Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas...

30
Authors: Stephen M. Ogle, Colorado State University (Lead Author) Patrick Hunt, USDA Agricultural Research Service Carl Trettin, USDA Forest Service Contents: 4 Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems ................ 43 4.1 Overview ........................................................................................................................................................... 4‐3 4.1.1 Overview of Management Practices and Resulting GHG Emissions ........... 4‐4 4.1.2 System Boundaries and Temporal Scale ................................................................ 4‐7 4.1.3 Summary of Selected Methods/Models and Sources of Data ........................ 4‐7 4.1.4 Organization of Chapter/Roadmap .......................................................................... 4‐8 4.2 Management and Restoration of Wetlands ........................................................................................ 4‐8 4.2.1 Description of Wetland Management Practices .................................................. 4‐8 4.2.2 Land‐Use Change to Wetlands ..................................................................................4‐13 4.3 Estimation Methods ...................................................................................................................................4‐14 4.3.1 Biomass Carbon in Wetlands ....................................................................................4‐14 4.3.2 Soil C, N 2 O, and CH 4 in Wetlands..............................................................................4‐17 4.4 Research Gaps for Wetland Management .........................................................................................4‐21 Chapter 4 References .............................................................................................................................................4‐23 Suggested Chapter Citation: Ogle, S.M., P. Hunt, C. Trettin, 2014. Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for EntityScale Inventory. Technical Bulletin Number 1939. Office of the Chief Economist, U.S. Department of Agriculture, Washington, DC. 606 pages. July 2014. Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley‐Gilbert, and S. Biggar, Eds. USDA is an equal opportunity provider and employer. Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

Transcript of Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas...

Page 1: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Authors:

StephenM.Ogle,ColoradoStateUniversity(LeadAuthor)PatrickHunt,USDAAgriculturalResearchServiceCarlTrettin,USDAForestService

Contents:

4 QuantifyingGreenhouseGasSourcesandSinksinManagedWetlandSystems................4‐34.1 Overview...........................................................................................................................................................4‐3

4.1.1 OverviewofManagementPracticesandResultingGHGEmissions...........4‐44.1.2 SystemBoundariesandTemporalScale................................................................4‐74.1.3 SummaryofSelectedMethods/ModelsandSourcesofData........................4‐74.1.4 OrganizationofChapter/Roadmap..........................................................................4‐8

4.2 ManagementandRestorationofWetlands........................................................................................4‐84.2.1 DescriptionofWetlandManagementPractices..................................................4‐84.2.2 Land‐UseChangetoWetlands..................................................................................4‐13

4.3 EstimationMethods...................................................................................................................................4‐144.3.1 BiomassCarboninWetlands....................................................................................4‐144.3.2 SoilC,N2O,andCH4inWetlands..............................................................................4‐17

4.4 ResearchGapsforWetlandManagement.........................................................................................4‐21Chapter4References.............................................................................................................................................4‐23

SuggestedChapterCitation:Ogle,S.M.,P.Hunt,C.Trettin,2014.Chapter4:QuantifyingGreenhouseGasSourcesandSinksinManagedWetlandSystems.InQuantifyingGreenhouseGasFluxesinAgricultureandForestry:MethodsforEntity‐ScaleInventory.TechnicalBulletinNumber1939.OfficeoftheChiefEconomist,U.S.DepartmentofAgriculture,Washington,DC.606pages.July2014.Eve,M.,D.Pape,M.Flugge,R.Steele,D.Man,M.Riley‐Gilbert,andS.Biggar,Eds.

USDAisanequalopportunityproviderandemployer.

Chapter 4

Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

Page 2: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-2

Acronyms,ChemicalFormulae,andUnits

C CarbonCH4 MethaneCO2 CarbondioxideCO2‐eq CarbondioxideequivalentsDNDC Denitrification‐DecompositionEPA EnvironmentalProtectionAgencyFVS ForestVegetationSimulatorGHG Greenhousegasha HectareIPCC IntergovernmentalPanelonClimateChangeN NitrogenN2O NitrousoxideNOx Mono‐nitrogenoxidesNRCS USDANaturalResourcesConservationServiceP PhosphorousSOC SoilorganiccarbonTg TeragramsUSDA U.S.DepartmentofAgricultureUSDA‐ARS U.S.DepartmentofAgriculture, AgriculturalResearchService

Page 3: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-3

4 QuantifyingGreenhouseGasSourcesandSinksinManagedWetlandSystems

Thischapterprovidesmethodologiesandguidanceforreportinggreenhousegas(GHG)emissionsandsinksattheentityscaleformanagedwetlandsystems.Morespecifically,itfocusesonmethodsformanagedpalustrinewetlands.1Section4.1providesanoverviewofwetlandsystemsandresultingGHGemissions,systemboundariesandtemporalscale,asummaryoftheselectedmethods/models,sourcesofdata,andaroadmapforthechapter.Section4.2presentsthevariousmanagementpracticesthatinfluenceGHGemissionsinwetlandsystemsandland‐usechangetowetlands.Section4.3providestheestimationmethodsforbiomasscarboninwetlandsandforsoilcarbon,N2O,andCH4emissionsandsinks.Finally,Section4.4includesadiscussionofresearchgapsinwetlandmanagement.

4.1 OverviewWetlandsoccuracrossmostlandforms,existingasnaturalunmanagedandmanagedlands,restoredlandsfollowingconversionfromanotheruse(typicallyagriculture),andasconstructedsystemsforwatertreatment,suchasanaerobiclagoons.AllwetlandssequestercarbonandareasourceofGHGs.Table4‐1providesadescriptionofthesourcesofemissionsorsinksandthegasesestimatedinthemethodology.

Table4‐1:OverviewofWetlandSystemsSourcesandAssociatedGreenhouseGases

SourceMethodforGHGEstimation Description

CO2 N2O CH4

Biomasscarbon

Provisionsforestimatingabovegroundbiomassforwetlandforestsandaboveandbelowgroundbiomassandcarbonareincludedforshrubandgrasswetlandsinthischapter.Abovegroundbiomassforforestedwetlandsandshrubandgrasswetlandsincludeslivevegetation,trees,shrubs,andgrasses,standingdeadwood(deadbiomass),anddowndeadorganicmatter—litterlayer(deadbiomass).

SoilC,N2O,andCH4inwetlands

Theproductionandconsumptionofcarbon inwetland‐dominatedlandscapesareimportantforestimatingthecontributionofGHGs,includingCO2,CH4,andN2Oemittedfromthoseareastotheatmosphere.ThegenerationandemissionofGHGsfromwetland‐dominatedlandscapesarecloselyrelatedtoinherentbiogeochemicalprocesses,whichalsoregulatethecarbonbalance(RoseandCrumpton,2006).However,thoseprocessesarehighlyinfluencedbythelanduse,vegetation,soilorganisms,chemicalandphysicalsoilproperties,geomorphology,andclimate(SmemoandYavitt,2006).

1Palustrinewetlandsincludenon‐tidalandtidalwetlandsthatareprimarilycomposedoftrees,shrubs,persistentemergent,emergentmosses,orlichens,wheresalinityduetoocean‐derivedsaltsisbelow0.5‰(partsperthousand).Palustrinewetlandsalsoincludethosewetlandslackingvegetationthathavethefollowingfourcharacteristics:(1)arelessthan20acres;(2)donothaveactivewave‐formedorbedrockshorelines;(3)haveamaximumwaterdepthoflessthan6.5ft.atlowwater;and(4)haveasalinityduetoocean‐derivedsaltslessthan0.5%(StedmanandDahl,2008).

Page 4: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-4

4.1.1 OverviewofManagementPracticesandResultingGHGEmissions

ThischapterprovidesmethodsforestimatingcarbonstockchangesandCH4andN2Oemissionsfromnaturallyoccurringwetlands2andrestoredwetlandsonpreviouslyconvertedwetlandsites.Constructedwetlandsforwatertreatment,includingdetentionponds,areengineeredsystemsthatarebeyondthescopeconsideredherebecausetheyhavespecificdesigncriteriaforinfluentandeffluentloads.Inaddition,themethodsarerestrictedtoestimationofemissionsonpalustrinewetlandsthatareinfluencedbyavarietyofmanagementoptionssuchaswatertablemanagement,timber,orotherplantbiomassharvest,andwetlandsthataremanagedwithfertilizerapplications.ThemethodsarebasedonestablishedprinciplesandrepresentthebestavailablescienceforestimatingchangesincarbonstocksandGHGfluxesassociatedwithwetlandmanagementactivities.However,giventhewidediversityofwetlandstypesandthevarietyofmanagementregimes,thebasisforthemethodsprovidedinthissectionarenotaswell‐developedasothersectionsinthisguidance(i.e.,CroplandandGrazingLands,AnimalProduction,andForestryMethods).Table4‐2providesasummaryofthemethodsandtheircorrespondingsectionforthesourcesofemissionsestimatedinthisreport.

Table4‐2:OverviewofWetlandSystemsSources,Method,andSection

Section Source Method

4.3.1Biomasscarbon

MethodsforestimatingforestvegetationandshrubandgrasslandvegetationbiomasscarbonstocksuseacombinationoftheForestVegetationSimulator(FVS)modelandlookuptablesfordominantshrubandgrasslandvegetationtypesfoundinChapter3,Cropland,andGrazingLand.Ifthereisaland‐usechangetoagriculturaluse,methodsforcroplandherbaceousbiomassareprovidedinChapter3.

4.3.2SoilC,N2O,andCH4inwetlands

TheDenitrification‐Decomposition (DNDC) process‐basedbiogeochemicalmodelisthemethodusedforestimatingsoilC,N2O,andCH4emissionsfromwetlands.DNDCsimulatesthesoilcarbonandnitrogenbalanceandgeneratesemissionsofsoil‐bornetracegasesbysimulatingcarbonandnitrogendynamicsinnaturalandagriculturalecosystems(Lietal.,2000;Miehleetal.,2006;Stangetal.,2000)andforestedwetlands(Daietal.,2011;Zhangetal.,2002),usingplantgrowthestimatedasdescribedinSection4.3.1.

4.1.1.1 DescriptionofSector

TheNationalWetlandsInventorybroadlyclassifieswetlandsintofivemajorsystems:(1)marine,(2)estuarine,(3)riverine,(4)lacustrine,and(5)palustrine(Cowardinetal.,1979).Fourofthosesystems(marine,estuarine,riverine,andlacustrine)areopen‐waterbodiesandnotconsideredwithinthemethodsdescribedinthisguidance.Palustrinewetlandsencompassthewetlandtypesoccurringonthelandandarefurtherclassifiedbymajorvegetativelifeformandwetnessorfloodingregime.CommonpalustrinewetlandsareillustratedinFigure4‐1.Forexample,forestedwetlandsareoftenclassifiedaspalustrine—forested.Similarly,mostgrasswetlandsareclassifiedaspalustrine—emergent,reflectingemergentvegetation(e.g.,grassesandsedges).Wetlandsalsovarygreatlywithrespecttogroundwaterandsurfacewaterinteractionsthatdirectlyinfluence

2WetlandsaredefinedinChapter7,LandUseChange.Wetlandsthatareconvertedtoanon‐wetlandstatusshouldbeconsideredintheappropriatechapter(e.g.,CroplandandGrazingLands,AnimalProduction,andForestryMethods).

Page 5: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-5

hydroperiod(i.e.,thelengthoftimeandportionoftheyearthewetlandholdswater),waterchemistry,andsoils(Cowardinetal.,1979;Winteretal.,1998).AllthesefactorsalongwithclimateandlandusedriversinfluencetheoverallcarbonbalanceandGHGfluxes.

Figure4‐1:PalustrineWetlandClassesBasedonVegetationandFloodingRegime

Source:Cowardinetal.(1979).

GrasslandandforestedwetlandsaresubjecttoawiderangeoflanduseandmanagementpracticesthatinfluencethecarbonbalanceandGHGflux(Faulkneretal.,2011;Gleasonetal.,2011).Forexample,forestedwetlandsmaybesubjecttosilviculturalprescriptionswithvaryingintensitiesofmanagementthroughthestandrotation;hence,thecarbonbalanceandGHGemissionsshouldbeevaluatedonarotationbasis,whichcouldrangefrom20tomorethan50years.Incontrast,grasswetlandsmaybegrazed,hayed,ordirectlycultivatedtoproduceaharvestablecommodityannually.WhileeachmanagementpracticemayinfluencecarbonsequestrationandGHGfluxes,theeffectisdependentonvegetation,soil,hydrology,climatologicalconditions,andthemanagementprescriptions.Thissectionfocusesonrestorationandmanagementpracticesassociatedwithpalustrinewetlandsthataretypicallyforestedorgrassland.

4.1.1.2 ResultingGHGEmissions

GHGemissionsfromwetlandsarelargelycontrolledbywatertabledepthanddurationaswellasclimateandnutrientavailability.Underaerobicsoilconditions,whicharecommoninmostuplandecosystems,organicmatterdecompositionreleasesCO2,andatmosphericCH4canbeoxidizedinthesurfacesoillayer(Trettinetal.,2006).Incontrast,theanaerobicsoilsthatcharacterizewetlandscanproduceCH4(dependingonthewatertableposition)inadditiontoemittingCO2.Accordingly,wetlandsareaninherentsourceofCH4,withgloballyestimatedemissionsof55to150teragrams(Tg)ofCH4peryear(Blainetal.,2006).

