Chapter 3-Higher Order Differential Equations

200
EEEE707: Engineering Analysis Dr. Eli Saber Department of Electrical and Microelectronic Engineering Chester F. Carlson Center for Imaging Science Rochester Institute of Technology, Rochester, NY 14623 USA [email protected]

description

Higher order differential Equations

Transcript of Chapter 3-Higher Order Differential Equations

Page 1: Chapter 3-Higher Order Differential Equations

EEEE707: Engineering Analysis

Dr. Eli Saber Department of Electrical and Microelectronic Engineering

Chester F. Carlson Center for Imaging Science Rochester Institute of Technology, Rochester, NY 14623 USA

[email protected]

Page 2: Chapter 3-Higher Order Differential Equations

Chapter 3 Higher Order Differential

Equations

9/30/2014 Dr. Eli Saber 2

Page 3: Chapter 3-Higher Order Differential Equations

Section 3.1 Theory of Linear Equations

9/30/2014 Dr. Eli Saber 3

Page 4: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

Objective: Investigate Differential Equations of Order 2++

9/30/2014 Dr. Eli Saber 4

Page 5: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

IVP: Initial Value Problem BVP: Boundary Value Problem โ€ข IVP: Solve:

๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

Subject to:

๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ0 = ๐‘ฆ๐‘ฆ0, ๐‘ฆ๐‘ฆโ€ฒ ๐‘ฅ๐‘ฅ0 = ๐‘ฆ๐‘ฆ, โ€ฆ . . ,๐‘ฆ๐‘ฆ ๐‘›๐‘›โˆ’1 (๐‘ฅ๐‘ฅ0) = ๐‘ฆ๐‘ฆ๐‘›๐‘›โˆ’1 i.e. seek a function defined on interval ๐ผ๐ผ containing ๐‘ฅ๐‘ฅ0 that satisfies the D.E. and the ๐‘›๐‘› initial conditions

9/30/2014 Dr. Eli Saber 5

Initial Value and Boundary Value Problems

Page 6: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 6

Initial Value and Boundary Value Problems

Theorem: Existence of a Unique Solution (for 1st order D.E.) Let ๐‘…๐‘… be a Rectangular region in the x-y plane defined by ๐‘Ž๐‘Ž โ‰ค ๐‘ฅ๐‘ฅ โ‰ค ๐‘๐‘; ๐‘๐‘ โ‰ค ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘ that contains the point ๐‘ฅ๐‘ฅ0,๐‘ฆ๐‘ฆ0 . If ๐‘“๐‘“ ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ & ๐‘‘๐‘‘๐‘ฆ๐‘ฆ/๐‘‘๐‘‘๐‘ฅ๐‘ฅ are continuous on ๐‘…๐‘…, then there exists some Interval ๐ผ๐ผ0: ๐‘ฅ๐‘ฅ0 โˆ’ โ„Ž, ๐‘ฅ๐‘ฅ0 + โ„Ž ; โ„Ž > 0 contained in [๐‘Ž๐‘Ž, ๐‘๐‘] and a unique function ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ defined on ๐ผ๐ผ0 that is a solution of the Initial Value Problem.

Page 7: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 7

Initial Value and Boundary Value Problems

Theorem: Existence of a Unique Solution (for nth order D.E.)

๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

Let ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ , ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ , โ€ฆ , ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ,๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ & ๐‘”๐‘” ๐‘ฅ๐‘ฅ be continuous on an interval ๐ผ๐ผ, and let ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ โ‰  0 โˆ€ ๐‘ฅ๐‘ฅ ๐œ–๐œ–๐ผ๐ผ If ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ0 is any point in ๐ผ๐ผ, a solution ๐‘ฆ๐‘ฆ(๐‘ฅ๐‘ฅ) of the IVP exists on the interval and is unique.

