Chapter 4

77
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money

description

Chapter 4. Time Value of Money. Learning Goals. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. Understand the concept of future value and present value, their calculation for single amounts, and the relationship between them. - PowerPoint PPT Presentation

Transcript of Chapter 4

Page 1: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved.

Chapter 4

Time Value of Money

Page 2: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-2

Learning Goals

1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow.

2. Understand the concept of future value and present value, their calculation for single amounts, and the relationship between them.

3. Find the future value and the present value of both an ordinary annuity, and the present value of a perpetuity.

Page 3: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-3

Learning Goals (cont.)

4. Calculate both the future value and the present value of a mixed stream of cash flows.

5. Understand the effect that compounding interest more frequently than annually has on future value and the effective annual rate of interest.

6. Describe the procedures involved in (1) determining deposits needed to accumulate to a future sum, (2) loan amortization, (3) finding interest or growth rates, and (4) finding an unknown number of periods.

Page 4: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-4

The Role of Time Value in Finance

• Most financial decisions involve costs & benefits that are spread out over time.

• Time value of money allows comparison of cash flows from different periods.

• Question: Your father has offered to give you some money and asks that you choose one of the following two alternatives:– $1,000 today, or– $1,100 one year from now.

• What do you do?

Page 5: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-5

The Role of Time Value in Finance (cont.)

• The answer depends on what rate of interest you could earn on any money you receive today.

• For example, if you could deposit the $1,000 today at 12% per year, you would prefer to be paid today.

• Alternatively, if you could only earn 5% on deposited funds, you would be better off if you chose the $1,100 in one year.

Page 6: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-6

Basic Concepts

• Future Value: compounding or growth over time

• Present Value: discounting to today’s value

• Single cash flows & series of cash flows can be considered

• Time lines are used to illustrate these relationships

Page 7: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-7

Computational Aids

• Use the Equations

• Use the Financial Tables

• Use Financial Calculators

• Use Electronic Spreadsheets

Page 8: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-8

Computational Aids (cont.)

Figure 4.1 Time Line

Page 9: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-9

Computational Aids (cont.)

Figure 4.2 Compounding andDiscounting

Page 10: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-10

Computational Aids (cont.)

Figure 4.3 Calculator Keys

Page 11: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-11

Computational Aids (cont.)

Figure 4.4 Financial Tables

Page 12: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-12

Basic Patterns of Cash Flow

• The cash inflows and outflows of a firm can be described by its general pattern.

• The three basic patterns include a single amount, an annuity, or a mixed stream:

Page 13: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-13

Simple Interest

• With simple interest, you don’t earn interest on interest.

• Year 1: 5% of $100 = $5 + $100 = $105

• Year 2: 5% of $100 = $5 + $105 = $110

• Year 3: 5% of $100 = $5 + $110 = $115

• Year 4: 5% of $100 = $5 + $115 = $120

• Year 5: 5% of $100 = $5 + $120 = $125

Page 14: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-14

Compound Interest

• With compound interest, a depositor earns interest on interest!

• Year 1: 5% of $100.00 = $5.00 + $100.00 = $105.00

• Year 2: 5% of $105.00 = $5.25 + $105.00 = $110.25

• Year 3: 5% of $110.25 = $5 .51+ $110.25 = $115.76

• Year 4: 5% of $115.76 = $5.79 + $115.76 = $121.55

• Year 5: 5% of $121.55 = $6.08 + $121.55 = $127.63

Page 15: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-15

Time Value Terms

• PV0 = present value or beginning amount

• i = interest rate

• FVn = future value at end of “n” periods

• n = number of compounding periods

• A = an annuity (series of equal payments or receipts)

Page 16: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-16

Four Basic Models

• FVn = PV0(1+i)n = PV x (FVIFi,n)

• PV0 = FVn[1/(1+i)n] = FV x (PVIFi,n)

• FVAn = A (1+i)n - 1 = A x (FVIFAi,n)

i

• PVA0 = A 1 - [1/(1+i)n] = A x (PVIFAi,n)

i

Page 17: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-17

Future Value of a Single Amount

• Future Value techniques typically measure cash flows at the end of a project’s life.