Toaccommodateentity‐scalereportingintheUnitedStatesforagriculturalandforestryoperations,Tier2and3methodsaddresspalustrinewetlandscontainingbothorganicandmineralhydricsoils.Thesewetlandsmaybeinfluencedbyagriculturalandforestrymanagement,andmethodsarecurrentlyavailableforbothtypesofmanagement.Thischapterprovidesmethodologiesforthefollowingwetlandsourcecategories:

Page 6: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-6

1. Biomasscarboninforested,shrub,andgrasswetlands;2. Soilcarbonsinksinwetlands;and3. N2OandCH4emissionsinwetlands.

Biomasscarboncanchangesignificantlywithmanagementofwetlands,particularlyinforestedwetlands,changesfromforesttowetlandsdominatedbygrassesandshrubs,oropenwater.Inforestedwetlands,therecanalsobesignificantcarbonindeadwood,coarsewoodydebris,andfinelitter.Harvestingpracticeswillalsoinfluencethecarbonstocksinwetlandstotheextentthewoodiscollectedforproducts,fuel,orotherpurposes.

WetlandsarealsoasourceofsoilN2Oemissions,primarilybecauseofnitrogenrunofffromadjoininguplandsandleachingintogroundwaterfromagriculturalfieldsand/oranimalproductionfacilities.N2OemissionsfromwetlandsduetonitrogeninputsfromsurroundingfieldsoranimalproductionareconsideredindirectemissionsofN2O(deKleinetal.,2006).MethodologiesforestimatingindirectN2Oareprovidedintherespectivesourcechapter(i.e.,Chapter3,CroplandandGrazingLands,orChapter5,AnimalProduction).However,directN2Oemissionsoccurinwetlandsifmanagementpracticesincludenitrogenfertilization,hence,guidanceisprovidedforthissourceofemissions.

4.1.1.3 RiskofReversals

Wetlandsinherentlyaccumulatecarboninthesoilsduetoanaerobicconditions,andtheyarenaturalsourcesofCO2andCH4totheatmosphere.Managementmayalterconditionsthataffectboththepoolsandfluxes.Forexample,accumulatedsoilcarboncanbereturnedtotheatmosphereifthewetlandisdrained(ArmentanoandMenges,1986).Incontrast,silviculturalwatermanagementinwetlandscanleadtohigherbiomassproduction,whichmaypartiallyoffsetincreasedsoilorganicmatteroxidation.Conversely,thesoilcarbonpoolinconvertedwetlandsistypicallylowerthantheunmanagedsoil,andrestoringwetlandconditionsmayincreasecarbonstorageovertimeifinherenthydricsoilconditionsaremaintainedwithconsistentorganicmatterinputs.

Reversalsofemissiontrendscanoccurifamanagerrevertstoapriorconditionoranearlierpractice.Forexample,anentitymaydecidetoreturnawetlandthathadbeendrainedandcroppedbacktoaforestedwetlandcondition.Anothercommonexamplewouldbeifarestoredforestedwetlandisrevertedbacktoagriculture.ThesereversalsdonotnegatethemitigationofCH4orN2Oemissionstotheatmospherethathadoccurredpreviously,totheextentthatwetlandrestorationorchangeinmanagementcanreduceorchangetheseemissions.Correspondingly,thestartingpointfromthereversionwilldeterminetheeffectoncarbonsequestrationandGHGflux.Forexample,inarestoredforestedwetland,reversionofthesitetocropproductionwouldreturncarbonsequesteredduringtherestorationperiodtotheatmosphereovertime.

Thereisatrade‐offinCH4andN2Oemissionswithmanagementofthewatertableposition.WetlandswithanaerobicsoilconditionsthatarepersistentnearthesurfaceforalongerperiodduringtheyearwilltendtohavehigherCH4emissionsandloweremissionsofN2O.N2Oemissionsaregreatlyreducedifsoilsaresaturatedbecausethereislittleinherentnitrification,anddenitrificationwillleadtoN2production(Davidsonetal.,2000).Forexample,restorationofwetlandswillnormallyleadtoahigherwatertableforalongerperiodoftheyear,andthuscontributetohigheremissionsofCH4butloweremissionsofN2O.Thesetrendscanbereversedifthewatertableisloweredthroughmanagementordrought,whichwilltendtoenhanceN2Oemissionsifthereisasourceofnitrate,whilereducingemissionsofCH4.Figure4‐2providesanillustrationofthecarboncycletypicallyfoundinwetlandforestandgrasslandwetlandsandrepresentsthescopeofthemethodspresentedinthisguidance.

Page 7: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-7

Figure4‐2:CarbonCycleforForestandGrasslandWetlands

Source:TrettinandJurgensen(2003).

4.1.2 SystemBoundariesandTemporalScale

Systemboundariesaredefinedbythecoverage,extent,andresolutionoftheestimationmethods.ThelocationofthewetlandsmaybeapproximatedbyuseoftheNationalWetlandsInventory,3thelocationofhydricsoilsasconveyedbytheNRCSsoilsmap,orthroughdirectdelineationofwetlands.Thecoverageofthemethodscanbeusedtoestimateavarietyofemissionsources,includingemissionsassociatedwithbiomassC,litterC,andsoilscarbonstockchangesandCO2,CH4,andN2Ofluxesfromsoils.Systemboundariesarealsodefinedbytheextentandresolutionoftheestimationmethod.Themethodsprovidedforwetlandshaveaspatialextentthatwouldincludeallwetlandsintheentity’soperation,withestimationoccurringattheresolutionofanindividualwetland.EmissionsareestimatedonanannualbasisforasmanyyearsasneededforGHGemissionsreporting.

4.1.3 SummaryofSelectedMethods/ModelsandSourcesofData

TheIPCC(2006)hasdevelopedasystemofmethodologicaltiersforestimatingGHGemissions.Tier1representsthesimplestmethodsusingdefaultequationsandfactorsprovidedintheIPCCguidance.Tier2usesdefaultmethodsbutemissionfactorsthatarespecifictodifferentregions.Tier3utilizesaregion‐specificestimationmethod,suchasaprocess‐basedmodel.Highertiermethodsareexpectedtoreduceuncertaintiesintheemissionestimatesifthereissufficientinformationandtestingtodevelopthesemethods.Inthisguidance,biomass,litter,andsoilcarbonstockchanges,inadditiontosoilN2OandCH4emissions,areestimatedusingTier2and3methods.

Thedatarequiredtoapplythesemethodsrangefrombasicinformationonsoils,vegetation,weather,landuse,andmanagementhistorytodataonfertilizationratesordrainageconditions.Whilesomeofthesedataareoperation‐specificandmustbeprovidedbytheentity,otherdatacanbeobtainedfromnationaldatabases,suchasweatherdataandsoilcharacteristics.

3SeeNationalWetlandsInventoryhttp://www.fws.gov/wetlands/.

Page 8: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-8

4.1.4 OrganizationofChapter/Roadmap

Thewetlandssectionofthisreportisorganizedintothreeprimarysections.Section4.2providesadescriptionofwetlandmanagementeffectsonGHGemissions,elaboratingonthescientificbasisforhowvariouspracticesinfluenceGHGemissions.Section4.3providesarationalefortheselectedmethod,adescriptionofthemethod,includingageneraldescription(withequationsandfactors),activitydatarequirements,ancillarydatarequirements,limitationsofthemethod,anduncertaintiesassociatedwiththeestimation.Asinglemethodisprovidedforeachsourcepresentedinthischapter(i.e.,biomasscarboninforested,shrub,andgrasswetlands;soilcarbonandCH4inwetlands;anddirectN2Oemissionsinwetlands).Asinglemethodwasselectedtoensureconsistencyinemissionestimationbyallreportingentities,andtheselectedmethodisconsideredthebestoptionamongpossibilitiesforentity‐scalereporting.Methodsmayberefinedinthefutureastheyarefurtherdeveloped.Thelastsectionprovidesasummaryofselectedresearchgaps.

4.2 ManagementandRestorationofWetlandsHowwetlandsaremanagedcanhaveasignificanteffectonGHGemissionsandsinks,whichareprimarilyinfluencedbythedegreeofwatersaturation,climate,andnutrientavailability.Inamajorityofwetlands,90percentofcarboningrossprimaryproductionisreturnedtotheatmospherethroughdecay,andtheremaining10percentaccumulatesinthebottomofthewaterbodyaccumulatingonpreviouslydepositedmaterials(Blainetal.,2006).ManagementofthewatertablewithinawetlandwillresultinbothlowerCH4emissionsduetodecreasedproductionandoxidationofCH4producedinthesubsoilandanincreaseinCO2emissionsduetoincreasedoxidationofsoilorganicmatter.N2Oemissionsfromwetlandsaretypicallylow,unlessananthropogenicsourceofnitrogenentersthewetland.Indrainedwetlands,N2Oemissionsarelargelycontrolledbythefertilityofthesoilandwatermanagementregime.Incontrast,restoredandconstructedwetlandsgeneratehigherlevelsofCH4andlowerlevelsofCO2becauseofthechangeinawatertabledepth(Blainetal.,2006).

4.2.1 DescriptionofWetlandManagementPractices

ThissectionprovidesadescriptionofmanagementpracticesinwetlandsthatinfluenceGHGemissions(CH4orN2O)orcarbonstocks.Individualsectionsdealwithforestedandgrasswetlandsthatcouldoccurinagriculturalandforestryoperations.Itisimportanttonotethatdrainageofwetlandsforcommodityproduction,suchasannualcrops,orforotherpurposesarenotconsideredwetlandsintheseguidelines.MethodsfordrainedwetlandscanbefoundinChapter3,CroplandsandGrazingLands,orChapter6,ForestLands,dependingonthelanduseafterdrainageofthewetland.

4.2.1.1 SilviculturalWaterTableManagement

Silviculturalwatermanagementsystemsareprincipallyusedtoregulatethewatertabledepthinordertoreducesoildisturbanceassociatedwithharvestingoperationsandalleviatestressfromsaturatedsoilconditionsonartificiallyregeneratedplantations.Thesilviculturalwatermanagementsystemshouldnoteliminatethewetlandconditionsofthesite.

SilviculturalwatermanagementsystemsaffectthecarbonbalanceandGHGemissionsfromthesite(Bridghametal.,2006).Typicallyorganicmatterdecompositionisenhancedwiththeimpositionofadrainagesystem,CH4emissionsarereduced,andN2Oemissionsmayincrease(Lietal.,2004).Carbonsequestrationinbiomassmaybeenhancedonsiteswithsilviculturaldrainagesystemsduetoincreasedtreeproductivity(MinkkinenandLaine,1998).

Page 9: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-9

4.2.1.2 ForestHarvestingSystems

Therearetwogeneraltypesofsystemsusedtoharvesttreesfromforestedwetlands:partialcuttingandclearcutting.Apartialcutinvolvestheremovalofselectedtreesfromthestand.Thenumberoftreesremovedortheresidualdensityofthestandwilldependonthestandtype,species,intendedproduct(s),andstandage.Theamountoftreebiomassremovedduringthepartialcutmayalsovary;topsmaybeleftonsiteifonlylogsareremoved,ortheymaybeconcentratedinalandingifwhole‐treeharvestingisused.Withthelattersystem,thetopsmayalsobeutilizedandremovedfromthesite.Partialcuttingistypicallyusedinriparianzonesandsitesthataremanagedforsolidwoodproducts.Clearcuttingresultsintheremovalofalloverstorytreesfromthesite.ClearcuttingistypicallyusedonnaturalstandsoccurringinfloodplainsofthesoutheasterncoastalplainandlacustrineandoutwashplainsoftheupperMidwest.Clearcuttingisalsothetypicalsystememployedtoharvestconiferandhardwoodplantations.

Partialcuttingaffectsthecarbonbalanceofthesitebydirectremovalofbiomass;increasedbiomassontheforestfloor,whichisthensubjecttodecayprocesses;andincreasedgrowthoftheremainingtreesforseveralyears.Decompositionofdeadbiomasswithinthestandmaybeacceleratedtemporarilyduetothechangesinambientconditionsandtheaddedresiduefromtheharvest.

Clearcuttingaffectscarbonstocksofthesitebydirectlyremovingthebiomass;increasingamountsofbiomassaddedtotheforestfloor;alteringthecarbonsequestrationforseveralyears,dependingonthetypeofregeneration;andalteringtherateoforganicmatterdecompositionintheforestfloorandsoil(Lockabyetal.,1999).Clearcuttingaffectstheambientconditionsofthesitebecauseoftheremovaloftheoverstoryvegetation.Italsoaltersthewaterbalanceofthewetlandduetothereductioninevapotranspirationfollowingharvesting.Typically,asaresultoflowerevapotranspiration,thewatertablerises,andthesitewillexhibitlongerperiodsofsaturation.ThischangeinthewatertablepositionhasdirecteffectsontheproductionofCH4andN2Oandsubsequentfluxestotheatmosphere(Lietal.,2004).

4.2.1.3 ForestRegenerationSystems

Therearetwobasicforestregenerationsystems,characterizedas(a)naturalregeneration,and(b)artificialregeneration.Naturalregeneration,asthenameimplies,reliesuponregenerationofthetreesfromseedorsproutsthatareleftbyharvestedtrees.Naturalregenerationisusedinbothpartial‐cutandclear‐cutharvestsystems.Naturalregenerationwillleadtoeven‐agedstandsofshade‐intolerantorearlysuccessionalcommunities,typicallyinfloodplainsinthesoutheasternUnitedStatesandtheconiferousplainsoftheupperMidwest.

Artificialregenerationresultsfromplantingseedlingsonapreparedsite.Thesitepreparationpracticesmayinvolveremovaloftheharvestresiduebiomass,mechanicalscarificationand/ortheapplicationofherbicidetotemporarilyreduceweedcompetitionwithseedlings,andthecreationofplantingbeds.

