Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations &...

22
Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the current is a maximum is: A. T B. T/4 C. T/2 D. T E. 2T ans: B Section: 31–2; Difficulty: E 2. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the charge on the capacitor is a maximum is: A. T B. T/4 C. T/2 D. T E. 2T ans: C Section: 31–2; Difficulty: E 3. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the voltage across the inductor is a maximum is: A. T B. T/4 C. T/2 D. T E. 2T ans: C Section: 31–2; Difficulty: E 4. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the energy stored in the magnetic field of the inductor is a maximum is: A. T B. T/4 C. T/2 D. T E. 2T ans: B Section: 31–2; Difficulty: E 516 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Transcript of Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations &...

Page 1: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

Chapter 31: ELECTROMAGNETIC OSCILLATIONSAND ALTERNATING CURRENT

1. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero,but the capacitor is charged. If T is the period of the resulting oscillations, the next time aftert = 0 that the current is a maximum is:

A. TB. T/4C. T/2D. TE. 2T

ans: BSection: 31–2; Difficulty: E

2. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero,but the capacitor is charged. If T is the period of the resulting oscillations, the next time aftert = 0 that the charge on the capacitor is a maximum is:

A. TB. T/4C. T/2D. TE. 2T

ans: CSection: 31–2; Difficulty: E

3. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero,but the capacitor is charged. If T is the period of the resulting oscillations, the next time aftert = 0 that the voltage across the inductor is a maximum is:

A. TB. T/4C. T/2D. TE. 2T

ans: CSection: 31–2; Difficulty: E

4. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero,but the capacitor is charged. If T is the period of the resulting oscillations, the next time aftert = 0 that the energy stored in the magnetic field of the inductor is a maximum is:

A. TB. T/4C. T/2D. TE. 2T

ans: BSection: 31–2; Difficulty: E

516 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 2: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

5. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero,but the capacitor is charged. If T is the period of the resulting oscillations, the next time aftert = 0 that the energy stored in the electric field of the capacitor is a maximum is:

A. TB. T/4C. T/2D. TE. 2T

ans: CSection: 31–2; Difficulty: E

6. The electrical analog of a spring constant k is:

A. LB. 1/LC. CD. 1/CE. R

ans: DSection: 31–3; Difficulty: E

7. Consider the mechanical system consisting of two springs and a block, as shown. Which oneof the five electrical circuits (A, B, C, D, E) is the analog of the mechanical system?

m.............................

.

.

.

.

.

.

.................... .

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

....................................

.

.

.

.

.

.......

.

.

.

.

.

..

......................

.

.

.

.

.

.

.................... .

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

......................

.

.

.

.

.

.

.......

.

.

.

.

.

..

....................................

.

.

.

.

.

.......

k1 k2

• •• •............................ ............................................... ...................

\ \\ \\ \\ \\ \\ \\ \\ \\ \

\ \\ \\ \\ \\ \\ \\ \\ \\ \

.

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

..

...................

..................... .

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

..

..............

.

.

.

.

.

.

.

.

.

.

.

.

..

.................................................

......................

.

.

.

.

.

.

.

.

.

..

..............

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................................................................................................................

A

.

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

..

...................

..................... .

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

..

..............

.

.

.

.

.

.

.

.

.

.

.

.

..

.................................................

......................

.

.

.

.

.

.

.

.

.

..

..............

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....................................................................................................................................................... ..............................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................................................................................

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.................................................................................................................................................................. ..............................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D

.

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

.

....................

..................... .

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

.

...............

.

.

.

.

.

.

.

.

.

.

.

.

..

.................................................

......................

.

.

.

.

.

.

.

.

.

.

...............

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................................................................................................

.

.

.

.

.

.

.

.

.

.

.

....................

..................... .

.

.

.

.

.

.

.

.

.

.

.

..

............................................

.

.

.

.

.

.

.

.

.

.

.

...............

.

.

.

.

.

.

.

.

.

.

.

.

..

.................................................

......................

.

.

.

.

.

.

.

.

.

.

...............

..........................................................................

