Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I...

45
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These are the questions we will address. Chapter Goal: To learn how to calculate and use the magnetic field.

Transcript of Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I...

Page 1: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These are the questions we will address. Chapter Goal: To learn how to calculate and use the magnetic field.

Page 2: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

What is the shape of the trajectory that a charged particle follows in a uniform magnetic field?

A. Helix B.  Parabola C.  Circle D. Ellipse E.  Hyperbola

Page 3: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

What is the shape of the trajectory that a charged particle follows in a uniform magnetic field?

A.  Helix B.  Parabola C.  Circle D. Ellipse E.  Hyperbola

Page 4: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The magnetic field of a straight, current-carrying wire is

A.  parallel to the wire. B.  inside the wire. C.  perpendicular to the wire. D.  around the wire. E.  zero.

Page 5: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The magnetic field of a straight, current-carrying wire is

A.  parallel to the wire. B.  inside the wire. C.  perpendicular to the wire. D.   around the wire. E.  zero.

Page 6: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

http://solar.gmu.edu/teaching/2008_CSI769/solar_magnetic_field.jpg

The Earth and Sun are magnetic

Page 7: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Connections to current A magnetic field can be sensed with a magnetic material (compass) and is associated with a current. The earth’s field results from large scale internal currents. The field of a permanent magnet results from atomic scale currents.

Page 8: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The field appears only if there is current. It is associated with moving charge.

Page 9: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Source of the Magnetic Field: Moving Charges

The magnetic field of a charged particle q moving with velocity v is given by the Biot-Savart law:

where r is the distance from the charge and θ is the angle between v and r. (Valid if v<<c.) The Biot-Savart law can be written in terms of the cross product as

Page 10: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The field of an element of circuit

dB = µo

4πIds× ˆ r r2

dI=Ids

dB

r

The average B field dB due to the moving charge in an element of circuit of vector length ds carrying current I follows from superposing the fields of the moving charges:

Page 11: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The field of straight wire

11

  All current elements produce B out of page

x

a

r = x 2 + a2r

dB = µo

4πIds× ˆ r r2

= µo

4πIr2 sinθ

= µo

4πIr2ar

= µo

4πI ax 2 + a2( )3 / 2

B = µoIa4π

dxx 2 + a2( )3 / 2

=−∞

∫ µoI2πa

Add them all up:

Page 12: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.4 The magnetic field strength near a heater wire

Page 13: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.4 The magnetic field strength near a heater wire

Twice B(Earth).

Page 14: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Magnetic field lines close upon themselves – they circulate rather them emanate from charges. Although a current loop can appear like a dipole pair of charges, there is no magnetic charge.

Magnetic field lines

Page 15: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Magnetic Dipoles The magnetic dipole moment of a current loop enclosing an area A is defined as

The SI units of the magnetic dipole moment are A m2. The on-axis field of a magnetic dipole is

Page 16: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.7 The field of a magnetic dipole

Page 17: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.7 The field of a magnetic dipole

Page 18: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The superposition of the fields of a stack of loops is a field like that of a bar magnet.

The bar magnetic field results from alignment of many atomic scale electronic currents/magnetic dipoles.

Magnetic materials

Page 19: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Line integrals

Magnetic field lines close upon themselves – they circulate rather them emanate from poles. The line integral of B around a closed loop is a measure of the strength in circulation.

Page 20: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ampère’s law

Whenever total current Ithrough passes through an area bounded by a closed curve, the line integral of the magnetic field around the curve is given by Ampère’s law:

Page 21: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ampère’s law example

•  Could have used Ampere’s law to calculate B

r

I

B(r) �

B• ds∫ = Bds =∫ B ds∫ = B2π r= µoI ⇒ B = µoI2πr

Circular path

Surface bounded by path

B||ds B constant on path

path length = 2πr

Page 22: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The strength of the uniform magnetic field inside a solenoid is

where n = N/l is the number of turns per unit length.

Page 23: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Gauss’s law for magnetism

•  Net magnetic flux through any closed surface is always zero

B• dA∫ = 0

No magnetic ‘charge’, so right-hand side=0 in the case of magnet field.