TheeffectoftheforestregenerationsystemoncarbonstocksandtraceGHGemissionsdependsonthetypeofharvestingsystemthatwasused(Lockabyetal.,1999;Trettinetal.,1995).Thecombinationofpartialcuttingandnaturalregenerationhaslittleadditiveeffectbecausetheextentofregenerationistypicallyquitelowfollowingapartialcutthatremoveslessthanhalfofthebasalarea.Carbonstocksfollowingclear‐cutharvestingwithnaturalregenerationisaffectedbytherateofgrowthoftheregeneration,changesinambientconditions,andchangesinthesoilwaterregime.Thosefactorsalsoaffectartificialregenerationsystems;additionally,thetypeandextentofsitepreparationalsoaffectsthecarbonstocks.

Page 10: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-10

4.2.1.4 Fertilization

Fertilizationisusedprimarilyinforestedwetlands,suchastreeplantations,toenhancegrowth(Albaughetal.,2004).Grasswetlandsalsoreceivefertilizerasaresultofadjacentagriculturalactivities,andwhendryconditionspermit,aredirectlytilled,planted,andfertilized.Nitrogenisthemostcommonlyappliedfertilizer,andincreasednitrogeninputsareknowntoincreaseemissionsofN2O(Bedard‐Haughnetal.,2006;Davidsonetal.,2000;Gleasonetal.,2009;Merbachetal.,2002;PhillipsandBeeri,2008;ThorntonandValente,1996).NitrogenfertilizerswillalsoenhanceN2Oemissionsbothdirectlyonthesiteandindirectlyifnitrogenislostfromthesiteasnitrateingroundwaterorrunoff,aswellasvolatilizationofnitrogenasammoniaorNOx.TheindirectlosseswillcontributetoN2Oemissionsatothersites.

Theeffectoffertilizationoncarbonstocksisprincipallyrealizedthroughchangesintreegrowthrates.Theeffectwouldresultfromnitrogenfertilizers,butphosphorusmayalsobeappliedinthesoutheasternUnitedStates.

4.2.1.5 ConversiontoOpen‐WaterWetland

Theconversionofwetlandtoopenwateroccursprimarilyasaresultofbeaverimpoundmentsandtoalesserdegreeimproperlyinstalledroadsorotherartificialembankmentsthroughawetlandthatimpedesnaturaldrainage.Theconversiontoopenwatersignificantlyreducescarbonsequestrationthroughplantgrowth,becauseuptakeislimitedtosubmergedaquaticvegetation.ThehigherwatertableforalongerperiodoftheyearwillalsotendtoincreaseCH4flux.

4.2.1.6 ForestTypeChange

Changingamanagedforesttoacharacteristicnativeconditionisalsoconsideredaformofrestoration.TheeffectoftherestorationactivitiesonthecarbonstocksandCH4emissionsdependsontheextentofthehydrologicmodificationsthatwereemployedintheprevioussilviculturalsystem.Thetwomostcommonsituationsareasitethathasbeenmanagedforaparticularspeciesorproductwithouthydrologicmodification;theothercommonsituationiswherethesitehasbeenmanagedforplantationforestryandthehydrologyandvegetationhavebeenextensivelymodified.

4.2.1.7 WaterQualityManagement

Riparianzonesalongstreams,rivers,andlakesmaybemanagedtoprotectwaterqualitybymitigatingnonpointsourcepollution(Balestrinietal.,2011;Chaubeyetal.,2010).4Pollutantsareremovedbyphysicalfiltration,chemicaladsorption,plantuptake,andmicrobialtransformations(Abu‐Zreigetal.,2003;Borinetal.,2005).5However,riparianbuffersarelimitedintheiradsorptioncapacitiesforsomeconstituents,whichmaythenflowintowaterways.Thebufferzonesizeandconfigurationvariesaccordingtorunoffpatternsofthesite,phosphorus/nitrogeninputs,hydrologicconnectivity,organiccarbon,mineralcontent,andoxidative/reductivestate(Abu‐Zreigetal.,2003;Hoffmannetal.,2009;Novaketal.,2002;YoungandBriggs,2008).

Riparianbufferzonesarecomprisedofnativeandnon‐nativevegetationormayalsocontaincultivatedplantsinsomecases.Managementactivitiesofthenativevegetationbufferzonesaretypicallyconstrainedorlimitedtosmallremovals.Inthecaseofforestriparianbuffers,aselective‐4Additionalreferencesinclude(Choetal.,2010;Fliteetal.,2001;Hoffmannetal.,2009;Huntetal.,2004;Leeetal.,2004;Lowranceetal.,2007;Montreuiletal.,2010;PeterjohnandCorrell,1984;RanalliandMacalady,2010;Schoonoveretal.,2005;Tabacchietal.,1998;YoungandBriggs,2008).5Additionalreferencesinclude(Dillahaetal.,1989;Dillahaetal.,1988;Hoffmannetal.,2009;Jordanetal.,2003;Kellyetal.,2007;Novaketal.,2002;Vellidisetal.,2003;YoungandBriggs,2008).

Page 11: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-11

harvestregimewouldbeusedthatinfluencesbothcarbonstocksandGHGemissions.Inmixedbuffers(i.e.,grassstripsfollowedbyforest),themanagementofthecultivatedbufferwouldlargelydeterminetheeffectofthepractice,whichwillbeanalogoustohaycultivation.Riparianzonesmaycontainamosaicofhydric(wetland)andnon‐hydricsoils;accordingly,thedistributionofsoiltypesisimportantforassessingtheeffectofthemanagementactivity.

Whereasriparianbuffersoccupylowlandscapepositionsandaretypicallywet,theyareoftenveryeffectiveinremovingnitrogenviadenitrification(Ambus,1991;Davisetal.,2008;Dodlaetal.,2008;Hilletal.,2000;Huntetal.,2007;Jordanetal.,1998;Roobroecketal.,2010;Smithetal.,2006;Stoneetal.,1998;Woodwardetal.,2009),whichleadstoindirectN2Oemissions(Jetten,2008).Denitrificationinriparianbuffersisoftenspatiallyunevenbecauseriparianbuffersvaryconsiderablyintheirsizeandlandscapepositionsaswellastheirsoil,vegetative,andhydrologicalconditions(Bowdenetal.,1992;BrulandandMacKenzie,2010;Fliteetal.,2001;Hilletal.,2000).StudieshavesuggestedthatN2Oemissionsinriparianzoneswerenotasignificant“pollution‐swappingphenomenon”(Dhondtetal.,2004;Kimetal.,2009a;Kimetal.,2009b).Significantemissionsarelikelytobelimitedtospatialandtemporalhotspots(Groffmanetal.,2000;Huntetal.,2007;Kimetal.,2009b).Moreover,someriparianwetlandsystemscanserveassinksfornitrogen(Roobroecketal.,2010).WhilemanyfactorsaffectthemicrobialproductionofN2O,oneofthemostdominatingfactorsisthecarbontonitrogenratio;largerratiosgenerallyhavelowN2Oemissionsbecausenitrogenisimmobilizedinthesoilorganicmatter(Huntetal.,2007;Klemedtssonetal.,2005).However,itisimportanttonotethatindirectN2Oemissionsareattributedtothesourceofthenitrogen,whichcanbeaneighboringfieldorlivestockfacility;sothemethodstoestimateindirectN2Oemissionsareprovidedinothersectionsofthisreport(i.e.,Chapter3,CroplandandGrazingLands,orChapter5,AnimalProduction).

RiparianbufferscanserveasbothsourcesandsinksofCH4(Hopfenspergeretal.,2009;Soosaaretal.,2011).TheirhydrologyandbiogeochemicalcharacteristicsexhibitsignificantinfluenceonthenetCH4emission.Thesecharacteristicsincludewatertableposition,temperature,oxidative/reductivepotential,andplantcommunitycompositions(Pennocketal.,2010;Whalen,2005).Moreover,N2Oemissionsfromdenitrificationcanbesignificantlyinfluencedbymethanotrophs(Costaetal.,2000;Knowles,2005;Modinetal.,2007;Osakaetal.,2008).

Similarbuffersexistforgrasswetlands,eitheraspartofaconservationprogramorasanaturallyoccurringareaaroundawetlandwheremoist‐soilconditionspreventtillage.Grassbuffersreducerunoffandinterceptsedimentsthatwouldaffectwaterqualitybyincreasingturbidityandinputsoffertilizersandagrichemicals.Moreover,plantingtheentirecatchmentwithgrasscanreduceCH4emissionsbydecreasingtheartificiallyhighwaterlevelsandextendedhydroperiodsthatoftenareassociatedwithcroplandsites(EulissJrandMushet,1996;Gleasonetal.,2009;vanderKampetal.,2003).

4.2.1.8 WetlandManagementforWaterfowl

Wetlandsmaybemanagedforwaterfowlhabitat.ActivitiesthatarespecifictowetlandwaterfowlmanagementhavedirectinfluencesoncarbonstocksandGHGemissions,includingregulationofthewaterregime,specificallydepthanddurationofinundation,aswellasplantingandcultivationofcropsforfoodandhabitat.Waterregimesimposedforwaterfowlmanagementmaybedifferentthanthenaturalwatertablecycleofthesite.Accordingly,changingthewatertablealterstheperiodsofsoilaerationandsaturationinfluencingratesofCH4andN2O,aswellascarbonstockchangesintimberstandsandotherwetlandvegetation.CultivatingcropsinwetlandsmanagedforwaterfowlwillalsoinfluencecarbonstocksandN2Oemissionsbasedonselectionofcropsand/orrotationpractice,tillage,liming,andnutrientmanagement.

Page 12: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-12

4.2.1.9 ConstructedWetlandsforWastewaterTreatment,SedimentCapture,andDrainageWaterAbatement

Constructedwetlandsareengineeredsystemsforwastewatertreatment,captureofsediments,anddrainagewaterabatementinagriculturalandforestryoperations(Chenetal.,2011;Elgoodetal.,2010).Surface‐flowandsubsurfaceflowsystemsarethetwoprincipaltypesofconstructedwetlands(KadlecandKnight,1996).Theprincipaldifferencebetweenthesetwotypesofconstructedwetlandsisthewaterflowpath.Inthecaseofthesubsurfaceflowwetlands,allthewaterflowsarebeneaththesoilsurface;thesurface‐flowsystemshaveflowbothaboveandwithinthesoil.

Thesubsurfacewetlandstypicallyconsistofwetlandplantsgrowinginabedofhighlyporousmediasuchasgravelorwoodchipsthathaveawatertablefromonetotwometersabovethesoilsurfacewitharectangularshape.ThereislackofagreementabouttherelativeimpactofmicrobialandplantprocessesinthefunctionofsubsurfacewetlandsincludingGHGemissions.However,plantsandmicrobesaretypicallyinterdependentlyinvolvedintheprocessesthatcontributetoemissions(Faubertetal.,2010;Luetal.,2010;Piceketal.,2007;TannerandHeadley,2011;Wangetal.,2008;Zhuetal.,2007).WhilethemicrobialcommunitydrivesthebiogeochemicalprocessesthatspecificallyemitGHGs(Dodlaetal.,2008;Faulwetteretal.,2009;Huntetal.,2003;Tanneretal.,1997;Zhuetal.,2010),theplantcommunitymodifiestheenvironmentalconditionscontributingtoemissionrates,includingtransportingoxygenintothedepthofthewetlands,providingrootsurfacesforrhizospherereactions,andventinggasestotheatmosphere.Theplantprocessesaresignificantlyimpactedbyplantcommunitycompositionandweatherconditions(Steinetal.,2006;SteinandHook,2005;Tayloretal.,2010;Towleretal.,2004;Wangetal.,2008;Zhuetal.,2007).

SurfaceflowwetlandshaveamuchmoredirectexchangeofoxygenandGHGswiththeatmosphere.Theycanbevariableinshapeandaregenerallylessthan0.5metersindepth.Surfacewetlandsminimizecloggingproblems,buttheycanhaveasignificantlossoftreatmentasaresultofchannelflow.Theyaretypicallydesignedforeithercarbonornitrogenremoval(Steinetal.,2006;Steinetal.,2007;Stoneetal.,2002;Stoneetal.,2004),includingthepreventionofexcessiveammoniaemissions(Poachetal.,2004;Poachetal.,2002).

Constructedwetlandsaretypicallycreatedinuplandsettings(e.g.,non‐wetland);accordingly,thesiteassumesthesamebiogeochemicalprocessesthatareinherenttonaturalwetlands.CarbonstocksandGHGemissionsareaffectedbythetypeandquantityofeffluentbeingtreated,thetypeofvegetationinthewetlandcells,andmanagementofthehydrologicregimeswithinthecells.ThemanagementofCH4andN2OfromconstructedwetlandsissomewhatsimilartomanagingGHGemissionsfromwetlandricesystems(Feyetal.,1999;Freemanetal.,1997;Johanssonetal.,2003;Maltais‐Landryetal.,2009;Manderetal.,2005a;Manderetal.,2005b;Piceketal.,2007;Tanneretal.,1997;TeiterandMander,2005;Wuetal.,2009).Ofparticularimportanceisthemaintenanceofwetlandoxidative/reductivepotentialsthataresufficientlypositivetoavoidCH4production(InsamandWett,2008;SeoandDeLaune,2010;Tanneretal.,1997).Thisrequireshigherlevelsofoxygenandlowerlevelsofavailablecarbon.ThemanagementofN2Oemissionsiscomplicatedbythefactthatnitratesareoftenpresentinthewastewatersordrainagewaters,andsoGHGemissionscanbereducedintheconstructedwetlandsifN2gasisemittedinsteadofN2O.CompletedenitrificationtoN2gasrequireshighercarbon/nitrogenratios(Huntetal.,2007;Hwangetal.,2006;Klemedtssonetal.,2005).Thus,thereisanimportantbalancebetweensufficientcarbonforcompletedenitrificationandcopiouscarbonthatdriveswetlandsintothelowredoxconditionsassociatedwithCH4production.

