Chapter 4 Supercritical Fluids Extraction From Solids-II.

60
Chapter 4 Supercritical Fluids Extraction From Solids-II

Transcript of Chapter 4 Supercritical Fluids Extraction From Solids-II.

Page 1: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Chapter 4

Supercritical Fluids Extraction From Solids-II

Page 2: Chapter 4 Supercritical Fluids Extraction From Solids-II.

time

am

oun

t of e

xtra

ct in

so

lid p

ha

se

steady

unsteady

starting

P, T = const.

total amount of extract in feed

amo

unt o

f ext

ract steady unsteady

starting

time

Course of the extraction process

Remaining extract in feed Accumulated extract in sc solvent

Composition of extract changes with conditions of extraction and time

Page 3: Chapter 4 Supercritical Fluids Extraction From Solids-II.

CaffeineTheobromine

Page 4: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Decaffeination of green coffee beans

Lack and Seidlitz 1993

Page 5: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Decaffeination of green coffee beans

Lack and Seidlitz 1993

Page 6: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Flow scheme of decaffeination plant

Schoeller-Bleckmann design

Lack and Seidlitz 1993

Page 7: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Comparison of extraction behaviour

Zwiefelhofer 1990

Page 8: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Composition of liquid CO2 hop extract

Gardner 1993

Page 9: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Rossi et al., 1989

1: Liquor, 40 MPa, 80 oC, 5 h

2: Liquor, 40 MPa, 50 oC, 5 h

3: Nibs, 40 MPa, 80 oC, 5 h

4: Nibs, 40 MPa, 50 oC, 5 h

5: Shells, 30 MPa, 80 oC, 6 h

Fat extraction from cocoa

Page 10: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Standard design

Extractor

Heat exchanger

Cycle gas compressor

Precipitator

Page 11: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Total number of pressure vessels for SFE

Gehrig 1998

Page 12: Chapter 4 Supercritical Fluids Extraction From Solids-II.

100 1000 10000 100000

Throughput feed [t/a]

Batch process

Continuous process

Biggest plant 60 000 t/a

Cost per ton of solid feed [DM]

10000

1000

100

Economy of scale: CO2-extraction from solids

Page 13: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 500 1000 1500 2000 2500 3000 3500 40000

1

2

3

4

5

6

7

8

mass flow: 18.4 g/min mass flow: 25.8 g/min gradient of the extraction curve; 18.4 g/min; y =0. 00665 gradient of the extraction curve; 25.78 g/min;yyy y

=0 .00663

oil[g]

CO2 [g]

extraction at 300 bar444eeeend4040

Franca, Reber, Meireles, Machado, Brunner, J. Supercritical Fluids 1998

Extraction of Buriti

Page 14: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 1000 2000 3000 4000 5000-10000

-5000

0

5000

10000

15000

20000

25000

CO2 (g)

Caro

tene

con

cent

ratio

n (p

pm)

0

20

40

60

80

Soxhlet

Am

ount of carotene (mg)

Carotene

Franca, Reber, Meireles, Machado, Brunner, J. Supercritical Fluids 1998

Extraction of Buriti

Page 15: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0,00

0,01

0,02

0,03

0,04

0,05

0 10 20 30 40 50 60g CO2 / g Vorlage

g ASester / g Vorlage

200 bar 60° C

300 bar 60° C

400 bar 60° C

400 bar 70° C

300 bar 40° C

400 bar 40° C

Arachidonic acid from fermentation

Arachidonic acid as methylester extracted from dried filter cakegAAE / gcake

g CO2 / g cake

Page 16: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Extraction of meat products

Effect of varying pressure on the accumulated yield of lipid( left ) and water (right) extracted with supercritical CO2 at 50 oC

R.R. Chao, 1996

Page 17: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Extraction of beef tallow

Cumulative weight of beef tallow extracted by CO2 varying the pressure and temperature

R.R. Chao et al., 1993

Page 18: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Cholesterol concentration in extract

scCO2

Lipid and cholesterol extract from beef tallow.