E

ans: ASection: 31–3; Difficulty: E

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 517

Page 3: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

8. A 150-g block on the end of a spring with a spring constant of 35N/m is pulled aside 25 cmand released from rest. In the electrical analog the initial charge on the capacitor is:

A. 0.15CB. 6.67CC. 0.025CD. 40CE. 35C

ans: CSection: 31–3; Difficulty: M

9. A 150-g block on the end of a spring with a spring constant of 35N/m is pulled aside 25 cmand released from rest. In the electrical analog the maximum charge on the capacitor is 0.25C.The maximum current in the LC circuit is:

A. 0.38AB. 0.025AC. 40AD. 2.3AE. 5.3A

ans: ASection: 31–3; Difficulty: M

10. A capacitor in an LC oscillator has a maximum potential difference of 15V and a maximumenergy of 360µJ. At a certain instant the energy in the capacitor is 40µJ. At that instantwhat is the potential difference across the capacitor?

A. zeroB. 5VC. 10VD. 15VE. 20V

ans: BSection: 31–4; Difficulty: M

11. Which of the following has the greatest effect in decreasing the oscillation frequency of an LCcircuit? Using instead:

A. L/2 and C/2B. L/2 and 2CC. 2L and C/2D. 2L and 2CE. none of these

ans: DSection: 31–4; Difficulty: M

518 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 4: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

12. We desire to make an LC circuit that oscillates at 100Hz using an inductance of 2.5H. Wealso need a capacitance of:

A. 1FB. 1mFC. 1µFD. 100µFE. 1 pF

ans: CSection: 31–4; Difficulty: M

13. An LC circuit consists of a 1-µF capacitor and a 4mH inductor. Its oscillation frequency isapproximately:

A. 0.025HzB. 25HzC. 60HzD. 2500HzE. 15, 800Hz

ans: DSection: 31–4; Difficulty: M

14. An LC circuit has an oscillation frequency of 105 Hz. If C = 0.1µF, then L must be about:

A. 10mHB. 1mHC. 25µHD. 2.5µHE. 1 pH

ans: CSection: 31–4; Difficulty: M

15. In the circuit shown, switch S is first pushed up to charge the capacitor. When S is then pusheddown, the current in the circuit will oscillate at a frequency of:

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................................

.

.

.

.

.

.

.

.

.

.

..

...................

..................... .

.

.

.

.

.

.

.

.

.

.

.

.

.............................................

.

.

.

.

.

.

.

.

.

.

..

..............

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................

......................

.

.

.

.

.

.

.

.

.

..

..............

50mH.....................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................................................................................................................

....................................................................................................................................................................................................•

...............................................................................................................................................................................................................................•

5µF V0

................................................................................ .................................................................................................................................................................................................................................•.................................................

S

A. 318HzB. 0.01HzC. 12.500HzD. 2000HzE. depends on V0

ans: ASection: 31–4; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 519

Page 5: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

16. Radio receivers are usually tuned by adjusting the capacitor of an LC circuit. If C = C1 for afrequency of 600 kHz, then for a frequency of 1200 kHz one must adjust C to:

A. C1/2B. C1/4C. 2C1

D. 4C1

E.√

2C1

ans: BSection: 31–4; Difficulty: M

17. An LC series circuit with an inductance L and a capacitance C has an oscillation frequency f .Two inductors, each with inductance L, and two capacitors, each with capacitance C, are allwired in series and the circuit is completed. The oscillation frequency is:

A. f/4B. f/2C. fD. 2fE. 4f

ans: CSection: 31–4; Difficulty: M

18. A capacitor in an LC oscillator has a maximum potential difference of 15V and a maximumenergy of 360µJ. At a certain instant the energy in the capacitor is 40µJ. At that instantwhat is the emf induced in the inductor?

A. zeroB. 5VC. 10VD. 15VE. 20V

ans: CSection: 31–4; Difficulty: M

19. In an oscillating LC circuit, the total stored energy is U . The maximum energy stored in thecapacitor during one cycle is:

A. U/2B. U/

√2

C. UD. U/(2π)E. U/π

ans: CSection: 31–4; Difficulty: M

520 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 6: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

20. In an oscillating LC circuit, the total stored energy is U and the maximum charge on thecapacitor is Q. When the charge on the capacitor is Q/2, the energy stored in the inductor is:

A. U/2B. U/4C. (4/3)UD. 3U/2E. 3U/4

ans: ESection: 31–4; Difficulty: M

21. The total energy in an LC circuit is 5.0 × 10−6 J. If C = 15µF the charge on the capacitor is:

A. 0.82µCB. 8.5µCC. 12µCD. 17µCE. 24µC

ans: CSection: 31–4; Difficulty: M

22. The total energy in an LC circuit is 5.0 × 10−6 J. If L = 25mH the maximum current is:

A. 10mAB. 14mAC. 20mAD. 28mAE. 40mA

ans: CSection: 31–4; Difficulty: M

23. At time t = 0 the charge on the 50-µF capacitor in an LC circuit is 15µC and there is nocurrent. If the inductance is 20mH the maximum current is:

A. 15 nAB. 15µAC. 6.7mAD. 15mAE. 15A

ans: DSection: 31–4; Difficulty: M

24. An LC circuit has an inductance of 20mH and a capacitance of 5.0µF. At time t = 0 thecharge on the capacitor is 3.0µC and the current is 7.0mA. The total energy is:

A. 4.1 × 10−7 JB. 4.9 × 10−7 JC. 9.0 × 10−7 JD. 1.4 × 10−6 JE. 2.8 × 10−6 J

ans: DSection: 31–4; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 521

Page 7: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

25. An LC circuit has a capacitance of 30µF and an inductance of 15mH. At time t = 0 the chargeon the capacitor is 10µC and the current is 20mA. The maximum charge on the capacitor is:

A. 8.9µCB. 10µCC. 12µCD. 17µCE. 24µC

ans: DSection: 31–4; Difficulty: M

26. An LC circuit has an inductance of 15mH and a capacitance of 10µF. At one instant thecharge on the capacitor is 25µC. At that instant the current is changing at the rate of:

A. 0B. 1.7 × 10−8 A/sC. 5.9 × 10−3 A/sD. 3.8 × 10−2 A/sE. 170A/s

ans: ESection: 31–4; Difficulty: M

27. An LC circuit has a capacitance of 30µF and an inductance of 15mH. At time t = 0 thecharge on the capacitor is 10µC and the current is 20mA. The maximum current is:

A. 18mAB. 20mAC. 25mAD. 35mAE. 42mA

ans: CSection: 31–4; Difficulty: M

28. An RLC circuit has a resistance of 200Ω and an inductance of 15mH. Its oscillation frequencyis 7000Hz. At time t = 0 the current is 25mA and there is no charge on the capacitor. Afterfive complete cycles the current is:

A. zeroB. 1.8 × 10−6 AC. 2.1 × 10−4 AD. 2.3 × 10−3 AE. 2.5 × 10−2 A

ans: CSection: 31–5; Difficulty: M

522 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 8: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

29. The graphs show the total electromagnetic energy in two RLC circuits as functions of time.Which of the following statements might be true?

t

E

....................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................

1

2

A. Circuit 1 has a smaller resistance and a larger inductanceB. Circuit 1 has a larger resistance and a smaller inductanceC. Circuit 1 has the same resistance and a larger inductanceD. Circuit 1 has a larger resistance and a larger capacitanceE. Circuit 1 has the same resistance and a smaller capacitance

ans: ASection: 31–5; Difficulty: E

30. An RLC circuit has an inductance of 25mH and a capacitance of 5.0µF. The charge on thecapacitor does NOT oscillate but rather decays exponentially to zero. The resistance in thecircuit must be:

A. greater than or equal to 20, 000ΩB. less than 20, 000Ω but greater than 10, 000ΩC. less than 10, 000Ω but greater than 5, 000ΩD. less than 5, 000Ω but greater than 0E. 0

ans: ASection: 31–5; Difficulty: M

31. The rapid exponential decay in just a few cycles of the charge on the plates of capacitor in anRLC circuit might be due to:

A. a large inductanceB. a large capacitanceC. a small capacitanceD. a large resistanceE. a small resistance

ans: DSection: 31–5; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 523

Page 9: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

32. An RLC circuit has a capacitance of 12µF, an inductance of 25mH, and a resistance of 60Ω.The current oscillates with an angular frequency of:

A. 1.2 × 103 rad/sB. 1.4 × 103 rad/sC. 1.8 × 103 rad/sD. 2.2 × 103 rad/sE. 2.6 × 103 rad/s

ans: BSection: 31–5; Difficulty: M

33. The angular frequency of a certain RLC series circuit is ω0. A source of sinusoidal emf, withangular frequency 2ω, is inserted into the circuit. After transients die out the angular frequencyof the current oscillations is:

A. ω0/2B. ω0

C. 2ω0

D. 1.5ω0

E. 3ω0

ans: CSection: 31–6; Difficulty: E

34. The angular frequency of a certain RLC series circuit is ω0. A source of sinusoidal emf, withangular frequency ω, is inserted into the circuit and ω is varied while the amplitude of thesource is held constant. For which of the following values of ω is the amplitude of the currentoscillations the greatest?