Page 13: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-13

Thissectionisincludedforcompleteness,butnomethodforconstructedwetlandsisprovidedinthissection.Section5.4.10inChapter5,AnimalAgriculture,providesaqualitativediscussionofestimatingemissionsfromliquidmanurestorageandtreatment‐constructedwetlands.However,Chapter5doesnotprovidemethodstoestimategreenhousegasemissionsfromconstructedwetlands.

4.2.2 Land‐UseChangetoWetlands

Conversionoflandtowetlandsmayinvolverestoringagriculturallandintoafunctioningwetland.However,wetlandscanberestoredfrompreviouslydrainedforestorgrasslands,andthechangetendstovaryfordifferentregionsoftheUnitedStates.Wetlandscanalsobeconstructedinanylocationforwastewatertreatment.Theoriginalconversionofwetlandstoanotherusetypicallyinvolvesanalterationofthenaturalwetlandhydrology.Chapter7,LandUseChange,addressesthistypeofconversion.Restorationofwetlandsentailsreestablishmentoftherequisitehydrologytosupportforest,scrub‐shrub,sedge,oremergentwetlandplantcommunitiesandoccursinfloodplains,riparianzones,depressions,andslopesandvalleys.

4.2.2.1 ActivelyRestoringWetlands

TheeffectofrestoringbothforestedandgrasswetlandswillleadtocarbonsequestrationandCH4emissionsthatwouldbecharacteristicforthatwetlandtype.However,theextenttowhichcarbonsequestration,organicmatterturnover,andgasfluxesreturntoratestypicalforthewetlandtypedependsonmanyfactors,particularlythedegreeofalteration,timesincerestoration,hydrology,anddevelopmentofthevegetation.Ingeneral,restoredsiteswillbecarbonsinksduetosequestrationinthedevelopingbiomass(e.g.,foreststand)andsoils(EulissJretal.,2008).Soilcarbonisexpectedtoincreaseslowlyinforestedsettingsandsomewhatmorerapidlyingrasslandsites(Gleasonetal.,2009);however,theextentandratesofchangeareuncertain.ReestablishmentofthewetlandhydrologywillalsoaltertheCH4fluxfromtherestoredsitesincehydrologicmodificationsforotherlanduseswilltypicallyinvolvedrainageordiversions.RaisingthewatertableandincreasingtheperiodoftimethatthesoilsurfaceiscoveredwithwaterwillincreaseCH4production.However,manyrestoredgrasslandsitesarenotdirectlydrained,andreestablishmentofgrassesinthecatchmentcanshortenthehydroperiod(VanDerKampetal.,1999;Voldsethetal.,2007),thusreducingCH4production.

Conversionofscrub‐shrubwetlandstypicallyinvolvesdrainagetoanon‐wetlandstate,andtheimpositionofcultivationorotherpracticesdependingonthelanduse.Accordingly,therestorationofprior‐convertedscrub‐shrubwetlandstypicallyinvolvesreestablishmentofthenaturalwetlandhydrologyandselectiveplantingtoestablishnativevegetation.ThedevelopmentofthecharacteristicwetlandhydrologyistheprincipalfactoraffectingthecarbonstocksandGHGemissionsfromthesitefollowingconversion,butthetypeofvegetationandtimesinceestablishmentwillalsohavesomeinfluence.

4.2.2.2 CreatedWetlands

Createdwetlandsareengineeredintonon‐wetlandoruplandsites.Typicalexamplesincludemitigationsites,anaerobiclagoons(SeeSection5.4.10inChapter5,AnimalAgriculture)onlivestockoperations,andstormwaterdetentionbasins.TheprincipalactivityaffectingthecarbonstocksandGHGemissionsistheimpositionofahydrologicregimethatinduceshydricsoilpropertiesandsupportshydrophyticplants,inadditiontoclearingofthepreviousvegetationthatmayleadtoachangeinbiomasscarbonstocks.

Page 14: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-14

4.2.2.3 PassiveRestorationofWetlands

Allowinganareatoregeneratethroughnaturalsuccessionisalsoconsideredaformofrestoration.TheeffectoftherestorationactivitiesonthecarbonstocksandCH4emissionsdependsonwhethertherewashydrologicremediationandthedegreeofvegetationchangeovertime.

4.3 EstimationMethodsSection4.3.1providesmethodsforestimatingliveanddeadbiomassinforested,shrub,andgrasslandwetlands.Section4.3.2providesmethodsforestimatingsoilC,N2O,andCH4emissionsfrommanagednaturallyoccurringwetlands.

4.3.1 BiomassCarboninWetlands

4.3.1.1 RationaleforSelectedMethod

Variousapproachesareusedforestimatingtreebiomasscarbon,butultimatelyeachreliesonallometricrelationshipsdevelopedfromacharacteristicsubsetoftrees.TheForestVegetationSimulator(FVS)hasbeenselectedasthemethodtoestimatetreebiomass.FVSismodel‐basedapproachthatisspecifictoU.S.conditionsandaTier3methodasdefinedbytheIPCC.ThesimulatoristhemostcompletemodelintheUnitedStatestoestimatetreebiomass.RegionalversionsofFVShavebeenrefinedbasedonlargedatabasesdevelopedfrommanyyearsofdatacollectiononforeststandsthroughouttheUnitedStates,therebyprovidingimprovedestimateswhilerequiringfewinputparametersfromtheuser.

BothIPCC(2006)andEPA(2011)considerherbaceousbiomasscarbonstockstobeephemeral,andrecognizethattherearenonetemissionstotheatmospherefollowinggrowthandsenescence.However,withrespecttochangesinlanduse(e.g.,foresttocropland),theIPCC(Lascoetal.,2006)recommendsthatgrazinglandbiomassbecountedintheyearthatlandconversionoccurs(Verchotetal.,2006).AccordingtotheIPCC,accountingfortheherbaceousbiomasscarbonstockduringchangesinlanduseisnecessarytoaccountfortheinfluenceofherbaceousplantsonCO2uptakefromtheatmosphereandstorageintheterrestrialbiosphere.ThemethodisconsideredaTier2methodasdefinedbytheIPCCbecauseitincorporatesfactorsthatarebasedonU.S.specificdata.

Themethodspresentedinthissectionarebasedonthefollowingdefinitions.

Livevegetationbiomass:Livevegetationincludestrees,shrubs,andgrasses.Thetreecarbonpoolincludesabovegroundandbelowgroundcarbonmassoflivetrees,asdefinedinSection6.2.3.1,andtheabovegroundbiomassoftheforestunderstoryisdefinedinSection6.2.3.2.Themethodstoestimatefull‐treeandabovegroundbiomassfortreesgreaterthanoneinchindiameteratbreastheightarebasedonthemodelsprovidedintheforestsection.

MethodforEstimatingLiveandDeadBiomassCarboninWetlands

MethodsforestimatingforestvegetationandshrubandgrasslandvegetationbiomasscarbonstocksuseacombinationoftheForestVegetationSimulatormodelandthebiomasscarbonstockchangesmethodinSection3.5.1ofChapter3,CroplandandGrazingLand.Ifthereisaland‐usechangetoagriculturaluse,methodsforcroplandherbaceousbiomassareprovidedinChapter3.

Thesemethodswerechosenbecausetheyofferthemostconsistentapproachwithinthecontextofthisreport.

Page 15: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-15

Theforestunderstoryvegetationincludesallbiomassofundergrowthplantsinaforest,includingwoodyshrubsandtreeslessthanoneinchindiameteratbreastheight.

Standingdeadwood(deadbiomass):ThecarbonpoolofstandingdeadwoodinaforestedwetlandisdefinedandestimatedaccordingtothemethodsinSection6.2.3.3ofChapter6,Forestry.

Downdeadorganicmatter—litterlayer(deadbiomass):Downdeadorganicmatterincludesthelitterlayercomposedofsmallpiecesofdeadwood,branches,leaves,androotsinvariousstagesofdecay.Thislayeristypicallydesignatedastheorganiclayerofthesoil.Thispoolalsoincludeslogsinvariousstagesofdecaythatlieonthesoilsurface(e.g.,Section6.2.3.4,down‐deadwood,andSection6.2.3.5,forestfloororlitter).

4.3.1.2 DescriptionofMethod

Provisionsforestimatingabovegroundbiomassforwetlandforestsandaboveandbelowgroundbiomassandcarbonareincludedforshrubandgrasswetlandsinthissection.Sincethevegetativecoveronwetlandsmayvaryfromnaturalcommunitiestoagriculturalcrops,cross‐referencesaremadetoensurecongruitywithSection3.5.1ofChapter3,Croplands,andGrazingLands,andSection6.2.3ofChapter6,Forestry.

Forestvegetation:BiomasscarbonstocksareestimatedforforestsinwetlandsusingthemethodsdescribedinSection6.2.3ofChapter6,Forestry.TheapproachusestheFVS,whichisasystemofgrowthandyieldmodelsthatestimategrowthandyieldforU.S.forests.FVSisanindividualtreemodelandcanestimatebiomasscarbonstockchangefornearlyanytypeofforeststand.TheFireandFuelsExtensiontoFVScanbeusedtogeneratereportsofallliveanddeadbiomasscarbonpoolsinadditiontoharvestedwoodproducts.RegionalvariantsareavailableforFVSthatallowforregion‐specificfocusonspeciesandforestvegetationcommunities.Thedriverforproductivityistheavailabilityofsiteindexcurves,6andtheregionalvariantsincludemanywetlandtreespecies.RegionalvariantsofFVSmayalsoprovideprovisionsforrefiningthebasisforestimatingproductivitybyclassifyingtheareaofinterestintoecologicalunits,habitattype,orplantassociations.However,ifaspecies‐specificcurveisnotavailable,thenadefaultfunctionisusedtoestimatecarbonstockchanges.

Grasslandvegetation:Thechangeincarbonstockforgrasswetlandsisgenerallysmallunlesstherearedroughtconditionsortheareaisactivelymanaged.Incaseswherereportingisrequired,biomasscarbonstockchangescanbeestimatedfollowingalandusechangeusingthemethodinSection3.5.1ofChapter3,CroplandsandGrazingLands.Therearenomethodscurrentlyavailabletoestimatetheshrubcover.

4.3.1.3 ActivityData

Forestedwetlands:ThedataandrequirementsforestimatingthechangesincarbonstocksinwetlandforestsarethesameasthosedescribedforuplandforestsinSection6.2.3.

Grasslandvegetation:ThedataandrequirementsforestimatingthechangesincarbonstocksingrasslandvegetationarethesameasthosedescribedfortotalbiomasscarbonstockchangespresentedintheCroplands/GrazingLandsSections3.5.1.

6Siteindexisthemeasureofaforest’spotentialproductivity.Theheightofthedominantorco‐dominanttreesataspecifiedageinastandarecalculatedinanequationthatusesthetree’sheightandage.Siteindexequationsdifferbytreespeciesandregion.Siteindexcurvesareconstructedbyusingthetreeheightsatabaseageandanequationisderivedfromthecurvestoestimatethesiteindexwhenanindividualtree’sageisnotthesameasthebaseage(Hansonetal.,2002).

Page 16: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-16

4.3.1.4 ModelOutput

Changeinabovegroundcarbonpoolsassociatedwithwetlandforestsareprovidedforlivevegetation,standingdeadbiomass,anddowndeadbiomass.Changeinlivebiomasscarbonisalsoprovidedforbelowgroundbiomass.Theunitsofreportingaremetrictonnesha‐1CO2‐eq.

4.3.1.5 LimitationsandUncertainty

Estimatesoftheforestbiomasscarbonpoolsinwetlandsareconstrainedbylimiteddataonproductivityresponsetomanagementandaresensitivetothewidearrayofcharacteristicvegetativecommunitiesandsoiltypes.AlthoughFVSisthemostinclusivemodelavailable,manyresultsforwetlandswillstillbebasedondefaultmodelfunctions,becausethereislimiteddataonthegrowthofspecificwetlandspeciesunderparticularmanagementregimes.Accordingly,theresultswillprovidearelativebasisfortrackingchangesovertimeinbiomasscarbon.Table4‐3summarizesadditionallimitationsinthecurrentapproach.

Table4‐3:KeyLimitationstoEstimatingBiomassCarbonPoolsinForestWetlandVegetation

Consideration Limitation

Ratioforbelowgroundbiomass

Aratioisused toestimatebelowgroundbiomassinuplandandwetlandforestsbasedonabovegroundbiomass.Whileacommonratiowillprovideabasisforestimatingrelativechange,itwilllikelyoverorunderestimateactualstocksinmanywetlands.

Responsetomanagementorclimaticconditions

Wetlandvegetationisknowntorespondtomanagementpractices,soil, andclimaticconditions.ThoserelationshipsarenotnecessarilyreflectedinFVSbecausethereisinsufficientbasisforgeneralizedassessmentpurposes.Forexample,inresponsetodynamicwater‐levelfluctuationsduringwetanddrycycles,wetlandsoftenexhibitmajorintraandinterannualshiftsinvegetativestructure,rangingfromopenwatertoemergentherbaceousvegetation.Correspondingly,thealteredsiteconditionsunderthemanagementregimeandthegeneticqualityoftheplantedtreesmayexhibitresponsesthatarenotcapturedbytheexistingallometricrelationshipsinFVS.