CO2 and CO2 - ethanol

R. R. Chao et al., 1993

Extraction of beef tallow

Page 19: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Brunner XVII CBCTA - Fortaleza 2000 19

Percent oil removed as a function of volume of CO2 . Feed: Type I: unsalted, Type II: x salted.Extraction P = 408 +/- 6.8 bar, T = 55 +/- 1 oC. Separation: P 2 bar; T = 30 +/-3 oC.

Extraction of oil from chips

S. Vijayan et al., 1994

Page 20: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Extraction of mustard seed oils

300 bar, 40 oC

total amount oil water myrosinase activity

Taniguchi et al. 1987

Page 21: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Extraction of oil from peanuts

CO2

25 oC

Goodrum 1996

Page 22: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Extraction of theobromine from cocoa seed shells

Simon 1990

50 kgCO2/(kgFh) 93 183 304

Page 23: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 100 200 300 4000

20

40

60

80

1006h

2h

1h

28s

semibatch 25 MPa, 653 K [6] continuous 24 MPa, 663 K

de

gre

e o

f e

xtra

ctio

n

[%]

solvent to soil ratio [kgH

2O

/kgdry soil material

]

Cleaning of Soil

Semibatch and continuous extraction results versus solvent to soil ratio

Page 24: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 1 2 3 40,0

0,2

0,4

0,6

0,8

1,0

exper i mental data 25 MPa, 650 K, 2.2 kg H2O/ h

degr

ee o

f ex

trac

tion

E

t i me [hour s]

Cleaning of Soil

Course of an extraction of hydrocarbon contaminants rom soil with supercritical water.

Page 25: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Temperature Loading Residence O2 excess Degree of time conversion U

___________________________________________________________________ [°C] [ghc/LH2O] [s] [mol O2/ mohc-mhc)/ mhc

mol O2,min]___________________________________________________________________

290 6.7 135 1.68 0.963

330 0.7 107 26 0.999998

385 3.0 68 6.99 0.9376

Reaction results at 25 MPa, 88 cm3 reactor

SCWO of extracted organic waste from soil

Page 26: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Unterschiedliche Behandlungsmethoden des CND- Bodens:

Wasser ist org. Lösemitteln überlegen

TO

C [

g C

/kg

TS

]Vergleich TOC nach Extraktionen

Page 27: Chapter 4 Supercritical Fluids Extraction From Solids-II.

als Schicht

am Rand

als Kohlenwasser-

stoffpartikel

in den Poren

adsorbiert

im Innern gelöst

Kontaminationsverteilung

Page 28: Chapter 4 Supercritical Fluids Extraction From Solids-II.

ab

c

d

e

f

g

hCO2

2H O

Festbettextraktionsanlage

Page 29: Chapter 4 Supercritical Fluids Extraction From Solids-II.

ac

b

e

d

f

g

Kontinuierlicher Rohrreaktor

Flow sheme of continuous extaction apparatus: Fließbild der kombinierten Anlage: a Vorlagebehälter mit Rührwerk, b Pufferautoklav, c Wirbelbettheizer -Vorwärmer- d Extraktionsstrecke, e Elektrolysezelle im Schutzbehälter, f Doppelrohrwärmetauscher, g Sammelgefäß, h Gasanalysegerät, i evakuierter Glasbehälter

a magnetic stirrer, b  membrane pump, c feed vessel, d buffer vessel, e pump, f preheater (28 ml), g extraction pipe (38 ml), h cooler, i flask, j CO2-meter, k evacuated glas vessel.

Page 30: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0.0 2.5 5.0 7.5 10.0 12.5 15.00

20

40

60

80

100

Kohlendioxid50-100°C, 20 MPa

Wasser 380°C, 25 MPa

Lösungsmittelverhältnis [kg LM/kg Boden]

Ext

rakt

ions

grad

[%

]

Realgealterte (20 Jahre) Kontamination (Schluff)

kann mit Wasser vollständig gereinigt werden.

Lösungsmittelvergleich

Page 31: Chapter 4 Supercritical Fluids Extraction From Solids-II.