• Future value is cash you will receive at a given future date.

• The future value technique uses compounding to find the future value of each cash flow at the end of an investment’s life and then sums these values to find the investment’s future value.

• We speak of compound interest to indicate that the amount of interest earned on a given deposit has become part of the principal at the end of the period.

Page 18: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-18

$100 x (1.08)1 = $100 x FVIF8%,1

$100 x 1.08 = $108

Future Value of a Single Amount: Using FVIF Tables

• If Fred Moreno places $100 in a savings account paying 8% interest compounded annually, how much will he have in the account at the end of one year?

Page 19: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-19

FV5 = $800 X (1 + 0.06)5 = $800 X (1.338) = $1,070.40

Future Value of a Single Amount: The Equation for Future Value

• Jane Farber places $800 in a savings account paying 6% interest compounded annually. She wants to know how much money will be in the account at the end of five years.

Page 20: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-20

Future Value of a Single Amount:Using a Financial Calculator

Page 21: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-21

Future Value of a Single Amount:Using Spreadsheets

Page 22: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-22

Future Value of a Single Amount:A Graphical View of Future Value

Figure 4.5Future Value Relationship

Page 23: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-23

Present Value of a Single Amount

• Present value is the current dollar value of a future amount of money.

• It is based on the idea that a dollar today is worth more than a dollar tomorrow.

• It is the amount today that must be invested at a given rate to reach a future amount.

• Calculating present value is also known as discounting.

• The discount rate is often also referred to as the opportunity cost, the discount rate, the required return, or the cost of capital.

Page 24: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-24

$300 x [1/(1.06)1] = $300 x PVIF6%,1

$300 x 0.9434 = $283.02

Present Value of a Single Amount: Using PVIF Tables

• Paul Shorter has an opportunity to receive $300 one year from now. If he can earn 6% on his investments, what is the most he should pay now for this opportunity?

Page 25: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-25

PV = $1,700/(1 + 0.08)8 = $1,700/1.851 = $918.42

Present Value of a Single Amount: The Equation for Future Value

• Pam Valenti wishes to find the present value of $1,700 that will be received 8 years from now. Pam’s opportunity cost is 8%.

Page 26: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-26

Present Value of a Single Amount: Using a Financial Calculator

Page 27: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-27

Present Value of a Single Amount: Using Spreadsheets

Page 28: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-28

Present Value of a Single Amount: A Graphical View of Present Value

Figure 4.6Present ValueRelationship

Page 29: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-29

Annuities

• Annuities are equally-spaced cash flows of equal size.• Annuities can be either inflows or outflows.• An ordinary (deferred) annuity has cash flows that

occur at the end of each period.• An annuity due has cash flows that occur at the

beginning of each period.• An annuity due will always be greater than an

otherwise equivalent ordinary annuity because interest will compound for an additional period.

Page 30: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-30

Types of Annuities

Note that the amount of both annuities total $5,000.

• Fran Abrams is choosing which of two annuities to receive. Both are 5-year $1,000 annuities; annuity A is an ordinary annuity, and annuity B is an annuity due. Fran has listed the cash flows for both annuities as shown in Table 4.1 on the following slide.

Page 31: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-31

Table 4.1 Comparison of Ordinary Annuity and Annuity Due Cash Flows ($1,000, 5 Years)

Page 32: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-32

Finding the Future Value of an Ordinary Annuity

• Fran Abrams wishes to determine how much money she will have at the end of 5 years if he chooses annuity A, the ordinary annuity and it earns 7% annually. Annuity a is depicted graphically below:

Page 33: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-33

Future Value of an Ordinary Annuity: Using the FVIFA Tables

FVA = $1,000 (FVIFA,7%,5)

= $1,000 (5.751)

= $5,751

Page 34: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-34

Future Value of an Ordinary Annuity: Using a Financial Calculator

Page 35: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-35

Future Value of an Ordinary Annuity: Using Spreadsheets

Page 36: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-36

Present Value of an Ordinary Annuity

• Braden Company, a small producer of plastic toys, wants to determine the most it should pay to purchase a particular annuity. The annuity consists of cash flows of $700 at the end of each year for 5 years. The required return is 8%.