ThisshrubandgrasslandmethodisbasedontheassumptionsfoundinChapter3,CroplandandGrazingLand.Essentially,themethodassumesthathalfofthecropbiomassatharvestorpeakforage/shrubbiomassprovidesanaccurateestimateofthemeanannualcarbonstock.Thisassumptionwarrantsfurtherstudy,andthemethodmayneedtoberefinedinthefuture.

Majorsourcesofuncertaintyincludebelowgroundbiomass,vegetationresponsetomanagement,andhydrologicregime(e.g.,seasonalhydroperiod).Uncertaintyinherbaceouscarbonstockchangeswillresultfromlackofprecisionincroporforageyields,residue‐yieldratios,root‐shootratios,andcarbonandcarbonfractions,aswellastheuncertaintiesassociatedwithestimatingthebiomasscarbonstocksfortheotherlanduses.

Measurement,sampling,andregression/modelingerrorsareallpartoftheestimationprocessinFVS.Somesimilarmeasureoftherepresentativenessofselectedforestinventoryandanalysisplotstotheentities’forestsisneeded.Uncertaintiesaboutcarbonconversionfactorsarealsosignificantinsomecases.

Page 17: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-17

4.3.2 SoilC,N2O,andCH4inWetlands

4.3.2.1 RationaleofMethod

Theproductionandconsumptionofcarboninwetland‐dominatedlandscapesareimportantforestimatingthecontributionofGHGs,includingCO2,CH4,andN2Oemittedfromthoseareastotheatmosphere.ThegenerationandemissionofGHGsfromwetland‐dominatedlandscapesarecloselyrelatedtoinherentbiogeochemicalprocessesthatalsoregulatethecarbonbalance(RoseandCrumpton,2006).However,thoseprocessesarehighlyinfluencedbythelanduse,vegetation,soilorganisms,chemicalandphysicalsoilproperties,geomorphology,andclimate(SmemoandYavitt,2006).

Giventhiscomplexity,aprocess‐basedmodelingapproachisdesirablebecausetheseapproachestypicallyaccountformoreofthevariabilitythansimpleremissionfactormethods(IPCC,2006).However,fewprocess‐basedmodelshavebeentestedsufficientlytobeusedforoperationalreportingofGHGemissions.OneofthemorewidelytestedmodelsforestimatingGHGfluxesfromwetlandsistheDNDCmodel.DNDCisaprocess‐basedbiogeochemicalmodelthatisusedtopredictplantgrowthandproduction,carbonandnitrogenbalance,andgenerationandemissionofsoil‐bornetracegasesbymeansofsimulatingcarbonandnitrogendynamicsinnaturalandagriculturalecosystems(Lietal.,2000;Miehleetal.,2006;Stangetal.,2000)andforestedwetlands(Zhangetal.,2002).Themodelisdesignedtoexplicitlyconsideranaerobicbiogeochemicalprocesses,whicharefundamentaltoaddressingsoilcarbondynamicsandtraceGHGdynamicsinwetlands(Trettinetal.,2001).Itintegratesdecomposition,nitrification–denitrification,photosynthesis,andhydro‐thermalbalancewithintheecosystem.Thesecomponentsaremainlydrivenbyenvironmentalfactors,includingclimate,soil,vegetation,andmanagementpractices.

DNDChasbeentestedandusedforestimatingGHGemissionsfromforestedecosystemsinawiderangeofclimaticregions,includingboreal,temperate,subtropical,andtropical(Kesiketal.,2006;Kieseetal.,2005;Kurbatovaetal.,2008;Lietal.,2004;Stangetal.,2000;Zhangetal.,2002),andsimilarlyforgrasslandsandcultivatedwetlands(Giltrapetal.,2010;Rafiqueetal.,2011).

4.3.2.2 DescriptionofMethod

Themethodconsistsofusingtheprocess‐basedmodel—DNDC—toestimatethechangesinsoilorganiccarbon(SOC)stocks,CH4,andN2Oemissions,basedonthestandingbiomassandplantgrowththatareprovidedbythevegetationmethodoutlinedabove(Section4.3.1),wetlandcharacteristics,andtheplannedmanagementactivities.ThemodelsimulatesSOCstocks,CH4,andN2Oemissionsatthebeginningofthereportingperiodbasedonanassessmentofinitialconditionsatthesite;thenthemodelsimulatesthereportingperiodbasedonthecurrent/recentmanagementactivityandanychangesinthewetlandconditions.Thisinformationcharacterizesthephysicalandchemicalsoilpropertiesthatinturninteractwiththeclimaticregime,managementpractices,and

MethodforEstimatingSoilC,N2OandCH4 inWetlands

TheDNDCprocess‐basedbiogeochemicalmodelisthemethodusedforestimatingsoilC,N2O,andCH4emissionsfromwetlands.

DNDCpredictssoilcarbonandnitrogenbalanceandgenerationandemissionofsoil‐bornetracegasesbysimulatingcarbonandnitrogendynamicsinnaturalandagriculturalecosystems(Lietal.,2000;Miehleetal.,2006;Stangetal.,2000)andforestedwetlands(Daietal.,2011;Zhangetal.,2002),usingplantgrowthestimatedasdescribedinSection4.3.1.

Page 18: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-18

thevegetationresponse.Thereportedemissionsforthelandparcelmustreflectthetotalfortheentirelandarea.Accordingly,theper‐unitareaemissionratesfromDNDCareexpandedbasedonthetotalwetlandareaforthelandparceltoestimatetotalemissions.

Equation4‐1isusedtoestimateSOCstockchangesfromaparceloflandinawetland:

Equation4‐2isusedtoestimateCH4emissionsfromaparceloflandinawetland:

N2OemissionsareestimatedforalandparcelinawetlandusingEquation4‐3:

Equation4‐1:ChangeinSoilOrganicCarbon StocksforWetlands

ΔCSoil=(SOCt‐SOCt‐1)xAxCO2MW

Where:

ΔCSoil =Annualchangeinmineralsoilorganiccarbonstock(metrictonsCO2‐eqyear‐1)

SOCt =Soilorganiccarbonstockattheendoftheyear(metrictonsCha‐1)

SOCt‐1 =Soilorganiccarbonstockatthebeginningoftheyear(metrictonsCha‐1)

A =Areaofparcel(ha)

CO2MW =RatioofmolecularweightofCO2toC=44/12(metrictonsCO2(metrictonsC)‐1)

Equation4‐2:MethaneEmissionsfromWetlands

CH4=ERxAxCH4MWxCH4GWP

Where:

CH4 =TotalCH4emissionsfromthelandparcel(metrictonsCO2‐eqyear‐1)

ER =Emissionrateonaperunitwetlandarea(metrictonsCH4ha‐1year‐1)

A =Area(ha)

CO2MW =RatioofmolecularweightofCH4toC=16/12(metrictonsCH4(metrictonsC)‐1)

CH4GWP =GlobalwarmingpotentialofCH4

Equation4‐3:NitrousOxideEmissionsfromWetlands

N2O=ERxAxCO2MWxCH4GWP

Where:

N2O =TotalN2Oemissionsfromthelandparcel(metrictonsCO2‐eqyear‐1)

ER =Emissionrateonaperunitlandarea(metrictonsN2Oha‐1year‐1)

A =Area(ha)

CO2MW =RatioofmolecularweightofN2OtoN=44/28

(metrictonsN2O(metrictonsN2O‐N)‐1)

CH4GWP =GlobalwarmingpotentialofN2O

Page 19: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-19

ToestimatetheSOCstockchanges,CH4,andN2Oemissions,DNDCrequiresaconsiderableamountofinformationtocharacterizetheplantproduction(Section4.3.1),wetlandcharacteristics,andmanagementactivities.TheinitialstepinapplyingthemethodistoparameterizeDNDCusingthebaselinesoilconditions,alongwiththecorrespondingforestorgrasslandconditions.Forexample,ifaforestplantationistobeharvestedandregeneratedduringthereportingperiod,theinitialconditionsshouldreflectthepre‐harvestconditions.Basedontheinitialconditions,themodelsimulatesbaselinefluxesandtheSOCstockpriortothereportingperiodfortheentity.Subsequently,theentityspecifiesthetypeofmanagementactivity(s)changesthatoccurredduringthereportingperiod(ifanyoccurred).Provisionsareavailabletohavemultiplemanagementactivitiesonasingletractifthereweremixedactivities.Climaticfactors,especiallyprecipitation,canaffectcarbonturnoverandwetlandconditions.Consequently,weatherdataareakeyinputtoDNDC,andwillbeprovidedfromaclimatologicaldataset.

ThesimulationoutputattheendofeachyearisusedtoestimatechangeinSOCstocksandthetotalamountofCH4andN2Oemissionsfortheyear.AnnualchangesinSOCcanbeestimatedbasedonthedifferencebetweenyears,andthetotalchangeinemissionscanbeestimatedbycombiningthechangesinSOCpoolswiththeannualCH4andN2Oflux.

4.3.2.3 ActivityData

ActivitydatafortheapplicationofDNDCaresummarizedinTable4‐4.Vegetationmanagementinformationaffectstheamountoforganicmatterthatisavailablefordecompositionprocesses.Watermanagementinformationconveyshowthedrainagesystemaffectsthesoilwatertabledynamicascomparedtoanundrainedcondition.Thesoiltillageinformationisusedtoconveywhenthesurfacesoilisdisturbedoritselevationchangedbecauseoftheassociatedeffectsondecomposition.ThefertilizationinformationisneededbecausetheadditionofnitrogengreatlyaffectsdecompositionandN2Oproduction.Inaddition,landusehistoryinfluencestheamountofsoilorganiccarbon.Ifanentityiscomposedofdifferentwetlandtypes,itisrecommendedthatseparateestimatesbepreparedbecausethecarbonturnoverrateandGHGemissionscanvarywidelydependingonhydricsoilpropertiesandthetypeofvegetation.

Table4‐4:ActivityDataforApplicationofDNDC

Category ManagementPractice Data

Vegetationmanagement

Grazingormanagementeventsshouldbeincludedtocapturetheinfluenceoncarboninputtosoilsandsubsequenteffectsonthesoilcarbonstocks.

Harvesting:date,harvest,orcutfraction Understorythinningorchopping:date,

choppedfraction Prescribedfire:date,proportionofforest

floor,andunderstoryconsumed Treeplanting:date,species,density

Watermanagementregime

Watertableresponsetothedrainagesystem,dailydata.

Drainagesystem:date,controlledwatertableelevation

Soilmanagement

Applicationofsoilamendmentsorsitepreparationpracticesfortreeplanting. Typeofsitepreparation

Fertilizationpractices

ApplicationsofmineralororganicnitrogenfertilizerswillbeneededtosimulatetheeffectonN2Oemissions.

Fertilizationfrequency,date,applicationrate(N,Pkgha‐1)

Landusehistory

Summaryoflandusepracticesoverthepast5years.Forassessingifprioruseaffectsparameterization.Thetimesinceachangeinlandmanagementpracticeforassessingeffectsondecomposition.

Fertilizationregimes,drainageregimes,cropping,orforestmanagementhistory

Page 20: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-20

4.3.2.4 AncillaryData

TheDNDCmodelrequiresrelativelydetailedinformationaboutthesite(Table4‐5).Whiledefaultvaluesareavailableformostparameters,someentity‐specificdataareneededtoproducereasonableestimates.Mostoftherequiredsoilsinputdataareavailablefromthenationalsoilsdatabase.7Similarly,climatedataareavailablefromtheNationalClimateDataCenter.8

Table4‐5:InputInformationNeededfortheApplicationofDNDC

Category Data

ClimateDailymaximumandminimumtemperature,dailyrainfall; nitrogendepositioninrainfall,orusedefaultvalue.

Vegetation StandingbiomassandbiomassanddetritalinputsprovidedinSection4.3.1;belowgroundbiomassestimatedbasedonabovegroundbiomass.

Soil

Hydraulicparametersandphysicalandchemicalcomponents, includingthickness;layers;hydraulicconductivity;porosity;fieldcapacity;wiltingpoint;carboncontent;pH;organicmatterfractions;contentofstone,sand,silt,andclay;andbulkdensityformajorsoillayers.

Hydrology WatertablebelowsurfaceasdailyinputorstartingpositionandDNDCcanestimateGHGemissionsandsinksusingempiricalfunctions.

4.3.2.5 ModelOutput

ModeloutputincludesannualestimatesofCH4,N2Oemissions,andchangesinsoilorganiccarbonstocks.TheunitsofreportingaremetrictonsCO2‐eqha‐1.

4.3.2.6 LimitationsandUncertainty

Themodelstoestimatecarbonsequestrationinvegetationarerobustwithrespecttospeciesandcommunitycomposition.However,uncertaintiesmaybehigherthanforuplandsbecauseoflimitedbackgroundinformation.ThemeritoftherecommendedapproachisthatitensuresconsistencyforestimatingchangesinthevegetativecarbonpoolamonglandtypesandusesbyusingcommonmethodsasdescribedinSection4.3.1.However,thisapproachcomplicatestheapplicationofDNDCforestimatingchangesinsoilcarbonpoolsandfluxesbecauseitcontainsprovisionsforsequesteringcarbonincrops,grasslands,andforestvegetation.Accordingly,DNDCwouldhavetoundergosubstantialrevisionstoaccommodatethevegetativecomponentasaninputvariablebecausethevegetationgrowthfunctionsareintegralwiththeconsiderationofhydrologicprocesses(especiallyevapotranspiration)andbiogeochemicalprocesses.TheDNDCmodelcouldbeusedasastand‐alonetoolforwetlands,butunfortunately,theproductionorcarbonsequestrationfunctionshavenotbeenvalidatedformanyofthewetlandplantcommunities.