• Porendiffusion aus

Mikro- in Mesoporen

• Diffusion im Porenfluid

oder Lösungsmittel

• Stofftransport durch

Strömungsgrenzschicht

• konvektiver Stofftransport

mit Lösungsmittelstrom

Transportmechanismen

Page 32: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Kontamination am Feststoff

Partikelporen

Fluidphase

)c

c1(Xk

t

Xpmax

pS1

S

r

c

r

2

r

cD

t

c p2p

2

effp

p

)cc(

1

d

6)cc(

V

VA

t

cfRrp

f

f

pfRrp

f

PartPartf

Strömungsform durch berücksichtigen

Auflösung als Reaktion 1. Ordnung

Modellierung Extraktion

Page 33: Chapter 4 Supercritical Fluids Extraction From Solids-II.

• Suspension als Strähne/Einzel-korn betrachtet

• Dodecan bildet Bezug

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

P = 24 MPa, = 23-49 s, T = 378 - 393 °C

experimentell kombiniertes Modell

Ext

rakt

ions

grad

[%

]

Lösungsmittelverhältnis [kg H2O/kg Boden]

Modellierungsergebnisse

Page 34: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 50 100 150 2000

20

40

60

80

100

2. Extraktion

1.

3. Extraktion

2.

1.

experimentell (2 Gew.%) simuliert (2 Gew.%) experimentell (3 Gew.%) simuliert (3 Gew.%)

Ext

rakt

ions

grad

[%]

Verweilzeit [s]

P = 24 MPa

T = 381 - 389°C

P = 24 MPa

T = 361 - 381°C

Modellierungsparameter

zur Simulation geeignet

Simulation der Extraktion

Page 35: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 2 4 6 8 10 12 14 16 18 200

50

100

150

200

250

300

350

CSB° 4502 mg/l

CSB° 2250 mg/l

CSB° 2668 mg/l

t [Tage]

BS

B [

mg/

l]

Extraktionsbedingungen 400°C 3 MPa 380°C 25 MPa 320°C 25 MPa

Beurteilung der biologischen Abbaubarkeit mittels akkumu-lierten Sauer-stoffverbrauchs von Belebt-schlamm

Bruchteil von CSB° wird erreicht

Biologische Abbaubarkeit

Page 36: Chapter 4 Supercritical Fluids Extraction From Solids-II.

25 50 75 100 125 15010

20

30

40

50

60

Verweilzeit [s]

Ext

rakt

ions

grad

Ble

i [%

]

T = 50 °C pH = 3 pH = 4 CO

2

P = 25 MPa

Extraktionsver-mögen liegt im Bereich niedrigerer Temperaturen in Abhängigkeit von der Verweilzeit im Bereich von Essigsäure

Zugabe von Essigsäure zur Einstellung des pH-Wertes

Vergleich mit Essigsäure

Page 37: Chapter 4 Supercritical Fluids Extraction From Solids-II.

100 200 300 400 500 600 7000

20

40

60

80

100

Verweilzeit [s]

Ext

rakt

ions

grad

KW

S [

%] P = 25 MPa

T = 25 °C T = 300 °C T = 340 °C T = 370 °C

Langes Spülen bewirkt Reinigung

Trotz relativ hoher Verweilzeit Reinigung nicht vollständig, trotz nahe-/ überkritischen Bedingungen

Bezug:

60.000 mg/kg

(40.000 mg/kg)

Extraktion der KWSt. (Mischkontamination)

Page 38: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 50 100 150 200 250 300

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

P = 25 MPa P = 20 MPa (Toews, 1995) P = 15 MPa (Toews, 1995)

pH-v

alue

temperature [°C]

Lowering pH by dissolution of CO2 in H2O

Calculated pH-value of water for carbon dioxide saturated solutions at a pressure of 25 MPa. Equilibrium data from Wiebe (1941), Takenouchi (1964)

Page 39: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Nowak 1995

Solubilities of real hydrocarbon contaminations in water

Water in lubricating oil

EthylbenzeneDimethylcyclohexane

Real weathered extracted contamination

Page 40: Chapter 4 Supercritical Fluids Extraction From Solids-II.