Page 8: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 8

Initial Value and Boundary Value Problems

E.g. 3๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ + 5๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆ๐‘ฆโ€ฒ + 7๐‘ฆ๐‘ฆ = 0 ๐‘ฆ๐‘ฆ 1 = 0; ๐‘ฆ๐‘ฆโ€ฒ 1 = 0; ๐‘ฆ๐‘ฆโ€ฒโ€ฒ 1 = 0 Solution: ๐’š๐’š = ๐ŸŽ๐ŸŽ Since D.E. is linear with constant coefficients, the unique solution theorem is fulfilled. Hence, ๐’š๐’š = ๐ŸŽ๐ŸŽ is the only solution on any interval containing x=1

Page 9: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 9

Initial Value and Boundary Value Problems

E.g. ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 12๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ 0 = 4;๐‘ฆ๐‘ฆโ€ฒ 0 = 1 Solution: ๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’†๐’†โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ 1. D.E. is linear with constant coefficients 2. The coefficients as well as ๐‘”๐‘”(๐‘ฅ๐‘ฅ) are continuous 3. ๐‘Ž๐‘Ž2(๐‘ฅ๐‘ฅ) = 1 โ‰  0 on any interval ๐ผ๐ผ containing ๐‘ฅ๐‘ฅ = 0

The unique solution theorem is fulfilled. Hence, ๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’†๐’†โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ is the unique solution on interval ๐‘ฐ๐‘ฐ

Page 10: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 10

Initial Value and Boundary Value Problems

Check: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 12๐‘ฅ๐‘ฅ; Solution: ๐‘ฆ๐‘ฆ = 3๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ Now, ๐‘ฆ๐‘ฆโ€ฒ = 6๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 2๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3 And, ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 4 3๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 12๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ + 12๐‘ฅ๐‘ฅ

Page 11: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 11

Initial Value and Boundary Value Problems

Check: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 12๐‘ฅ๐‘ฅ;๐‘ฆ๐‘ฆ = 3๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ Now, ๐‘ฆ๐‘ฆโ€ฒ = 6๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 2๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3 And, ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 4 3๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ = 12๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โˆ’ 12๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 4๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ + 12๐‘ฅ๐‘ฅ = 12๐‘ฅ๐‘ฅ Verified.

Page 12: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 12

Initial Value and Boundary Value Problems

E.g. ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 2๐‘ฆ๐‘ฆ = 6 ๐‘ฆ๐‘ฆ 0 = 3; ๐‘ฆ๐‘ฆโ€ฒ 0 = 1 Solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 in interval ๐ผ๐ผ โ‰ก (โˆ’โˆž,โˆž)

Page 13: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 13

Initial Value and Boundary Value Problems

Check: ๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = 2๐‘๐‘๐‘ฅ๐‘ฅ + 1; ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 2๐‘๐‘ ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 2๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 2๐‘๐‘ โˆ’ 2๐‘ฅ๐‘ฅ 2๐‘๐‘๐‘ฅ๐‘ฅ + 1 + 2 ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 = 2๐‘๐‘๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘๐‘๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 2๐‘๐‘๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ + 6 = 2๐‘๐‘๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘๐‘๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 2๐‘๐‘๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ + 6 ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 2๐‘ฆ๐‘ฆ = 6

Page 14: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 14

Initial Value and Boundary Value Problems

IVP Check: ๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 โ€ข ๐‘ฆ๐‘ฆ 0 = 3 โ‡’ 3 = ๐‘๐‘ 0 2 + 0 + 3 โ‡’ 3 = 3

โ€ข ๐‘ฆ๐‘ฆโ€ฒ 0 = 1

๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = 2๐‘๐‘๐‘ฅ๐‘ฅ + 1 1 = 2๐‘๐‘ 0 + 1 โ‡’ 1 = 1

โ€ข Note:

For ๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 , the initial conditions of ๐‘ฆ๐‘ฆ 0 = 3 & ๐‘ฆ๐‘ฆโ€ฒ 0 = 1 did not provide a unique value for ๐‘๐‘

Hence: ๐‘ฆ๐‘ฆ = ๐‘๐‘๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3 is a solution for the D.E. ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 2๐‘ฆ๐‘ฆ = 6 โˆ€๐‘๐‘ i.e. there is no unique solution But what w.r.t. unique solution theorem?

