cos201

.2 samples M  Lbyit delaying

bynh fromobtained becansystemcausal A e

n M h M nhnh e 2

2 M  jw jw

e

 jwee Ae H 

7 4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 121/149

7.4 Optimum Approximations of FIR Filters

• Designing a filter to meet these specifications is to

find the (L+1) impulse response values

121

Lnnhe 0,

In Packs-McClellan algorithm,is fixed, and is variable.

21,,,   and ww L s p

21    or 

Packs-McClellan algorithm is the dominantmethod for optimum design of FIR filters.

7 4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 122/149

7.4 Optimum Approximations of FIR Filters

wnwT wn n coscoscoscoscos 1

122

1coscos0coscos0cos 1

0 wwT w

wwwT w coscoscos1coscos1cos 1

1

1cos2cos2cos 22 wwT w

wT wT w

wT wn

nn

n

coscoscos2

coscos

21

wwwww

wwww

cos3cos4cos1cos2cos2

cos2coscos23cos

32

7.4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 123/149

7.4 Optimum Approximations of FIR Filters

 L

w x

 L

k k 

 L

n

ee jw

e

 xa xPwhere

 xPwawnnhhe A

0

cos01

coscos20

123

functionweightingtheiswW where

e Ae H wW w E 

 functionerror ionapproximat an Define

 jw

e

 jw

7.4 Optimum Approximations of FIR Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 124/149

7.4 Optimum Approximations of FIR Filters

124

 ww

wwe H 

s

 p jw

d ,0

0,1

 

 

 

ww

wwK wW 

s

 p

,1

0,

1

1

2

Minimax criterion

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 125/149

• Within the frequency interval of the passband

and stopband, we seek a frequency responsethat minimizes the maximum weightedapproximation error of 

125

 jw

e e A

 jw

e

 jw

d  e Ae H wW w E 

w E 

F w Lnnhe maxmin

0:

Other criterions

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 126/149

    

 

00:1 min dww E  H 

 Lnnhe

126

  

  

 

0

2

0:2 min dww E  H   Lnnhe

w E  H 

F w Lnnhe

maxmin0:

Alternation Theorem• Let denote the closet subset consisting of theF

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 127/149

• Let denote the closet subset consisting of the

disjoint union of closed subsets of the real axis x.

127

 pF 

is an r th-order polynomial.

k  xa xP0

denotes a given desired function of x  that is continuous on

 x DP

 pF 

is a positive function, continuous on  pF   xW P

The weighted error is  xP x D xW  x E  PPP

 x E  E  PF  x P

max

The maximum error is defined as

Alternation Theorem

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 128/149

• A necessary and sufficient condition that be the

unique r th-order polynomial that minimizes isthat exhibit at least (r+2) alternations; i.e.,

there must exist at least (r+2) values in such

that

128

 xP

 E   x E P

i x PF 

221 r  x x x

E  x E  x E  iPiP 1

1,,2,1 r i

and such that

for

Example 7.11 Alternation Theorem and

Polynomials

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 129/149

Polynomials

• Each of these polynomials is of fifth order.

• The closed subsets of the real axis x referred

to in the theorem are the regions

129

11.01.01 xand  x

1 xW P

7.4.1 Optimal Type I Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 130/149

p yp p

• For Type I lowpass filter

• The desired lowpass frequency response

Weighting function

130

 L

k  wawP0

coscos

 wwww

wwwww D

ss

 p p

 pcoscos1,0

01coscos,1cos

 wwww

wwwwK wW 

ss

 p p p

coscos1,1

01coscos,1

cos

7.4.1 Optimal Type I Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 131/149

• The weighted approximation error is

• The closed subset is

or

131

wPw DwW w E  PPP coscoscoscos

  wwand ww s p0

s p wwand ww cos11coscos

 x E P

7.4.1 Optimal Type I Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 132/149

p yp p

•The alternation theorem states that a set of coefficients will correspond to the filterrepresenting the unique best approximationto the ideal lowpass filter with the ratio

fixed at K and with passband and stopbandedge and if and only if exhibits atleast (L+2) alternations on , i.e., if and onlyif alternately equals plus and minus its

maximum value at least (L+2) times.• Such approximations are called equiripple

approximations.

132

k a

21   

 pwsw )(cos w E P

PF 

)(cos w E P

7.4.1 Optimal Type I Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 133/149

• The alternation theorem states that theoptimum filter must have a minimum of (L+2) 

alternations, but does not exclude the

possibility of more than (L+2) alternations.• In fact, for a lowpass filter, the maximum

possible number of alternations is (L+3).

133

7.4.1 Optimal Type I Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 134/149

p yp p

Because all of the filters satisfy the alternationtheorem for L=7 and for the same value

of , it follows that and/or must be

different for each ,since the alternation

theorem states that the optimum filter under

the conditions of the theorem is unique.