G.M. Schneider

Phase equilibrium:Hydrocarbons in carbon dioxide

Page 41: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Solubility of n-decane in water

Page 42: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 50 100 150 200 250 300 350

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Messungen (T oews) P = 10 MPa P = 15.1 MPa P = 20.2 MPa

Berechnung nach Messdaten(Takenouchi)

P = 20 MPa P = 25 MPa P = 30 MPa

Berechnung nach Messdaten (Wiebe) P = 20.2 MPa P = 30.3 MPa

pH

-We

rt

Temperatur [°C]

Abgeschätzter pH-Wert für Kohlensäure, 1. Dissoziationsstufe

Toews et al., 1995

CO2 - H2O

Page 43: Chapter 4 Supercritical Fluids Extraction From Solids-II.

100 150 200 250 300 3500,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

200 bar

250 bar

300 bar

400 bar

Lösl

ichk

eit [

g C

O2

/ g H

2O]

Temperatur [°C]Temperature [°C]

So

lub

ilit

y [

gC

O2/g

H2O

]

The solubility of carbon dioxide in liquid water

Biopolymers: Acid catalysis

Page 44: Chapter 4 Supercritical Fluids Extraction From Solids-II.

20 40 60 80 100 1200.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

150 °C

200 °C

250 °C

270 °C

275 °C300 °C

Mo

lan

teil

Ko

hle

nd

ioxi

d in

Wa

sse

r [-

]

Druck [M Pa]

Löslichkeiten von CO2 in Wasser

Takenouchi und Kennedy, 1964

CO2 - H2O

Page 45: Chapter 4 Supercritical Fluids Extraction From Solids-II.

10 20 30 40 50 60 70 80

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Mo

lan

teil

Ko

hle

nd

ioxi

d in

Wa

sse

r [-

]

Druck [MPa]

T = 12°C T = 35°C T = 40°C T = 50°C T = 75°C T =100°C

CO2 - H2O

Gleichgewichtslöslichkeiten von CO2 in Wasser

Wiebe und Gaddy, 1940, Wiebe, 1941

Page 46: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Incentives:

Unrestricted use of site

Remove risk for environment

(water, air, persons, ...

?

Quantities:

Site: 100 m x 100 m

2 m depth

20 000 m3

40 000 t

Remediation II

Page 47: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Solvent ratio kg CO2 / kg soil

De

gre

e o

f ex

tra

cti

on

, % Artificially contaminated

Real contamination,

weathered

Soil extraction with carbon dioxide

Page 48: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Solvent ratio kg CO2 / kg soil

De

gre

e o

f ex

tra

cti

on

, %

Soil extraction

Comparison of CO2 and H2O

Page 49: Chapter 4 Supercritical Fluids Extraction From Solids-II.

25 50 75 100 125 15010

20

30

40

50

60

Verweilzeit [s]

Ext

rakt

ions

grad

Ble

i [%

]

T = 50 °C pH = 3 pH = 4 CO

2

P = 25 MPa

Extraktionsver-mögen liegt im Bereich niedrigerer Temperaturen in Abhängigkeit von der Verweilzeit im Bereich von Essigsäure

Zugabe von Essigsäure zur Einstellung des pH-Wertes

Vergleich mit Essigsäure

Page 50: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Soilmaterial

Washing

Low contaminated fractionreutilization

High contaminatedfraction (smallparticles)

Cleaning Dumping

Thermal(incineration)

SCWSCWO

Othersolvents

biological

Destruction, total oxidation !

Direct route tocleaning

Soil Remediation Method

Page 51: Chapter 4 Supercritical Fluids Extraction From Solids-II.
Page 52: Chapter 4 Supercritical Fluids Extraction From Solids-II.

1 2 3 4Type of contamination diesel

artificialDiesel/lubricat

ing oil;weathered

diesel/lubricating oil;

weathered

diesel/lubricating oil;

weatheredAmount of contamination[mg hc/kg dry solidmaterial]

24418 136587 20231 35066

Age [years] 0.5 20 2 45Type of soil material weak

loamy sandstrong clayey

loamsand strong clayey

sandParticle mean diameter(sphere of equivalentvolume) [mm]

182 18 211 213

Pretreatment - sieved at 710 mm

from washingprocess

sieved at 710 mm

Page 53: Chapter 4 Supercritical Fluids Extraction From Solids-II.

Table 2: Extraction results of real contaminated soil materials (adapted from 7 ).