Theavailabilityofwatertabledataisessentialtomodelingthecarboncycleinwetlandsoils.Sincethelackofsite‐specificwatertabledataforasufficientperiodislikelyaconstraintformostentities,anapproachincorporatingahydrologicmoduleorlook‐uptableisneeded.Hydrologicmodelsthatprovideinformationonwatertabledynamicsareinherentlycomplex,buttheycanbeeffective(Dai.etal.,2010).Accordingly,thedevelopmentofcharacteristicwatertableconditionsforarangeofclimatologicalandsoilsettingswouldbeaviableapproachthatcanalsoincorporatewatermanagementeffects(e.g.,Skaggsetal.,2011).

7SeeNationalCooperativeSoilSurveySoilCharacterizationdatahttp://soils.usda.gov/survey/nscd/.8SeeNOAANationalClimaticDataCenterhttp://www.ncdc.noaa.gov/.

Page 21: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-21

Tidalfreshwaterforestedwetlands,whichoccurtoalimitedextentalongtheAtlantic,Gulf,andPacificcoasts,areaspecialcase.Thetidalinfluenceonwatertabledynamicscanmakecharacterizingthewatertableregimeofsuchsitesmoredifficult.ForDNDCtosimulatethecarbondynamicswouldrequiredetaileddataondailywatertabledynamics,andsuchdetaileddataareunavailable.

WhiletheeffectsofthevariousmanagementregimesonsoilcarbonpoolsandGHGfluxeshavenotbeenwidelystudied,thisismoreofaconsiderationwithrespecttouncertaintiesintheestimatesasopposedtoalimitationtoitsapplication.TheDNDCframeworkisrobustbecauseitisaprocess‐basedmodelthathasbeenvalidatedinawidevarietyofwetlandtypesandsoils.However,ithasnotbeenextensivelytestedonHistosolsorpeatsoils,especiallywithrespecttochangesinsoilcarbonstocks.ThemodelwasvalidatedsuccessfullyforestimatingCH4frommicotopographicpositionsinapeatland(Zhangetal.,2002),butadditionalworkisneededtobetteraddressthewidearrayofmanagedHistosolsthatexistacrossthecountry.

Similarly,thismethodisnotapplicabletoconstructedwetlands,impoundments,orshallowreservoirsystemsthathaveextendedperiodsofponding;thosesiteswouldtendtohavedynamicsmoresimilartoalakeorpondasopposedtoaterrestrialecosystem.

Withrespecttotheforestmodel,accuracyoftheestimatesisdependentonapplicabilityoftheavailablesiteindexcurves.Whilethegeneralcurvesareavailableforallspecies,theymaynotaccuratelyrepresentthesiteortheentity’smanagementregime.ProvisionsareincludedwithinFVSforcustomizingthetreesiteindexcurves,whichcouldbeimportantforanentityespeciallyifgenetically‐improvedplantingstockandfertilizationregimesareemployed.

Detritalorganicmatteristhesourcefordecompositionprocesses.Theeffectofvegetationonwetlandcarbondynamicsispromulgatedthroughtheamountoforganicmatterandthewaterregime(e.g.,evapotranspiration).Accordingly,theaccuracyofthevegetationproductivityandturnoverwillaffecttheestimatesofthesoilcarbonpoolsandGHGflux.

WatertablepositionisthemostcriticalfactoraffectingCH4andN2Ofluxfromthewetlandsoil(Trettinetal.,2006).Accordingly,considerationstoimprovethatestimateasdiscussedinSection4.3.2willimprovetheestimatesofGHGemissionsfromthesoil.Thereareotheruncertaintiesintheactivityandancillarydata,aswellasmodelstructurethatcancreatebiasandimprecisionintheresultingestimates.Wetlandstypicallyexistinamosaicwithuplandforests,grasslands,andcultivatedlands.Accordingly,theaccuracyofpartitioningtheentityintoupland(agriculture,forest)andwetlandswillaffecttheaccuracyoftheestimates.

4.4 ResearchGapsforWetlandManagementWetlandmanagement,anditsinfluenceonGHGemissions,isnotaswellstudiedassomeoftheothermanagementpracticesinthisreport,suchastillageincroplandsorforestharvestingpracticesinuplands.ThereisthepotentialforimprovingtheestimationofGHGemissionsassociatedwithdifferentmanagementpracticesinthefutureiftherearemonitoringactivitiesandstudiestofillinformationgaps.Aselectnumberofinformationneedsandresearchgapsareidentifiedhere.

The2013Supplementtothe2006IntergovernmentalPanelonClimateChange(IPCC)Guidelinesprovidenewguidanceforestimatingemissionsfromdrainedinlandorganicsoils,rewettedorganicsoils,coastalwetlands,inlandwetlandmineralsoils,andconstructedwetlandsforwastewatertreatment(Blainetal.,2013).Thesenewlydevelopedguidelineswillbecomparedtothetechnicalmethodsprovidedinthisreport.

Page 22: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-22

Watertablepositionistheprincipalfactoraffectingcarbondynamicsinwetlands;unfortunatelythereisalackoflong‐termdata,whichisneededtocharacterizethewatertableresponsetoamanagementregimeandtoprovideabasisforvalidatingassessmenttools.EstablishmentofanetworkofwatertablemonitoringsiteswithinselectedUSDAForestServiceexperimentalforestsandrangesandUSDA‐AgriculturalResearchService(ARS)experimentstationscouldprovidethecontinuityinmeasurementsandlinkageswithcommonmanagementpracticestorepresentthemajorsoilandclimaticconditionintheUnitedStates.

Improvingmodelingcapabilitiesthatintegratesurroundingareaswiththewetlandsthatreceivesurfaceandsubsurfacedrainagewaterswillallowformodelingtheflowsofnutrientsandorganicmatterintowetlandsandsubsequentlossestootherwetlandsbeyondtheentity’soperation.Thistypeofassessmentframeworkisusedinseveralestablishedspatially‐explicithydrologicmodels;theneedistointegratethebiogeochemistry.Linkedmodelscanbeusedatpresent;butdevelopmentofafunctionally‐integratedsystemisneededtosupportbroad‐basedapplications.

Thereisaneed,generally,forimprovedinformationonbiomassproductionandallocationinmanagedwetlands.ThesedatacouldbeobtainedthroughacoordinatedmonitoringprogramemployingUSDA‐ForestServiceexperimentalforestsandranges,USDA‐ARSexperimentstations,andU.S.DepartmentoftheInteriorwildliferefugestomonitorproductionofkeyspeciesorvegetationtypesinassociationwithcommonmanagementprescriptions.Thereisalsoneedformoredetailedmechanisticresearchtoprovideinformationonenergy,water,andGHGdynamicsonselectedmanagedsites;thisinformationiscriticalforvalidatingprocess‐basedmodels.

Field‐basedstudiesareneededtodevelopmorecompletedatabasesthatprovideancillarydataforGHGestimation,particularityCH4emissionsforDNDCorsimilarprocess‐basedmodels,ratherthanrelyingonentityinput,whichwilllikelybechallenging.Akeyattributeofthisworkshouldbetheconsiderationoftheinherentspatialandtemporalvariabilitywithinasite.

FurtherquantificationofthecontrollingandthresholdparametersandassociateduncertaintywithinDNDCorsimilarprocess‐basedmodelstoestimatetracegasemissionsiswarranted.ThisworkcouldalsosuggestapathtowardsdevelopmentofanassessmenttoolthatwasnotreliantonawidearrayofparameterstoeffectivelysimulatetheGHGdynamicsofthesite.

AmorerobustandextensivedatabaseonGHGemissionsfromfreshwatertidal(salinity<0.5‰)palustrinewetlandsisneededtomorefullyunderstandthedriversofemissions,inadditiontoprovidingamorecompletedatasetforparameterizationandevaluationofprocess‐basedmodels.

Studiesonindividualsitesandmeta‐analysesofexistingdataareneededtofullyevaluatethenetGHGfluxforCH4,N2O,andsoilcarbon.MoststudiesonlyconsideroneoftheGHGsandmaymasksomeofthedifferencesinfluxesamongtheGHGsassociatedwithamanagementactivity.

ConstructedwetlandsarediscussedqualitativelyinSection5.4.10ofChapter5,AnimalProductionSystemsforLiquidManureStorageandTreatmentinConstructedWetlands.Moreresearchisneededinthisareatoaccuratelyestimateemissionsfromconstructedwetlands.

ThislistisnotexhaustivebutisintendedtoprovidesomedirectionforimprovingtheestimationmethodsforGHGemissionfromwetlands.

Page 23: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-23

Chapter4References

Abu‐Zreig,M.,R.P.Rudra,H.R.Whiteley,M.N.Lalonde,etal.2003.PhosphorusRemovalinVegetatedFilterStrips.J.Environ.Qual.,32(2):613‐619.

Albaugh,T.J.,H.L.Allen,P.M.Dougherty,andK.H.Johnsen.2004.Long‐termgrowthresponsesofloblollypinetooptimalnutrientandwaterresourceavailability.ForestEcologyandManagement,192(3‐A):19.

Ambus,L.P.1991.Comparisonofdenitrificationintworipariansoils.SoilScienceSocietyofAmericaJournal,55(994‐997).

Armentano,T.V.,andE.S.Menges.1986.Patternsofchangeinthecarbonbalanceoforganicsoil‐wetlandsofthetemperatezone.JournalofEcology,74:755‐774.

Balestrini,R.,C.Arese,C.A.Delconte,A.Lotti,etal.2011.NitrogenremovalinsubsurfacewaterbynarrowbufferstripsintheintensivefarminglandscapeofthePoRiverwatershed,Italy.EcologicalEngineering,37:148‐157.

Bedard‐Haughn,A.,A.L.Matson,andD.J.Pennock.2006.Landuseeffectsongrossnitrogenmineralization,nitrification,andN2Oemissionsinephemeralwetlands.SoilBiologyandBiochemistry,38(12):3398‐3406.

Blain,D.,C.Row,J.Alm,K.Byrne,etal.2006IPCCGuidelinesforNationalGreenhouseGasInventories.Retrievedfromhttp://www.ipcc‐nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_07_Ch7_Wetlands.pdf.

Blain,D.,R.Boer,S.Eggleston,S.Gonzalez,etal.2013.2013Supplementtothe2006IntergovernmentalPanelonClimateChangeGuidelinesforNationalGreenhouseGasInventories:Wetlands.http://www.ipcc‐nggip.iges.or.jp/home/docs/wetlands/Wetlands_Supplement_precopyedit.pdf.

Borin,M.,M.Vianello,F.Morari,andG.Zanin.2005.EffectivenessofbufferstripsinremovingpollutantsinrunofffromacultivatedfieldinNorth‐EastItaly.Agriculture,Ecosystems&Environment,105(1‐2):101‐114.

Bowden,W.,W.McDowell,C.Asbury,andA.Finley.1992.Ripariannitrogendynamicsintwogeomorphologicallydistincttropicalrainforestwatersheds:nitrousoxidefluxes.Biogeochemistry,18(2):77‐99.

Bridgham,S.,J.Megonigal,J.Keller,N.Bliss,etal.2006.ThecarbonbalanceofNorthAmericanwetlands.Wetlands,26(4):889‐916.

Bruland,G.L.,andR.A.MacKenzie.2010.NitrogenSourceTrackingwithδ15NContentofCoastalWetlandPlantsinHawaii.JournalofEnvironmentalQuality,39:409‐419.

Chaubey,I.,L.Chiang,M.W.Gitau,andS.Mohamed.2010.Effectivenessofbestmanagementpracticesinimprovingwaterqualityinapasture‐dominatedwatershed.JournalofSoilandWaterConservation,65(6):424‐437.

Chen,G.Q.,L.Shao,Z.M.Chen,Z.Li,etal.2011.Low‐carbonassessmentforecologicalwastewatertreatmentbyaconstructedwetlandinBeijing.EcologicalEngineering,37(4):622‐628.

Cho,J.,G.Vellidis,D.D.Bosch,R.Lowrance,etal.2010.WaterqualityeffectsofsimulatedconservationpracticescenariosintheLittleRiverExperimentalwatershed.JournalofSoilandWaterConservation,65(6):463‐473.

Costa,C.,C.Dijkema,M.Friedrich,P.Garcia‐Encina,etal.2000.Denitrificationwithmethaneaselectrondonorinoxygen‐limitedbioreactors.AppliedMicrobiologyandBiotechnology,53(6):754‐762.

Cowardin,L.M.,V.Carter,F.C.Golet,andE.T.LaRoe.1979.ClassificationofwetlandsanddeepwaterhabitatsoftheUnitedStates.(FWS/OBS‐79/31).

Dai,Z.,C.Trettin,C.Li,H.Li,etal.2011.EffectofassessmentscaleonspatialandtemporalvariationsinCH4,C02,andN20fluxesinaforestedwetland.Water,Air,andSoilPollution1‐13.

Page 24: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-24

Dai.,Z.,C.Trettin,G.Sun,D.Amatya,etal.2010.Bi‐CriteriaevaluationoftheMIKESHEmodelforaforestedwatershedontheSouthCarolinacoastalplain.Hydrol.EarthSyst.Sci.,14:1033‐1046.

Davidson,E.A.,M.Keller,H.E.Erickson,L.V.Verchot,etal.2000.TestingaConceptualModelofSoilEmissionsofNitrousandNitricOxides.BioScience,50(8):667‐680.