134

21   K 

 pw sw

Property for type I lowpass filters from the

alternation theorem

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 135/149

alternation theorem

The maximum possible number of alternations of the error is (L+3)

• Alternations will always occur at and

All points with zero slop inside the passband andall points with zero slop inside stopband will

correspond to alternations; i.e., the filter will be

equiripple, except possibly at and

135

 pw sw

0w 

w

7.4.2 Optimal Type II Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 136/149

p yp p

• For Type II causal FIR filter:

• The filter length (M+1) is even, ie, M is odd

• Impulse response is symmetric

• The frequency response is

136

M nnh 0

nhn M h

21,,2,1,212

2

1cos

2cos2

21

1

2

21

0

2

 

  

 

 

  

 

 M nn M hnbwhere

nwnbe

n M 

wnhee H 

 M 

n

 M  jw

 M 

n

 M  jw jw

7.4.2 Optimal Type II Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 137/149

 

 

 

 

21

0

21

1cos

~

2cos2

1

cos

 M 

n

 M 

nwnnbwnwnb

137

wPwee H  M  jw jw cos2cos2

21cos0

 M  Land wawPwhere L

n M hnbnbnba find  k  212~

7.4.2 Optimal Type II Lowpass Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 138/149

• For Type II lowpass filter,

138

 ww

ww

ww De H s

 p

P

 jw

,0

0,

2cos

1

cos

 ww

wwK 

w

wW wW 

s

 pP

,2cos

0,2cos

cos

7.4.3 The Park-McClellan Algorithm

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 139/149

• From the alternation theorem, the optimum filter

will satisfy the set of equation

139

2,,2,111

 Lie Ae H wW i jw

e

 jw

d    

 jwe e A

ii

 jw

 jw

 jw

 L

 L

 L

 L L L

 L

 L

w xwhere

e H 

e H 

e H 

a

a

wW  x x x

wW  x x x

wW  x x x

 L

cos

11

11

11

2

2

1

1

0

2

2

2

2

22

2

2

2

22

1

1

2

11

 

7.4.3 The Park-McClellan Algorithm

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 140/149

Guessing a set of alternation frequencies

140

2

12

1

1

2

1 cos,1

1

 L

k ii

ii

ik 

k  L

k  k 

 L

 jw

d k 

w x x x

bwhere

wW 

b

e H b k 

 

2,,2,1 Li for wi sl pl wwww 1,and

7.4.3 The Park-McClellan Algorithm

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 141/149

141

2

1

1

1

1

1

1

1

cos,cos

 Lk k 

 L

k ii ik 

k k  L

k k 

 L

k k  jw

e

 x xb x x

w x x

 x xd 

C  x xd 

wPe A

7.4.3 The Park-McClellan Algorithm

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 142/149

• For equiripple lowpass approximation

• Filter length: (M+1)

142

 ps wwwwherew

 M 

324.2

13log10 2110   

. xamp es o qu r pp eApproximation

7 5 1 L Fil

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 143/149

7.5.1 Lowpass Filter

  

 

we H 

we H  jw

 jw

6.0,001.0

4.0,01.199.0

143

26 M 

 wwe Awwe A

wW w E w E 

error ionapproximat unweighted 

s

 jw

e

 p

 jw

e A

,00,1

Comments

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 144/149

• M=26, Type I filter• The minimum number of alternations is

(L+2)=(M/2+2)=15

• 7 alternations in passband and 8 alternationsin stopband

• The maximum error in passband and

stopband are 0.0116 and 0.0016, whichexceed the specifications.

144

7.5.1 Lowpass Filter

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 145/149

• M=27, , Type II filter, zero at z=-1• The maximum error in passband and

stopband are 0.0092 and 0.00092, which

exceed the specifications.• The minimum number of alternations is

(L+2)=(M-1)/2+2=15

• 7 alternations in passband and 8 alternationsin stopband

145

 w

Comparison

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 146/149

• Kaiser window method require M=38 to meetor exceed the specifications.

• Park-McClellan method require M=27

• Window method produce approximatelyequal maximum error in passband and

stopband.

• Park-McClellan method can weight the errordifferently.

146

7.6 Comments on IIR and FIR Discrete-Time

Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 147/149

Filters

What type of system is best, IIR or FIR?• Why give so many different design methods?

• Which method yields the best result?

147

7.6 Comments on IIR and FIR Discrete-Time

Filters

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 148/149

Filters

148

Closed-Form

Formulas

GeneralizedLinear Phase

Order

IIR Yes No Low

FIR No Yes High

7.2.1 Properties of Commonly Used Windows

h f d

8/2/2019 Chapter 4Filter Design Techniques

http://slidepdf.com/reader/full/chapter-4filter-design-techniques 149/149

• Their Fourier transforms are concentrated

around• They have a simple functional form that allows

them to be computed easily.

0w

The Fourier transform of the Bartlettwindow can be expressed as a product of Fourier transforms of rectangular windows.

The Fourier transforms of the otherwindows can be expressed as sums of