A. ω0/5B. ω0/2C. ω0

D. 2ω0

E. None of them (they all produce the same current amplitude)

ans: CSection: 31–6; Difficulty: E

35. In a purely capacitive circuit the current:

A. leads the voltage by one-fourth of a cycleB. leads the voltage by one-half of a cycleC. lags the voltage by one-fourth of a cycleD. lags the voltage by one-half of a cycleE. is in phase with the potential difference across the plates

ans: ASection: 31–8; Difficulty: E

524 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 10: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

36. In a purely resistive circuit the current:

A. leads the voltage by one-fourth of a cycleB. leads the voltage by one-half of a cycleC. lags the voltage by one-fourth of a cycleD. lags the voltage by one-half of a cycleE. is in phase with the voltage

ans: ESection: 31–8; Difficulty: E

37. In a purely inductive circuit, the current lags the voltage by:

A. zeroB. one-fourth of a cycleC. one-half of a cycleD. three-fourths of a cycleE. one cycle

ans: BSection: 31–8; Difficulty: E

38. A series RL circuit is connected to an emf source of angular frequency ω. The current:

A. leads the applied emf by tan−1(ωL/R)B. lags the applied emf by tan−1(ωL/R)C. lags the applied emf by tan−1(ωR/L)D. leads the applied emf by tan−1(ωR/L)E. is zero

ans: BSection: 31–8; Difficulty: M

39. A series RC circuit is connected to an emf source having angular frequency ω. The current:

A. leads the source emf by tan−1(1/ωCR)B. lags the source emf by tan−1(1/ωCR)C. leads the source emf by tan−1(ωCR)D. lags the source emf by tan−1(ωCR)E. leads the source emf by π/4

ans: ASection: 31–8; Difficulty: M

40. The reactance in ohms of a 35-µF capacitor connected to a 400-Hz generator is:

A. 0B. 0.014C. 0.088D. 11E. 71

ans: DSection: 31–8; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 525

Page 11: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

41. A 35-µF capacitor is connected to a source of sinusoidal emf with a frequency of 400Hz and amaximum emf of 20V. The maximum current is:

A. 0B. 0.28AC. 1.8AD. 230AE. 1400A

ans: CSection: 31–8; Difficulty: M

42. A 45-mH inductor is connected to a source of sinusoidal emf with a frequency of 400Hz and amaximum emf of 20V. The maximum current is:

A. 0B. 0.18AC. 1.1AD. 360AE. 2300A

ans: BSection: 31–8; Difficulty: M

43. An electric motor, under load, has an effective resistance of 30Ω and an inductive reactance of40Ω. When powered by a source with a maximum voltage of 420V, the maximum current is:

A. 6.0AB. 8.4AC. 10.5AD. 12.0AE. 14.0A

ans: BSection: 31–8; Difficulty: M

44. An RL series circuit is connected to an ac generator with a maximum emf of 20V. If themaximum potential difference across the resistor is 16V, then the maximum potential differenceacross the inductor is:

A. 2VB. 4VC. 12VD. 25.6VE. 36V

ans: CSection: 31–8; Difficulty: M

526 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 12: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

45. In an RLC series circuit, which is connected to a source of emf Em cos(ωt), the current lagsthe voltage by 45 if:

A. R = 1/ωC − ωLB. R = 1/ωL − ωCC. R = ωL − 1/ωCD. R = ωC − 1/ωLE. ωL = 1/ωC

ans: CSection: 31–9; Difficulty: M

46. The impedance of an RLC series circuit is definitely increased if:

A. C decreasesB. L increasesC. L decreasesD. R increasesE. R decreases

ans: DSection: 31–9; Difficulty: E

47. An RLC series circuit has R = 4Ω, XC = 3Ω, and XL = 6Ω. The impedance of this circuitis:

A. 5ΩB. 7ΩC. 9.8ΩD. 13ΩE. 7.8Ω

ans: ASection: 31–9; Difficulty: M

48. The impedance of the circuit shown is:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

50Ω

..................................... ..........................................................

.

.

.

.

.

.

.

.

.

..

.

........................................ .

.

.

.

.

.

.

.

.

.

.

.

.

.............................................

.

.

.

.

.

.

.

.

.

..

.