Davis,J.H.,S.M.Griffith,W.R.Horwath,J.J.Steiner,etal.2008.Denitrificationandnitrateconsumptioninanherbaceousriparianareaandperennialryegrassseedcroppingsystem.SoilScienceSocietyofAmericaJournal,72:1299‐1310.

deKlein,C.,R.S.A.Novoa,S.Ogle,K.A.Smith,etal.2006.Chapter11:N2Oemissionsfrommanagedsoil,andCO2emissionsfromlimeandureaapplication.In2006IPCCguidelinesfornationalgreenhousegasinventories,Vol.4:Agriculture,forestryandotherlanduse,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Kanagawa,Japan:IGES.

Dhondt,K.,P.Boeckx,G.Hofman,andO.VanCleemput.2004.Temporalandspatialpatternsofdenitrificationenzymeactivityandnitrousoxidefluxesinthreeadjacentvegetatedriparianbufferzones.BiologyandFertilityofSoils,40(4):243‐251.

Dillaha,T.A.,J.H.Sherrard,D.Lee,S.Mostaghimi,etal.1988.Evaluationofvegetativefilterstripsasabestmanagementpracticeforfeedlots.JournaloftheWaterPollutionControlFederation,60:1231‐1238.

Dillaha,T.A.,R.B.Reneau,S.Mostaghimi,andD.Lee.1989.Vegetativefilterstripsforagriculturalnonpointsourcepollutioncontrol.TransactionsoftheAmericanSocietyofAgriculturalEngineers,32:513‐519.

Dodla,S.K.,J.J.Wang,R.D.DeLaune,andR.L.Cook.2008.Denitrificationpotentialanditsrelationtoorganiccarbonqualityinthreecoastalwetlandsoils.ScienceoftheTotalEnvironment,407(1):471‐480.

Elgood,Z.,W.D.Robertson,S.L.Schiff,andR.Elgood.2010.Nitrateremovalandgreenhousegasproductioninastream‐beddenitrifyingbioreactor.EcologicalEngineering,36(11):1575‐1580.

EulissJr,N.H.,andD.M.Mushet.1996.Water‐levelfluctuationinwetlandsasafunctionoflandscapeconditionintheprairiepotholeregion.Wetlands,16:587–593.

EulissJr,N.H.,L.M.Smith,D.A.Wilcox,andB.A.Browne.2008.LinkingEcosystemProcesseswithWetlandManagementGoals:ChartingaCourseforaSustainableFuture.Wetlands,28(3):553‐562.

Faubert,P.,P.Tiiva,Å.Rinnan,S.Räty,etal.2010.Effectofvegetationremovalandwatertabledrawdownonthenon‐methanebiogenicvolatileorganiccompoundemissionsinborealpeatlandmicrocosms.AtmosphericEnvironment,44(35):4432‐4439.

Faulkner,S.,W.Barrow,B.Keeland,S.Walls,etal.2011.EffectsofconservationpracticesonwetlandecosystemservicesintheMississippiAlluvialValley.EcologicalApplications,21(sp1):S31‐S48.

Faulwetter,J.L.,V.Gagnon,C.Sundberg,F.Chazarenc,etal.2009.Microbialprocessesinfluencingperformanceoftreatmentwetlands:Areview.EcologicalEngineering,35(6):987‐1004.

Fey,A.,G.Benckiser,andJ.C.G.Ottow.1999.Emissionsofnitrousoxidefromaconstructedwetlandusingagroundfilterandmacrophytesinwaste‐waterpurificationofadairyfarm.BiologyandFertilityofSoils,29(4):354‐359.

Flite,O.P.,R.D.Shannon,R.R.Schnabel,andR.R.Parizek.2001.NitrateRemovalinaRiparianWetlandoftheAppalachianValleyandRidgePhysiographicProvince.J.Environ.Qual.,30(1):254‐261.

Freeman,C.,M.A.Lock,S.Hughes,B.Reynolds,etal.1997.Nitrousoxideemissionsandtheuseofwetlandsforwaterqualityamelioration.EnvironmentalScienceandTechnology,31(8):2438‐2440.

Page 25: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-25

Giltrap,D.,C.Li,andS.Saggar.2010.DNDC:Aprocess‐basedmodelforgreenhousegasfluxesfromagriculturalsoils.Agriculture,EcosystemsandEnvironment,136:292‐300.

Gleason,R.A.,B.A.Tangen,B.A.Browne,andN.H.EulissJr.2009.GreenhousegasfluxfromcroplandandrestoredwetlandsinthePrairiePotholeRegion.SoilBiologyandBiochemistry,41(12):2501‐2507.

Gleason,R.A.,N.H.Euliss,B.A.Tangen,M.K.Laubhan,etal.2011.USDAconservationprogramandpracticeeffectsonwetlandecosystemservicesinthePrairiePotholeRegion.EcologicalApplications,21(sp1):S65‐S81.

Groffman,P.M.,A.J.Gold,andK.Addy.2000.Nitrousoxideproductioninriparianzonesanditsimportancetonationalemissioninventories.Chemosphere:GlobalChangeScience,2(3):291‐299.

Hanson,E.J.,D.L.Azuma,andB.A.Hiserote.2002.SiteIndexEquationsandMeanAnnualIncrementEquationsforPacificNorthwestResearchStationForestInventoryandAnalysisInventories,1985‐2001.Portland,OR:U.S.DepartmentofAgriculture,ForestService,PacificNorthwestResearchStation.http://www.fs.fed.us/pnw/pubs/pnw_rn533.pdf.

Hill,A.R.,K.J.Devito,S.Campagnolo,andK.Sanmugadas.2000.Subsurfacedenitrificationinaforestriparianzone:Interactionsbetweenhydrologyandsuppliesofnitrateandorganiccarbon.Biogeochemistry,51(2):193‐223.

Hoffmann,C.C.,C.Kjaergaard,J.Uusi‐Kamppa,H.C.BruunHansen,etal.2009.Phosphorusretentioninriparianbuffers:Reviewoftheirefficiency.J.Environ.Qual.,38:1942‐1955.

Hopfensperger,K.N.,C.M.Gault,andP.M.Groffman.2009.Influenceofplantcommunitiesandsoilpropertiesontracegasfluxesinripariannorthernhardwoodforests.ForestEcologyandManagement,258(9):2076‐2082.

Hunt,P.G.,T.A.Matheny,andA.A.Szogi.2003.Denitrificationinconstructedwetlandsusedfortreatmentofswinewastewater.JournalofEnvironmentalQuality,32(2):727‐735.

Hunt,P.G.,T.A.Matheny,andK.C.Stone.2004.Denitrificationinacoastalplainriparianzonecontiguoustoaheavilyloadedswinewastewatersprayfield.JournalofEnvironmentalQuality,33:2367‐2374.

Hunt,P.G.,T.A.Matheny,andK.S.Ro.2007.Nitrousoxideaccumulationinsoilsfromriparianbuffersofacoastalplainwatershedcarbon/nitrogenratiocontrol.JEnvironQual,36(5):1368‐1376.

Hwang,S.,K.Jang,H.Jang,J.Song,etal.2006.FactorsAffectingNitrousOxideProduction:AComparisonofBiologicalNitrogenRemovalProcesseswithPartialandCompleteNitrification.Biodegradation,17(1):19‐29.

Insam,H.,andB.Wett.2008.ControlofGHGemissionatthemicrobialcommunitylevel.WasteManagement,28(4):699‐706.

IPCC.2006.2006IntergovernmentalPanelonClimateChangeNationalGreenhouseGasInventoryGuidelines.Hayama,Japan:IGES.

Jetten,M.S.M.2008.Themicrobialnitrogencycle.EnvironmentalMicrobiology,10:2903‐2909.Johansson,A.E.,Å.KasimirKlemedtsson,L.Klemedtsson,andB.H.Svensson.2003.Nitrousoxide

exchangeswiththeatmosphereofaconstructedwetlandtreatingwastewater:Parametersandimplicationsforemissionfactors.Tellus,SeriesB:ChemicalandPhysicalMeteorology,55(3):737‐750.

Jordan,T.E.,D.E.Weller,andD.L.Correll.1998.Denitrificationinsurfacesoilsofariparianforest:Effectsofwater,nitrateandsucroseadditions.SoilBiologyandBiochemistry,30(7):833‐843.

Jordan,T.E.,D.F.Whigham,K.H.Hofmockel,andM.A.Pittek.2003.Nutrientandsedimentremovalbyarestoredwetlandreceivingagriculturalrunoff.JEnvironQual,32(4):1534‐1547.

Kadlec,R.H.,andR.L.Knight.1996.TreatmentWetlands.BocaRation,FL:LewisPublishers.

Page 26: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-26

Kelly,J.M.,J.L.Kovar,R.Sokolowsky,andT.B.Moorman.2007.Phosphorusuptakeduringfouryearsbydifferentvegetativecovertypesinariparianbuffer.NutrientCyclinginAgroecosystems,78:239‐251.

Kesik,M.,N.Brüggemann,R.Forkel,R.Kiese,etal.2006.FuturescenariosofN2OandNOemissionsfromEuropeanforestsoils.J.Geophys.Res.,111:2018‐2022.

Kiese,R.,C.Li,D.W.Hilbert,H.Papen,etal.2005.RegionalapplicationofPnET‐DNDCforestimatingtheN2OsourcetrengthoftropicrainforestsintheWetTropicsofAustralia.GlobalChangeBiology,11:128‐144.

Kim,D.G.,T.M.Isenhart,T.B.Parkin,R.C.Schultz,etal.2009a.Nitrateanddissolvednitrousoxideingroundwaterwithincroppedfieldsandriparianbuffers.BiogeosciencesDiscuss.,6(1):651‐685.

Kim,D.G.,T.M.Isenhart,T.B.Parkin,R.C.Schultz,etal.2009b.Nitrousoxideemissionsfromriparianforestbuffers,warm‐seasonandcool‐seasongrassfilters,andcropfields.BiogeosciencesDiscuss.,6(1):607‐650.

Klemedtsson,L.,K.VonArnold,P.Weslien,andP.Gundersen.2005.SoilCNratioasascalarparametertopredictnitrousoxideemissions.GlobalChangeBiology,11(7):1142‐1147.

Knowles,R.2005.Denitrifiersassociatedwithmethanotrophsandtheirpotentialimpactonthenitrogencycle.EcologicalEngineering,24(5):441‐446.

Kurbatova,J.,C.Li,A.Varlagin,X.Xiao,etal.2008.ModelingcarbondynamicsintwoadjacentspruceforestswithdifferentsoilconditionsinRussia.Biogeosciences,5:969‐980.

Lasco,R.D.,S.Ogle,J.Raison,L.Verchot,etal.2006.Chapter5:Cropland.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES,IPCCNationalGreenhouseGasInventoriesProgram.

Lee,P.,C.Smyth,andS.Boutin.2004.QuantitativereviewofriparianbufferwidthguidelinesfromCanadaandtheUnitedStates.JournalofEnvironmentalManagement,70(2):165‐180.

Li,C.,J.Aber,F.Stange,K.Butterbach‐Bahl,etal.2000.Aprocess‐orientedmodelofN2OandNOemissionsfromforestsoils:1.ModeldevelopmentJ.Geophys.Res.,105(D4):4369–4384.

Li,C.,J.Cui,G.Sun,andC.Trettin.2004.ModelingImpactsofManagementonCarbonSequestrationandTraceGasEmissionsinForestedWetlandEcosystems.EnvironmentalManagement,33:S176‐S186.

Lockaby,B.G.,C.Trettin,andS.Shoenholtz.1999.Effectsofsilviculturalactivitiesonwetlandbiogeochemistry.JEnvironQual,28:1687‐1698.

Lowrance,R.,J.M.Sheridan,R.G.Williams,D.D.Bosch,etal.2007.Waterqualityandhydrologyinfarm‐scalecoastalplainwatersheds:Effectsofagriculture,impoundments,andriparianzones.JournalofSoilandWaterConservation,62(2):65‐76.

Lu,S.Y.,P.Y.Zhang,andW.H.Cui.2010.Impactofplantharvestingonnitrogenandphosphorusremovalinconstructedwetlandstreatingagriculturalregionwastewater.InternationalJournalofEnvironmentandPollution,43(4):339‐353.

Maltais‐Landry,G.,R.Maranger,J.Brisson,andF.Chazarenc.2009.Greenhousegasproductionandefficiencyofplantedandartificiallyaeratedconstructedwetlands.EnvironmentalPollution,157(3):748‐754.

Mander,U.,K.Lohmus,S.Teiter,K.Nurk,etal.2005a.Gaseousfluxesfromsubsurfaceflowconstructedwetlandsforwastewatertreatment.JournalofEnvironmentalScienceandHealth‐PartAToxic/HazardousSubstancesandEnvironmentalEngineering,40(6‐7):1215‐1226.

Mander,U.,S.Teiter,andJ.Augustin.2005b.Emissionofgreenhousegasesfromconstructedwetlandsforwastewatertreatmentandfromriparianbufferzones.WaterScienceandTechnology,52(10‐11):167‐176.

Merbach,W.,T.Kalettka,C.Rudat,andJ.Augustin.2002.TracegasemissionsfromriparianareasofsmalleutrophicinlandwatersinNortheastGermany.InWetlandsinCentralEurope‐Soil

Page 27: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-27

Organisms,SoilEcologicalProcessesandTraceGasEmissions,G.Broll,W.MerbachandE.‐M.Pfeiffer(eds.).Berlin,Germany:Springer‐Verlag.

Miehle,P.,S.J.Livesley,P.M.Feikema,C.Li,etal.2006.AssessingproductivityandcarbonsequestrationcapabilityofEucalyptusglobulusplantationsusingtheprocessmodelForest‐DNDC:Calibrationandvalidation.EcologicalModelling,192:83‐94.