Page 37: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-37

Present Value of an Ordinary Annuity: The Long Method

Table 4.2 Long Method for Finding the Present Value of an Ordinary Annuity

Page 38: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-38

Present Value of an Ordinary Annuity: Using PVIFA Tables

PVA = $700 (PVIFA,8%,5)

= $700 (3.993)

= $2,795.10

Page 39: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-39

Present Value of an Ordinary Annuity: Using a Financial Calculator

Page 40: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-40

PV = Annuity/Interest Rate

PV = $1,000/.08 = $12,500

Present Value of a Perpetuity

• A perpetuity is a special kind of annuity.• With a perpetuity, the periodic annuity or cash

flow stream continues forever.

• For example, how much would I have to deposit today in order to withdraw $1,000 each year forever if I can earn 8% on my deposit?

Page 41: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-41

Future Value of a Mixed Stream

Page 42: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-42

Future Value of a Mixed Stream: Using Excel

Page 43: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-43

Future Value of a Mixed Stream (cont.)

Table 4.3 Future Value of a Mixed Stream of Cash Flows

Page 44: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-44

Present Value of a Mixed Stream

• Frey Company, a shoe manufacturer, has been offered an opportunity to receive the following mixed stream of cash flows over the next 5 years.

Page 45: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-45

Present Value of a Mixed Stream

• If the firm must earn at least 9% on its investments, what is the most it should pay for this opportunity?

• This situation is depicted on the following time line.

Page 46: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-46

Present Value of a Mixed Stream: Using Excel

Page 47: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-47

Present Value of a Mixed Stream

Table 4.4 Present Value of a Mixed Stream of Cash Flows

Page 48: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-48

Compounding Interest More Frequently Than Annually

• Compounding more frequently than once a year results in a higher effective interest rate because you are earning on interest on interest more frequently.

• As a result, the effective interest rate is greater than the nominal (annual) interest rate.

• Furthermore, the effective rate of interest will increase the more frequently interest is compounded.

Page 49: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-49

Compounding Interest More Frequently Than Annually (cont.)

• Fred Moreno has found an institution that will pay him 8% annual interest, compounded quarterly. If he leaves the money in the account for 24 months (2 years), he will be paid 2% interest compounded over eight periods.

Table 4.5 Future Value from Investing $100 at 8% InterestCompounded Semiannually over 24 Months (2 Years)

Page 50: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-50

Compounding Interest More Frequently Than Annually (cont.)

Table 4.6 Future Value from Investing $100 at 8% Interest Compounded Quarterly over 24 Months (2 Years)

Page 51: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-51

Compounding Interest More Frequently Than Annually (cont.)

Table 4.7 Future Value at the End of Years 1 and 2 from Investing $100 at 8% Interest, Given Various Compounding Periods

Page 52: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-52

Compounding Interest More Frequently Than Annually (cont.)

• A General Equation for Compounding More Frequently than Annually

Page 53: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-53

Compounding Interest More Frequently Than Annually (cont.)

• A General Equation for Compounding More Frequently than Annually– Recalculate the example for the Fred Moreno example

assuming (1) semiannual compounding and (2) quarterly compounding.

Page 54: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-54

Compounding Interest More Frequently Than Annually: Using a Financial Calculator

Page 55: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-55

Compounding Interest More Frequently Than Annually: Using a Spreadsheet

Page 56: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-56

FVn (continuous compounding) = PV x (eixn)

where “e” has a value of 2.7183.

Continuous Compounding

• With continuous compounding the number of compounding periods per year approaches infinity.• Through the use of calculus, the equation thus becomes:

• Continuing with the previous example, find the Future value of the $100 deposit after 5 years if interest is compounded continuously.