Page 15: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 15

Initial Value and Boundary Value Problems

Let us apply the theorem towards this example.

๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + 2 ๐‘ฆ๐‘ฆ = 6 Note: ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 = 0 ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ = 0 and ๐‘ฅ๐‘ฅ โˆˆ ๐ผ๐ผ = (โˆ’โˆž,โˆž) ๐’‚๐’‚๐Ÿ๐Ÿ ๐Ÿ๐Ÿ โ‰  ๐ŸŽ๐ŸŽโˆ€ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ โˆˆ ๐‘ฐ๐‘ฐ this condition is NOT satisfied

๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ = โˆ’2๐‘ฅ๐‘ฅ

๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ = 2

๐‘”๐‘” ๐‘ฅ๐‘ฅ = 6

Page 16: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 16

Initial Value and Boundary Value Problems

โ€ข BVP (Boundary Value Problem):

๐ท๐ท.๐ธ๐ธ. โˆถ ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

+ ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘” ๐‘ฅ๐‘ฅ

With ๐‘ฆ๐‘ฆ ๐‘Ž๐‘Ž = ๐‘ฆ๐‘ฆ0 & ๐‘ฆ๐‘ฆ ๐‘๐‘ = ๐‘ฆ๐‘ฆ1 Other boundary value conditions could be: ๐‘ฆ๐‘ฆ๐‘ฆ ๐‘Ž๐‘Ž = ๐‘ฆ๐‘ฆ0 & ๐‘ฆ๐‘ฆ ๐‘๐‘ = ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ ๐‘Ž๐‘Ž = ๐‘ฆ๐‘ฆ0 & ๐‘ฆ๐‘ฆ๐‘ฆ ๐‘๐‘ = ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ๐‘ฆ ๐‘Ž๐‘Ž = ๐‘ฆ๐‘ฆ0 & ๐‘ฆ๐‘ฆ๐‘ฆ ๐‘๐‘ = ๐‘ฆ๐‘ฆ1 General Boundary Conditions: ๐‘จ๐‘จ๐Ÿ๐Ÿ๐’š๐’š ๐’‚๐’‚ + ๐‘ฉ๐‘ฉ๐Ÿ๐Ÿ๐’š๐’šโ€ฒ ๐’‚๐’‚ = ๐‘ช๐‘ช๐Ÿ๐Ÿ ๐‘จ๐‘จ๐Ÿ๐Ÿ๐’š๐’š ๐’ƒ๐’ƒ + ๐‘ฉ๐‘ฉ๐Ÿ๐Ÿ๐’š๐’šโ€ฒ ๐’ƒ๐’ƒ = ๐‘ช๐‘ช๐Ÿ๐Ÿ

Boundary conditions

Page 17: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 17

Initial Value and Boundary Value Problems

Note: Even when the conditions for Unique Solution theorem are met, a BVP may have: 1) Many solutions 2) Unique Solution 3) No solution

Page 18: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 18

Initial Value and Boundary Value Problems

E.g. ๐‘‘๐‘‘2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก2

+ 16๐‘ฅ๐‘ฅ = 0

Solution: ๐‘ฅ๐‘ฅ = ๐‘๐‘1 cos4๐‘ก๐‘ก + ๐‘๐‘2 sin 4๐‘ก๐‘ก Check: ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก

= โˆ’4๐‘๐‘1 sin4๐‘ก๐‘ก + 4๐‘๐‘2 cos4๐‘ก๐‘ก

๐‘‘๐‘‘2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก2

= โˆ’16๐‘๐‘1 cos4๐‘ก๐‘ก โˆ’ 16๐‘๐‘2 sin 4๐‘ก๐‘ก

๐‘‘๐‘‘2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก2

+ 16๐‘ฅ๐‘ฅ = โˆ’16๐‘๐‘1 cos4๐‘ก๐‘ก โˆ’ 16๐‘๐‘2 sin 4๐‘ก๐‘ก + 16 ๐‘๐‘1 cos4๐‘ก๐‘ก + ๐‘๐‘2 sin4๐‘ก๐‘ก = 0