..............

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................

......................

.

.

.

.

.

.

.

.

..

.

..............

0.20H

............................................................................

150µF

...............................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

...............................................................

......................................................................................................

......................................................

..

.

.

..

.

..

........................................................

50Hz, 240Vrms

......................................................................................................................................................................................................................................................................................................................................................................

A. 21ΩB. 50ΩC. 63ΩD. 65ΩE. 98Ω

ans: DSection: 31–9; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 527

Page 13: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

49. When the amplitude of the oscillator in a series RLC circuit is doubled:

A. the impedance is doubledB. the voltage across the capacitor is halvedC. the capacitive reactance is halvedD. the power factor is doubledE. the current amplitude is doubled

ans: ESection: 31–9; Difficulty: E

50. When the frequency of the oscillator in a series RLC circuit is doubled:

A. the capacitive reactance is doubledB. the capacitive reactance is halvedC. the impedance is doubledD. the current amplitude is doubledE. the current amplitude is halved

ans: BSection: 31–9; Difficulty: E

51. In an RLC series circuit, the source voltage is leading the current at a given frequency f . If fis lowered slightly, then the circuit impedance will:

A. increaseB. decreaseC. remain the sameD. need to know the amplitude of the source voltageE. need to know whether the phase angle is larger or smaller than 45

ans: BSection: 31–9; Difficulty: E

52. An RLC series circuit has L = 100mH and C = 1µF. It is connected to a 1000-Hz source andthe source emf is found to lead the current by 75. The value of R is:

A. 12.6ΩB. 126ΩC. 175ΩD. 1750ΩE. 1810Ω

ans: BSection: 31–9; Difficulty: M

528 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 14: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

53. In the diagram, the function y(t) = ym sin(ωt) is plotted as a solid curve. The other threecurves have the form y(t) = ym sin(ωt + φ), where φ is between −π/2 and +π/2. Rank thecurves according to the value of φ, from the most negative to the most positive.

t

y(t)

.................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................

.................................................... .........

.... ............. ................................................................................................................................................................................................................

2...........................................................................................

............. ............. ............. ....................................................................................................................................................

3

..........................................................................................................................................................................................................................................

............. ............. ............. ................

1

A. 1, 2, 3B. 2, 3, 1C. 3, 2, 1D. 1, 3, 2E. 2, 1, 3

ans: DSection: 31–9; Difficulty: M

54. An RLC series circuit is driven by a sinusoidal emf with angular frequency ωd. If ωd isincreased without changing the amplitude of the emf the current amplitude increases. If L isthe inductance, C is the capacitance, and R is the resistance, this means that:

A. ωdL > 1/ωdCB. ωdL < 1/ωdCC. ωdL = 1/ωdCD. ωdL > RE. ωdL < R

ans: BSection: 31–9; Difficulty: M

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 529

Page 15: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

55. In a sinusoidally driven series RLC circuit, the inductive reactance is XL = 200Ω, the capac-itive reactance is XC = 100Ω, and the resistance is R = 50Ω. The current and applied emfwould be in phase if:

A. the resistance is increased to 100Ω, with no other changesB. the resistance is increased to 200Ω, with no other changesC. the inductance is reduced to zero, with no other changesD. the capacitance is doubled, with no other changesE. the capacitance is halved, with no other changes

ans: ESection: 31–9; Difficulty: E

56. An RLC series circuit, connected to a source E, is at resonance. Then:

A. the voltage across R is zeroB. the voltage across R equals the applied voltageC. the voltage across C is zeroD. the voltage across L equals the applied voltageE. the applied voltage and current differ in phase by 90

ans: BSection: 31–9; Difficulty: E

57. An RLC series circuit is connected to an oscillator with a maximum emf of 100V. If thevoltage amplitudes VR, VL, and VC are all equal to each other, then VR must be:

A. 33VB. 50VC. 67VD. 87VE. 100V

ans: ESection: 31–9; Difficulty: M

58. A resistor, an inductor, and a capacitor are connected in parallel to a sinusoidal source of emf.Which of the following is true?