E • dA∫ = Qenclosed

εo

Compare to Gauss’ law for electric field

Page 24: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

General laws of electromagnetism

Gauss’ law Ampere’s law

B• dA∫ = 0

E• dA∫ = Qenclosed

εo�

B• ds∫ = µoIMagnetostatics

Electrostatics

E• ds∫ = ?0

•  Integral of E-field around closed loop is is the change in electric potential going around = zero.

x

Page 25: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Magnetic Force on a Moving Charge

The magnetic force on a charge q as it moves through a magnetic field B with velocity v is

where α is the angle between v and B.

Page 26: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Motion in a uniform constant magnetic field The magnetic force on a moving charge q is perpendicular to B and to v and results in helical motion. (Circular motion if there is no velocity component along the field.)

Beam of electrons moving in a circle. Lighting is caused by excitation of atoms of gas in a bulb. http://en.wikipedia.org/wiki/Magnetic_field

Page 27: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Derive force by adding forces on charges constituting the current.

Page 28: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Magnetic Forces on Current-Carrying Wires

Consider a segment of wire of length l carrying current I in the direction of the vector l. The wire exists in a constant magnetic field B. The magnetic force on the wire is

where α is the angle between the direction of the current and the magnetic field.

Page 29: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.13 Magnetic Levitation

Page 30: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.13 Magnetic Levitation

Page 31: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

EXAMPLE 33.13 Magnetic Levitation

Page 32: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Interaction between a field and a dipole An current loop in a magnetic field is subject to a net torque aligning the dipole moment with the field.

τ = r × F

τ = 2

2F sinθ

⎛ ⎝ ⎜

⎞ ⎠ ⎟

F = IB⇒ τ = AIBsinθ

A = 2 =loop area

B

F

B

I

r

I

F

Page 33: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Interaction between electromagnet and a magnetic substance

An electromagnet can be used to pick up a ferromagnetic material. The field of the electromagnet induces an alignment of the atomic scale dipoles resulting in a net force of attraction.

Page 34: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Does the compass needle rotate clockwise (cw), counterclockwise (ccw) or not at all?

A. Clockwise B. Counterclockwise C. Not at all

Page 35: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Clockwise B. Counterclockwise C.  Not at all

Does the compass needle rotate clockwise (cw), counterclockwise (ccw) or not at all?

Page 36: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The magnetic field at the position P points

A. Into the page. B. Up. C. Down. D. Out of the page.

Page 37: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Into the page. B. Up. C. Down. D.  Out of the page.

The magnetic field at the position P points

Page 38: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The positive charge is moving straight out of the page. What is the direction of the magnetic field at the position of the dot?

A. Left B. Right C. Down D. Up

Page 39: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Left B. Right C.  Down D. Up

The positive charge is moving straight out of the page. What is the direction of the magnetic field at the position of the dot?

Page 40: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

What is the current direction in this loop? And which side of the loop is the north pole?

A. Current counterclockwise, north pole on bottom B. Current clockwise; north pole on bottom C. Current counterclockwise, north pole on top D. Current clockwise; north pole on top

Page 41: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Current counterclockwise, north pole on bottom B. Current clockwise; north pole on bottom C. Current counterclockwise, north pole on top D. Current clockwise; north pole on top

What is the current direction in this loop? And which side of the loop is the north pole?

Page 42: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Left B. Into the page C. Out of the page D. Up E. Down

An electron moves perpendicular to a magnetic field. What is the direction of ?

Page 43: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A. Left B. Into the page C. Out of the page D. Up E. Down

An electron moves perpendicular to a magnetic field. What is the direction of ?

Page 44: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Which magnet or magnets produced this induced magnetic dipole?

A.  a or d B.  a or c C.  b or d D.  b or c E.  any of a, b, c or d

Page 45: Chapter 33. The Magnetic Field - Welcome | Department of ... · Magnetostatics ∫B•ds=µ o I Electrostatics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A.  a or d B.  a or c C.  b or d D.  b or c E.  any of a, b, c or d

Which magnet or magnets produced this induced magnetic dipole?