Page 19: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 19

Initial Value and Boundary Value Problems

Now, let us consider these different sets of BV Conditions: ๐‘ฅ๐‘ฅ = ๐‘๐‘1 cos4๐‘ก๐‘ก + ๐‘๐‘2 sin 4๐‘ก๐‘ก

1) ๐‘ฅ๐‘ฅ 0 = 0; ๐‘ฅ๐‘ฅ๐œ‹๐œ‹2

= 0

โ€ข ๐‘ฅ๐‘ฅ 0 = 0 โ‡’ 0 = ๐‘๐‘1 1 + ๐‘๐‘2 0 โ‡’ ๐’„๐’„๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

โ€ข ๐‘ฅ๐‘ฅ ๐œ‹๐œ‹2

= 0 โ‡’ 0 = ๐‘๐‘1 cos(2๐œ‹๐œ‹) + ๐‘๐‘2 sin(2๐œ‹๐œ‹) โ‡’ 0 = ๐‘๐‘1 1 + ๐‘๐‘2 0

โ€“ But ๐‘๐‘1 = 0

โ€“ That means, ๐‘๐‘2 0 = 0

โ€“ Implies ๐‘๐‘2 can be anything

โ€ข Infinite solutions since ๐‘๐‘2 can be anything

Page 20: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 20

Initial Value and Boundary Value Problems

2) ๐‘ฅ๐‘ฅ 0 = 0; ๐‘ฅ๐‘ฅ๐œ‹๐œ‹8

= 0

โ€ข ๐‘ฅ๐‘ฅ 0 = 0 โ‡’ 0 = ๐‘๐‘1 1 + ๐‘๐‘2 0 โ‡’ ๐’„๐’„๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

โ€ข ๐‘ฅ๐‘ฅ ๐œ‹๐œ‹8

= 0 โ‡’ 0 = ๐‘๐‘1 cos ๐œ‹๐œ‹2

+ ๐‘๐‘2 sin ๐œ‹๐œ‹2โ‡’ 0 = ๐‘๐‘1 0 + ๐‘๐‘2 1

โ€“ But ๐‘๐‘1 = 0

โ€“ That means, ๐‘๐‘2 1 = 0

โ€“ Implies ๐’„๐’„๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

โ€“ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ is the solution of this new boundary problem

โ€ข Unique solution โ‰ก ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

๐‘ฅ๐‘ฅ = ๐‘๐‘1 cos4๐‘ก๐‘ก + ๐‘๐‘2 sin4๐‘ก๐‘ก

Page 21: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 21

Initial Value and Boundary Value Problems

3) ๐‘ฅ๐‘ฅ 0 = 0;๐‘ฅ๐‘ฅ๐œ‹๐œ‹2

= 1

โ€ข ๐‘ฅ๐‘ฅ 0 = 0 โ‡’ 0 = ๐‘๐‘1 1 + ๐‘๐‘2 0 โ‡’ ๐’„๐’„๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

โ€ข ๐‘ฅ๐‘ฅ ๐œ‹๐œ‹2

= 1 โ‡’ 1 = ๐‘๐‘1 cos 4๐œ‹๐œ‹ โˆ™ ๐œ‹๐œ‹2

+ ๐‘๐‘2 sin 4๐œ‹๐œ‹ โˆ™ ๐œ‹๐œ‹2โ‡’ 1 = ๐‘๐‘1 cos(2๐œ‹๐œ‹) + ๐‘๐‘2 sin(2๐œ‹๐œ‹)

โ€“ 1 = 0 1 + ๐‘๐‘2 0

โ€“ That means, ๐‘๐‘2 0 = 1

โ€“ Implies ๐’„๐’„๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

= ๐‘ต๐‘ต.๐‘ซ๐‘ซ.