A. The currents in all branches are in phase.B. The potential differences across all branches are in phase.C. The current in the capacitor branch leads the current in the inductor branch by one-fourth

of a cycleD. The potential difference across the capacitor branch leads the potential difference across

the inductor branch by one-fourth of a cycle.E. The current in the capacitor branch lags the current in the inductor branch by one-fourth

of a cycle.

ans: BSection: 31–9; Difficulty: E

530 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 16: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

59. A coil has a resistance of 60Ω and an impedance of 100Ω. Its reactance, in ohms, is:

A. 40B. 60C. 80D. 117E. 160

ans: CSection: 31–8, 9; Difficulty: M

60. An RLC circuit has a sinusoidal source of emf. The average rate at which the source suppliesenergy is 5 nW. This must also be:

A. the average rate at which energy is stored in the capacitorB. the average rate at which energy is stored in the inductorC. the average rate at which energy is dissipated in the resistorD. twice the average rate at which energy is stored in the capacitorE. three times the average rate at which energy is stored in the inductor

ans: CSection: 31–10; Difficulty: E

61. The rms value of an ac current is:

A. its peak valueB. its average valueC. that steady current that produces the same rate of heating in a resistor as the actual

currentD. that steady current that will charge a battery at the same rate as the actual currentE. zero

ans: CSection: 31–10; Difficulty: E

62. The rms value of a sinusoidal voltage is V0/√

2, where V0 is the amplitude. What is the rmsvalue of its fully rectified wave? Recall that Vrect(t) = |V (t)|.

t

V0

..........................................................................................................................................................................................................................................................................

.................................................... t

V0

................................................................................................................................................................................

...............................................................................................................................................

A. V 2

0/√

2B. V 2

0/2

C.√

2V0

D. V0/√

2E. V0/(2

√2)

ans: DSection: 31–10; Difficulty: E

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 531

Page 17: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

63. A sinusoidal voltage V (t) has an rms value of 100V. Its maximum value is:

A. 100VB. 707VC. 70.7VD. 141VE. 200V

ans: DSection: 31–10; Difficulty: M

64. An ac generator produces 10V (rms) at 400 rad/s. It is connected to a series RL circuit(R = 17.3Ω, L = 0.025H). The rms current is:

A. 0.50A and leads the emf by 30

B. 0.71A and lags the emf by 30

C. 1.40A and lags the emf by 60

D. 0.50A and lags the emf by 30

E. 0.58A and leads the emf by 90

ans: DSection: 31–10; Difficulty: M

65. An ac generator producing 10V (rms) at 200 rad/s is connected in series with a 50-Ω resistor,a 400-mH inductor, and a 200-µF capacitor. The rms current in amperes is:

A. 0.125B. 0.135C. 0.18D. 0.20E. 0.40

ans: BSection: 31–10; Difficulty: M

66. An ac generator producing 10V (rms) at 200 rad/s is connected in series with a 50-Ω resistor,a 400-mH inductor, and a 200-µF capacitor. The rms voltage (in volts) across the resistor is:

A. 2.5B. 3.4C. 6.7D. 10.0E. 10.8

ans: CSection: 31–10; Difficulty: M

532 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 18: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

67. An ac generator producing 10V (rms) at 200 rad/s is connected in series with a 50-Ω resistor,a 400-mH inductor, and a 200-µF capacitor. The rms voltage (in volts) across the capacitor is:

A. 2.5B. 3.4C. 6.7D. 10.0E. 10.8

ans: BSection: 31–10; Difficulty: M

68. An ac generator producing 10V (rms) at 200 rad/s is connected in series with a 50-Ω resistor,a 400-mH inductor, and a 200-µF capacitor. The rms voltage (in volts) across the inductor is:

A. 2.5B. 3.4C. 6.7D. 10.0E. 10.8

ans: ESection: 31–10; Difficulty: M

69. The ideal meters shown read rms current and voltage. The average power delivered to the loadis:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...................................

.........................................................

............................. .

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...................................

.........................................................

.............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...................................

.........................................................

.............................

.

.

..

................................... V

I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................................................................................................................................................................................... .............................................................................................................©

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................................................................................................................................................................................................................................................................©

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

unknownload

A. definitely equal to V IB. definitely more than V IC. possibly equal to V I even if the load contains an inductor and a capacitorD. definitely less than V IE. zero, as is the average of any sine wave

ans: CSection: 31–10; Difficulty: E

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 533

Page 19: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

70. The average power supplied to the circuit shown passes through a maximum when which oneof the following is increased continuously from a very low to a very high value?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.................................................................................................................................................................................................................................................................................................................................................

............................................................................................

...............................................................................

.

.

.

.

.

...............................................