Soil material from: Petrol Station Industrial Site Old Barrel DepotSauter diameter (m) 30 7 14Contamination lubricating oil

aged 1 yearlubricating oil

aged > 20 yearsPAH

aged > 45 yearsInitial concentration(mg hydrocarbons/ kgdry substance)

20 200 103 500 11 050

ExtractionFinal concentrationmg hydrocarbons/ kgdry substance)

< 20 < 100 < 10

Amount extracted, % > 99.9 > 99.9 > 99.9Temperature , K 663 655 665Pressure , MPa 24 24 25Solvent/soil ratio,kg water/kg drymatter

6 6 12

Page 54: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 1 2 30

20

40

60

80

100

2

80 °C, 0,32 l/h 80 °C, 0,48 l/h 80 °C, 0,63 l/h 100 °C, 0,77 l/h

Ext

rakt

ions

grad

[%

]

Lösungsmittelverhältnis [kg CO /kg Boden]

Page 55: Chapter 4 Supercritical Fluids Extraction From Solids-II.

TIR

c

TIR

d

TIRTIR

PI

a

M b

TIR TIR

TIC

2COPIRC

fV

N2

g

TICe

h

i

Figure 10: Flow sheme of continuous extaction apparatus: Fließbild der kombinierten Anlage: a Vorlagebehälter mit Rührwerk, b Pufferautoklav, c Wirbelbettheizer -Vorwärmer- d Extraktionsstrecke, e Elektrolysezelle im Schutzbehälter, f Doppelrohrwärmetauscher, g Sammelgefäß, h Gasanalysegerät, i evakuierter Glasbehälter

a magnetic stirrer, b feed vessel, c membrane pump, d buffer vessel, e , f preheater (28 ml), g extraction pipe (38 ml), h cooler, i flask, j CO2-meter, k evacuated glas vessel.

Page 56: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 100 200 300 4000

100

200

300

400

500

concentration of soil material in water [wt%]

10 0,250,51h

ydro

carb

on

s so

lve

nt

[m

g/l]

solvent to soil ratio [kgH2O

/kgsoil material

]

Figure 12: Concentration of hydrocarbons in the fluid aqueous phase versus concentrationof soil material in water (solvent to soil ratio)at 663 K and 24 MPa.

Page 57: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0 2 4 6 8 100

20

40

60

80

100 E

xtra

ktio

nsgr

ad [%

]

Konzentration Bodenmaterial in der Suspension [Gew%]

Figure 13: Degree of extraction in dependence on the amount of soil material in the solvent (solvent to soil ratio). This diagram corresponds to the left branch of Fig. 12, i.e. up to solvent to soil ratios of 100.T = 663 K, P = 24 MPa, residence time: 28 s.

Page 58: Chapter 4 Supercritical Fluids Extraction From Solids-II.

580 600 620 640 66060

70

80

90

100

de

gre

e o

f e

xtra

ctio

n

[%]

temperature [K]

Figure 14: Extraction results versus temperature at 24 MPa, residence time: 45 s; 1 wt.-%soil in water.

Page 59: Chapter 4 Supercritical Fluids Extraction From Solids-II.

0.0 0.2 0.4 0.6 0.8 1.0 1.255

60

65

70

75

80

85

Bodenkonzentration [Gew.%]

Ext

rakt

ions

grad

Ant

imon

[%

] T = 50 °C T = 100 °C T = 200 °C

Figure 17: Degree of extraction for antimony. P = 25 MPa, material “GKSS”.

Page 60: Chapter 4 Supercritical Fluids Extraction From Solids-II.

1 . D e s o r p t i o n :

maxAgg

AggBodenDe

Boden

X

XCk

tC

1

2 . D i f f u s i o n :

r

Xrr

XD

X

XCk

t

XAg gAg g

effAg g

Ag gBo d enBo d enDe

Ag gAg g

212

2

max

3 . C o n v e c t i o n :

FluidAggSuspensionAgg

FluidSuspension

XXdt

Xr R

16

C o m b i n a t i o n o f s i n g l e p a r t i c l e a n d f i l a m e n t m o d e l :

SträhneEinzelkorn

komb

EEE

)(

Soil Remediation Modelling