โ€“ Not possible to find ๐‘๐‘2

โ€ข No solution for BVP

๐‘ฅ๐‘ฅ = ๐‘๐‘1 cos4๐‘ก๐‘ก + ๐‘๐‘2 sin4๐‘ก๐‘ก

Page 22: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 22

Differential Operators โ€œDโ€

E.g. ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐ท๐ท๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ2

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 =๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐ท๐ท ๐ท๐ท๐‘ฆ๐‘ฆ = ๐ท๐ท2๐‘ฆ๐‘ฆ

i.e. ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

cos4๐‘ฅ๐‘ฅ = โˆ’4 sin4๐‘ฅ๐‘ฅ โ‡’ ๐ท๐ท cos4๐‘ฅ๐‘ฅ = โˆ’4 sin 4๐‘ฅ๐‘ฅ

โ‡’ ๐ผ๐ผ๐‘›๐‘› ๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘”๐‘”: ๐’…๐’…๐’๐’๐’š๐’š๐’…๐’…๐Ÿ๐Ÿ๐’๐’ = ๐‘ซ๐‘ซ๐’๐’๐’š๐’š

Page 23: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 23

Differential Equations

Note: โ€ข ๐ท๐ท ๐‘๐‘ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = ๐‘๐‘ ๐ท๐ท๐‘“๐‘“(๐‘ฅ๐‘ฅ)

โ€ข ๐ท๐ท ๐‘“๐‘“ ๐‘ฅ๐‘ฅ + ๐‘”๐‘” ๐‘ฅ๐‘ฅ = ๐ท๐ท๐‘“๐‘“ ๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘”๐‘”(๐‘ฅ๐‘ฅ)

โ€ข ๐ท๐ท ๐›ผ๐›ผ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ + ๐›ฝ๐›ฝ ๐‘”๐‘” ๐‘ฅ๐‘ฅ = ๐›ผ๐›ผ ๐ท๐ท ๐‘“๐‘“ ๐‘ฅ๐‘ฅ + ๐›ฝ๐›ฝ ๐ท๐ท ๐‘”๐‘” ๐‘ฅ๐‘ฅ

โ€“ ๐›ผ๐›ผ,๐›ฝ๐›ฝ are constants

Linear

Page 24: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 24

Differential Equations

Let ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 5๐‘ฆ๐‘ฆโ€ฒ + 6๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ โˆ’ 3

This can be written was ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2+ 5 ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ+ 6๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ โˆ’ 3

Which can also be written as: ๐ท๐ท2๐‘ฆ๐‘ฆ + 5๐ท๐ท๐‘ฆ๐‘ฆ + 6๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ โˆ’ 3

Similarly, ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘

๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

+ โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0

can be written as ๐ฟ๐ฟ ๐‘ฆ๐‘ฆ = 0

And, ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘

๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

+ โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

can be written as ๐ฟ๐ฟ ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

Page 25: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 25

Differential Equations Definition: ๐‘›๐‘›๐‘ก๐‘ก๐‘กorder differential operator is:

๐ฟ๐ฟ = ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐ท๐ท๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐ท๐ท๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐ท๐ท + ๐‘Ž๐‘Ž0(๐‘ฅ๐‘ฅ)

Page 26: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 26

Superposition Principle

Theorem: Superposition Principle โ€“ Homogeneous Equations Let ๐‘ฆ๐‘ฆ1, ๐‘ฆ๐‘ฆ2, โ€ฆ ,๐‘ฆ๐‘ฆ๐‘˜๐‘˜ be solutions of the Homogeneous ๐‘›๐‘›๐‘ก๐‘ก๐‘ก order differential equation on an interval ๐ผ๐ผ. Then the linear combination

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ + โ‹ฏ+ ๐‘๐‘๐‘˜๐‘˜๐‘ฆ๐‘ฆ๐‘˜๐‘˜ ๐‘ฅ๐‘ฅ ,where ๐‘๐‘1, ๐‘๐‘2, โ€ฆ , ๐‘๐‘๐‘˜๐‘˜ as are arbitrary constants, is also a solution on ๐ผ๐ผ Corollaries: โ€ข A constant multiple ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) of the solution ๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) of a homogeneous

linear differential equation is also a solution

โ€ข A homogeneous linear differential equation always possesses the trivial solution ๐‘ฆ๐‘ฆ = 0