Page 57: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-57

FVn (continuous compounding) = PV x (eixn)

where “e” has a value of 2.7183.

FVn = 100 x (2.7183).08x2 = $117.35

Continuous Compounding (cont.)

• With continuous compounding the number of compounding periods per year approaches infinity.

• Through the use of calculus, the equation thus becomes:

Page 58: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-58

Continuous Compounding: Using a Financial Calculator

Page 59: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-59

Continuous Compounding: Using a Spreadsheet

Page 60: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-60

Nominal & Effective Annual Rates of Interest

• The nominal interest rate is the stated or contractual rate of interest charged by a lender or promised by a borrower.

• The effective interest rate is the rate actually paid or earned.

• In general, the effective rate > nominal rate whenever compounding occurs more than once per year

Page 61: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-61

Nominal & Effective Annual Rates of Interest (cont.)

• Fred Moreno wishes to find the effective annual rate associated with an 8% nominal annual rate (I = .08) when interest is compounded (1) annually (m=1); (2) semiannually (m=2); and (3) quarterly (m=4).

Page 62: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-62

Special Applications of Time Value: Deposits Needed to Accumulate to a Future Sum

Page 63: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-63

PMT = $30,000/5.637 = $5,321.98

Special Applications of Time Value: Deposits Needed to Accumulate to a Future Sum (cont.)

• Suppose you want to buy a house 5 years from now and you estimate that the down payment needed will be $30,000. How much would you need to deposit at the end of each year for the next 5 years to accumulate $30,000 if you can earn 6% on your deposits?

Page 64: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-64

Special Applications of Time Value: Deposits Needed to Accumulate to a Future Sum (cont.)

Page 65: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-65

Special Applications of Time Value: Deposits Needed to Accumulate to a Future Sum (cont.)

Page 66: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-66

Special Applications of Time Value:Loan Amortization

Table 4.8 Loan Amortization Schedule($6,000 Principal, 10% Interest, 4-Year Repayment Period)

Page 67: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-67

Special Applications of Time Value:Loan Amortization (cont.)

Page 68: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-68

Ray Noble wishes to find the rate of interest or growth

reflected in the stream of cash flows he received from a

real estate investment over the period from 2002 through

2006 as shown in the table on the following slide.

Special Applications of Time Value: Interest or Growth Rates

• At times, it may be desirable to determine the compound interest rate or growth rate implied by a series of cash flows.

Page 69: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-69

PVIFi,5yrs = PV/FV = ($1,250/$1,520) = 0.822

PVIFi,5yrs = approximately 5%

Special Applications of Time Value: Interest or Growth Rates (cont.)

Page 70: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-70

Special Applications of Time Value: Interest or Growth Rates (cont.)

Page 71: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-71

Special Applications of Time Value: Interest or Growth Rates (cont.)

Page 72: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-72

Ann Bates wishes to determine the number of years it

will take for her initial $1,000 deposit, earning 8% annual

interest, to grow to equal $2,500. Simply stated, at an

8% annual rate of interest, how many years, n, will it

take for Ann’s $1,000 (PVn) to grow to $2,500 (FVn)?

Special Applications of Time Value: Finding an Unknown Number of Periods

• At times, it may be desirable to determine the number of time periods needed to generate a given amount of cash flow from an initial amount.

Page 73: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-73

PVIF8%,n = PV/FV = ($1,000/$2,500) = .400

PVIF8%,n = approximately 12 years

Special Applications of Time Value: Finding an Unknown Number of Periods (cont.)

Page 74: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-74

Special Applications of Time Value: Finding an Unknown Number of Periods (cont.)

Page 75: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-75

Special Applications of Time Value: Finding an Unknown Number of Periods (cont.)

Page 76: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-76

Table 4.9 Summary of Key Definitions, Formulas, and Equations for Time Value of Money

Page 77: Chapter 4

Copyright © 2009 Pearson Prentice Hall. All rights reserved. 4-77

Table 4.9 Summary of Key Definitions, Formulas, and Equations for Time Value of Money (cont.)