R

CE , f

A. Source emf EB. RC. CD. Source frequency fE. None of these

ans: BSection: 31–10; Difficulty: E

71. In a series RLC circuit the rms value of the generator emf is E and the rms value of the currentis i. The current lags the emf by φ. The average power supplied by the generator is given by:

A. (iE/2) cos φB. iEC. i2/ZD. i2ZE. i2R

ans: ESection: 31–10; Difficulty: M

72. The units of the power factor are:

A. ohmB. wattC. radianD. ohm1/2

E. none of these

ans: ESection: 31–10; Difficulty: E

73. A series circuit consists of a 15-Ω resistor, a 25-mH inductor, and a 35-µF capacitor. If thefrequency is 100Hz the power factor is:

A. 0B. 0.20C. 0.45D. 0.89E. 1.0

ans: CSection: 31–10; Difficulty: M

534 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 20: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

74. In a sinusoidally driven series RLC circuit the current lags the applied emf. The rate at whichenergy is dissipated in the resistor can be increased by:

A. decreasing the capacitance and making no other changesB. increasing the capacitance and making no other changesC. increasing the inductance and making no other changesD. increasing the driving frequency and making no other changesE. decreasing the amplitude of the driving emf and making no other changes

ans: ASection: 31–9, 10; Difficulty: E

75. The main reason that alternating current replaced direct current for general use is:

A. ac generators do not need slip ringsB. ac voltages may be conveniently transformedC. electric clocks do not work on dcD. a given ac current does not heat a power line as much as the same dc currentE. ac minimizes magnetic effects

ans: BSection: 31–11; Difficulty: E

76. A step-down transformer is used to:

A. increase the powerB. decrease the powerC. increase the voltageD. decrease the voltageE. change ac to dc

ans: DSection: 31–11; Difficulty: E

77. Iron, rather than copper, is used in the core of transformers because iron:

A. can withstand a higher temperatureB. has a greater resistivityC. has a very high permeabilityD. makes a good permanent magnetE. insulates the primary from the secondary

ans: CSection: 31–11; Difficulty: E

78. The core of a transformer is made in a laminated form to:

A. facilitate easy assemblyB. reduce i2R losses in the coilsC. increase the magnetic fluxD. save weightE. prevent eddy currents

ans: ESection: 31–11; Difficulty: E

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 535

Page 21: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

79. A generator supplies 100V to the primary coil of a transformer. The primary has 50 turns andthe secondary has 500 turns. The secondary voltage is:

A. 1000VB. 500VC. 250VD. 100VE. 10V

ans: ASection: 31–11; Difficulty: M

80. The resistance of the primary coil of a well-designed, 1 : 10 step-down transformer is 1Ω. Withthe secondary circuit open, the primary is connected to a 12V ac generator. The primarycurrent is:

A. essentially zeroB. about 12AC. about 120AD. depends on the actual number of turns in the primary coilE. depends on the core material

ans: ASection: 31–11; Difficulty: M

81. The primary of an ideal transformer has 100 turns and the secondary has 600 turns. Then:

A. the power in the primary circuit is less than that in the secondary circuitB. the currents in the two circuits are the sameC. the voltages in the two circuits are the sameD. the primary current is six times the secondary currentE. the frequency in the secondary circuit is six times that in the primary circuit

ans: DSection: 31–11; Difficulty: M

82. The primary of a 3 : 1 step-up transformer is connected to a source and the secondary isconnected to a resistor R. The power dissipated by R in this situation is P . If R is connecteddirectly to the source it will dissipate a power of:

A. P/9B. P/3C. PD. 3PE. 9P

ans: ASection: 31–11; Difficulty: M

536 Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Page 22: Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND … · chapter 31: electromagnetic oscillations & alternating current 523 32. An RLC circuit has a capacitance of 12µF, an inductance

83. In an ideal 1 : 8 step-down transformer, the primary power is 10 kW and the secondary currentis 25A. The primary voltage is:

A. 25, 600VB. 3200VC. 400VD. 50VE. 6.25V

ans: BSection: 31–11; Difficulty: M

84. A source with an impedance of 100Ω is connected to the primary coil of a transformer and aresistance R is connected to the secondary coil. If the transformer has 500 turns in its primarycoil and 100 turns in its secondary coil the greatest power will be dissipated in the resistor ifR =:

A. 0B. 0.25ΩC. 4.0ΩD. 50ΩE. 100Ω

Section: 31–11; Difficulty: Mans: C

Chapter 31: ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 537