Minkkinen,K.,andJ.Laine.1998.Long‐termeffectofforestdrainageonthepeatcarbonstoresofpinemiresinFinland.CanadianJournalofForestResearch,28(9):1267‐1275.

Modin,O.,K.Fukushi,andK.Yamamoto.2007.Denitrificationwithmethaneasexternalcarbonsource.WaterResearch,41(12):2726‐2738.

Montreuil,O.,P.Merot,andP.Marmonier.2010.Estimationofnitrateremovalbyriparianwetlandsandstreamsinagriculturalcatchments:effectofdischargeandstreamorder.FreshwaterBiology,55(11):2305‐2318.

Novak,J.M.,P.G.Hunt,K.C.Stone,D.W.Watts,etal.2002.RiparianzoneimpactonphosphorusmovementtoaCoastalPlainblackwaterstream.JournalofSoilandWaterConservation,57(3):127‐133.

Osaka,T.,Y.Ebie,S.Tsuneda,andY.Inamori.2008.Identificationofthebacterialcommunityinvolvedinmethane‐dependentdenitrificationinactivatedsludgeusingDNAstable‐isotopeprobing.FEMSMicrobiologyEcology,64(3):494‐506.

Pennock,D.,T.Yates,A.Bedard‐Haughn,K.Phipps,etal.2010.LandscapecontrolsonN2OandCH4emissionsfromfreshwatermineralsoilwetlandsoftheCanadianPrairiePotholeregion.Geoderma,155(3‐4):308‐319.

Peterjohn,W.T.,andD.L.Correll.1984.NutrientDynamicsinanAgriculturalWatershed:ObservationsontheRoleofaRiparianForest.Ecology,65(5):1466‐1475.

Phillips,R.,andO.Beeri.2008.Theroleofhydropedologicvegetationzonesingreenhousegasemissionsforagriculturalwetlandlandscapes.CATENA,72(3):386‐394.

Picek,T.,H.Čížková,andJ.Dušek.2007.Greenhousegasemissionsfromaconstructedwetland‐Plantsasimportantsourcesofcarbon.EcologicalEngineering,31(2):98‐106.

Poach,M.E.,P.G.Hunt,E.J.Sadler,T.A.Matheny,etal.2002.Ammoniavolatilizationfromconstructedwetlandsthattreatswinewastewater.TransactionsoftheAmericanSocietyofAgriculturalEngineers,45(3):619‐627.

Poach,M.E.,P.G.Hunt,G.B.Reddy,K.C.Stone,etal.2004.Ammoniavolatilizationfrommarsh‐pond‐marshconstructedwetlandstreatingswinewastewater.JournalofEnvironmentalQuality,33(3):844‐851.

Rafique,R.,D.Henessy,andG.Kiely.2011.Evaluatingmanagementeffectsonnitrousoxideemissionsfromgrasslandsusingtheprocess‐basedDeNitrificationDeComposition(DNDC)model.Atmospheric,Environment,45:6029‐6039.

Ranalli,A.J.,andD.L.Macalady.2010.Theimportanceoftheriparianzoneandin‐streamprocessesinnitrateattenuationinundisturbedandagriculturalwatersheds‐Areviewofthescientificliterature.JournalofHydrology,389(3‐4):406‐415.

Roobroeck,D.,K.Butterbach‐Bahl,N.Brüggemann,andP.Boeckx.2010.Dinitrogenandnitrousoxideexchangesfromanundrainedmonolithfen:short‐termresponsesfollowingnitrateaddition.EuropeanJournalofSoilScience,61(5):662‐670.

Rose,C.,andW.G.Crumpton.2006.SpatialPatternsinDisssolvedOxygenandMethaneConcentrationsinaPrairiePotholeWetlandinIowa,USA.Wetlands,26:1020‐1025.

Schoonover,J.,K.Williard,J.Zaczek,J.Mangun,etal.2005.NutrientAttenuationinAgriculturalSurfaceRunoffbyRiparianBufferZonesinSouthernIllinois,USA.AgroforestrySystems,64(2):169‐180.

Seo,D.C.,andR.D.DeLaune.2010.Fungalandbacterialmediateddenitrificationinwetlands:Influenceofsedimentredoxcondition.WaterResearch,44(8):2441‐2450.

Page 28: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-28

Skaggs,R.W.,B.D.Phillips,G.M.Chescheir,andC.C.Trettin.2011.Effectofminordrainageonhydrologyofforestedwetlands.TransactionsoftheASABE,54(6):2139‐2149.

Smemo,K.A.,andJ.B.Yavitt.2006.AMulti‐yearPerspectiveonMethaneCyclinginaShallowPeatFeninCentralNewYorkState,USA.Wetlands,26:20‐29.

Smith,T.A.,D.L.Osmond,andJ.W.Gilliam.2006.Riparianbufferwidthandnitrateremovalinalagoon‐effluentirrigatedagriculturalarea.JournalofSoilandWaterConservation,61(5):273‐281.

Soosaar,K.,U.Mander,M.Maddison,A.Kanal,etal.2011.Dynamicsofgaseousnitrogenandcarbonfluxesinriparianalderforests.EcologicalEngineering,37:40‐53.

Stang,F.,K.Butterbach‐Bahl,andH.Papen.2000.Aprocess‐orientedmodelofN2OandNOemissionsfromforestsoils.2.Sensitivityanalysisandvalidation.J.Geophys.Res.,105:4385‐4398.

Stedman,S.,andT.E.Dahl.2008.StatusandtrendsofwetlandsinthecoastalwatershedsoftheEasternUnitedStates1998to2004:NationalOceanicandAtmosphericAdministration,NationalMarineFisheriesServiceandU.S.DepartmentoftheInterior,FishandWildlifeService.

Stein,O.R.,andP.B.Hook.2005.Temperature,plants,andoxygen:Howdoesseasonaffectconstructedwetlandperformance?JournalofEnvironmentalScienceandHealth‐PartAToxic/HazardousSubstancesandEnvironmentalEngineering,40(6‐7):1331‐1342.

Stein,O.R.,J.A.Biederman,P.B.Hook,andW.C.Allen.2006.Plantspeciesandtemperatureeffectsonthek‐C*first‐ordermodelforCODremovalinbatch‐loadedSSFwetlands.EcologicalEngineering,26(2):100‐112.

Stein,O.R.,B.W.Towler,P.B.Hook,andJ.A.Biederman.2007.Onfittingthek‐C*firstordermodeltobatchloadedsub‐surfacetreatmentwetlands.WaterScienceandTechnology,56(3):93‐99.

Stone,K.C.,P.G.Hunt,F.J.Humenik,andM.H.Johnson.1998.Impactofswinewasteapplicationongroundandstreamwaterqualityinaneasterncoastalplainwatershed.TransactionsoftheAmericanSocietyofAgriculturalEngineers,41:1665‐1670.

Stone,K.C.,P.G.Hunt,A.A.Szogi,F.J.Humenik,etal.2002.Constructedwetlanddesignandperformanceforswinelagoonwastewatertreatment.TransactionsoftheAmericanSocietyofAgriculturalEngineers,45(3):723‐730.

Stone,K.C.,M.E.Poach,P.G.Hunt,andG.B.Reddy.2004.Marsh‐pond‐marshconstructedwetlanddesignanalysisforswinelagoonwastewatertreatment.EcologicalEngineering,23(2):127‐133.

Tabacchi,E.,D.L.Correll,R.Hauer,G.Pinay,etal.1998.Development,maintenanceandroleofriparianvegetationintheriverlandscape.FreshwaterBiology,40(3):497‐516.

Tanner,C.C.,D.D.Adams,andM.T.Downes.1997.Methaneemissionsfromconstructedwetlandstreatingagriculturalwastewaters.JournalofEnvironmentalQuality,26(4):1056‐1062.

Tanner,C.C.,andT.R.Headley.2011.Componentsoffloatingemergentmacrophytetreatmentwetlandsinfluencingremovalofstormwaterpollutants.EcologicalEngineering,37(3):474‐486.

Taylor,C.R.,P.B.Hook,O.R.Stein,andC.A.Zabinski.2010.Seasonaleffectsof19plantspeciesonCODremovalinsubsurfacetreatmentwetlandmicrocosms.EcologicalEngineering.

Teiter,S.,andU.Mander.2005.EmissionofN2O,N2,CH4,andCO2fromconstructedwetlandsforwastewatertreatmentandfromriparianbufferzones.EcologicalEngineering,25(5):528‐541.

Thornton,F.C.,andR.J.Valente.1996.Soilemissionsofnitricoxideandnitrousoxidefromno‐tillcorn.SoilScienceSocietyofAmericaJournal,60:1127‐1133.

Towler,B.W.,J.E.Cahoon,andO.R.Stein.2004.Evapotranspirationcropcoefficientsforcattailandbulrush.JournalofHydrologicEngineering,9(3):235‐239.

Page 29: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-29

Trettin,C.,M.F.Jurgensen,M.R.Gale,andJ.W.McLaughlin.1995.Soilcarboninnorthernforestedwetlands:impactsofsilviculturalpractices.InCarbonFormsandFunctions,W.W.McFeeandJ.M.Kelly(eds.).Madison,WI:SoilScienceSocietyofAmerica.

Trettin,C.C.,B.Song,M.F.Jurgensen,andC.Li.2001.Existingsoilcarbonmodelsdonotapplytoforestedwetlands,Gen.Tech.Rep.SRS‐46.Asheville,NC:U.S.DepartmentofAgriculture,ForestService,SouthernResearchStation.

Trettin,C.C.,andM.F.Jurgensen.2003.Carboncyclinginwetlandforestsoils.InThepotentialofU.S.forestsoilstosequestercarbonandmitigatethegreenhouseeffect,J.M.Kimble,L.S.Heath,R.A.BirdseyandR.Lal(eds.).BocaRaton,FL:CRCPressLLC.

Trettin,C.C.,R.Laiho,K.Minkkinnen,andJ.Laine.2006.Influenceofclimatechangefactorsoncarbondynamicsinnorthernforestedpeatlands.CanadianJournalofSoilScience,86:269‐280.

U.S.EPA.2011.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2009.Washington,D.C.:U.S.EnvironmentalProtectionAgency.http://epa.gov/climatechange/emissions/usinventoryreport.html.

VanDerKamp,G.,W.J.Stolte,andR.G.Clark.1999.Dryingoutofsmallprairiewetlandsafterconversionoftheircatchmentsfromcultivationtopermanentbromegrass.HydrologicalSciencesJournal,44(3):387‐397.

vanderKamp,G.,M.Hayashi,andD.Gallén.2003.ComparingthehydrologyofgrassedandcultivatedcatchmentsinthesemiaridCanadianprairies.HydrologicalProcesses,17:559‐575.

Vellidis,G.,R.Lowrance,P.Gay,andR.K.Hubbard.2003.Nutrienttransportinarestoredriparianwetland.JEnvironQual,32(2):711‐726.

Verchot,L.,T.Krug,R.D.Lasco,S.Ogle,etal.2006.Chapter5:Grassland.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandD.L.Tanaka(eds.).Japan:IGES.

Voldseth,R.A.,W.C.Johnson,T.Gilmanov,G.R.Guntenspergen,etal.2007.Modelestimationofland‐useeffectsonwaterlevelsofnorthernprairiewetlands.EcolAppl,17(2):527‐540.

Wang,Y.,R.Inamori,H.Kong,K.Xu,etal.2008.Influenceofplantspeciesandwastewaterstrengthonconstructedwetlandmethaneemissionsandassociatedmicrobialpopulations.EcologicalEngineering,32(1):22‐29.

Whalen,S.C.2005.BiogeochemistryofMethaneExchangebetweenNaturalWetlandsandtheAtmosphere.EnvironmentalEngineeringScience,22(1):73‐94.

Winter,T.C.,J.W.Harvey,andO.L.Franke.1998.Groundwaterandsurfacewater:asingleresource:U.S.GeologicalSurvey.

Woodward,K.B.,C.S.Fellows,C.L.Conway,andH.M.Hunter.2009.Nitrateremoval,denitrificationandnitrousoxideproductionintheriparianzoneofanephemeralstream.SoilBiologyandBiochemistry,41(4):671‐680.

Wu,J.,J.Zhang,W.L.Jia,H.J.Xie,etal.2009.Nitrousoxidefluxesofconstructedwetlandstotreatsewagewastewater.HuanjingKexue/EnvironmentalScience,30(11):3146‐3151.

Young,E.O.,andR.D.Briggs.2008.Phosphorusconcentrationsinsoilandsubsurfacewater:afieldstudyamongcroplandandriparianbuffers.JEnvironQual,37(1):69‐78.

Zhang,Y.,C.Li,C.C.Trettin,andG.Sun.2002.Anintegratedmodelofsoil,hydrologyandvegetationforcarbondynamicsinwetlandecosystems.GlobalBiogeochemicalCycles,16:1‐17.

Zhu,G.,M.S.M.Jetten,P.Kuschk,K.F.Ettwig,etal.2010.Potentialrolesofanaerobicammoniumandmethaneoxidationinthenitrogencycleofwetlandecosystems.AppliedMicrobiologyandBiotechnology,86(4):1043‐1055.

Zhu,N.,P.An,B.Krishnakumar,L.Zhao,etal.2007.Effectofplantharvestonmethaneemissionfromtwoconstructedwetlandsdesignedforthetreatmentofwastewater.JournalofEnvironmentalManagement,85(4):936‐943.

Page 30: Chapter 4 Quantifying Greenhouse Gas Sources and Sinks in … · 2014-10-31 · Greenhouse Gas Sources and Sinks in Managed Wetland Systems. In Quantifying Greenhouse Gas Fluxes in

Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems

4-30

Thispageisintentionallyleftblank.