Page 27: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 27

Superposition Principle

E.g. ๐‘ฅ๐‘ฅ3 ๐‘‘๐‘‘3๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ3โˆ’ 2๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ+ 4๐‘ฆ๐‘ฆ = 0

And ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ2 & ๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ are both solutions Check: First solution: ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ โ‡’

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = 2 &

๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3 = 0

Implies, ๐‘ฅ๐‘ฅ3 0 โˆ’ 2๐‘ฅ๐‘ฅ 2๐‘ฅ๐‘ฅ + 4 ๐‘ฅ๐‘ฅ2 = โˆ’4๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ2 = 0

Page 28: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 28

Superposition Principle

E.g. ๐‘ฅ๐‘ฅ3 ๐‘‘๐‘‘3๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ3โˆ’ 2๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ+ 4๐‘ฆ๐‘ฆ = 0

And ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ2 & ๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ are both solutions Check: Second solution: ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= 2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ21๐‘ฅ๐‘ฅ

= 2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

= 2 ln ๐‘ฅ๐‘ฅ +๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

+ 1 = 2 ln ๐‘ฅ๐‘ฅ + 3 โ‡’๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3

=2๐‘ฅ๐‘ฅ

Implies, ๐‘ฅ๐‘ฅ3 2๐‘ฅ๐‘ฅโˆ’ 2๐‘ฅ๐‘ฅ 2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + 4 ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ = 0

By superposition ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ is also a solution

Page 29: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 29

Linear (Dependence & Independence)

Definition: โ€ข A set of functions ๐‘“๐‘“1 ๐‘ฅ๐‘ฅ ,๐‘“๐‘“2 ๐‘ฅ๐‘ฅ , โ€ฆ ,๐‘“๐‘“๐‘›๐‘›(๐‘ฅ๐‘ฅ) is said to be

linearly dependent on an Interval ๐‘ฐ๐‘ฐ if there exists constants ๐’„๐’„๐Ÿ๐Ÿ, ๐’„๐’„๐Ÿ๐Ÿ, โ€ฆ , ๐’„๐’„๐’๐’ not all zero such that:

๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + โ‹ฏ+ ๐’„๐’„๐’๐’๐’‡๐’‡๐’๐’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

โ€ข A set of functions is linearly independent on an interval if the only constants for which

๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + โ‹ฏ+ ๐’„๐’„๐’๐’๐’‡๐’‡๐’๐’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ are ๐’„๐’„๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ‘๐Ÿ‘ = โ‹ฏ = ๐’„๐’„๐’๐’ = ๐ŸŽ๐ŸŽ

Page 30: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 30

Linear (Dependence & Independence)

Definition: โ€ข A set of functions ๐‘“๐‘“1 ๐‘ฅ๐‘ฅ ,๐‘“๐‘“2 ๐‘ฅ๐‘ฅ , โ€ฆ ,๐‘“๐‘“๐‘›๐‘›(๐‘ฅ๐‘ฅ) is said to be

linearly dependent on an Interval ๐‘ฐ๐‘ฐ if there exists constants ๐’„๐’„๐Ÿ๐Ÿ, ๐’„๐’„๐Ÿ๐Ÿ, โ€ฆ , ๐’„๐’„๐’๐’ not all zero such that:

๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + โ‹ฏ+ ๐’„๐’„๐’๐’๐’‡๐’‡๐’๐’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

โ€ข A set of functions is linearly independent on an interval if the only constants for which

๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’‡๐’‡๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + โ‹ฏ+ ๐’„๐’„๐’๐’๐’‡๐’‡๐’๐’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ are ๐’„๐’„๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ‘๐Ÿ‘ = โ‹ฏ = ๐’„๐’„๐’๐’ = ๐ŸŽ๐ŸŽ

Page 31: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 31

Wronskian

Definition: Suppose each of the functions ๐‘“๐‘“1 ๐‘ฅ๐‘ฅ ,๐‘“๐‘“2 ๐‘ฅ๐‘ฅ , โ€ฆ ,๐‘“๐‘“๐‘›๐‘›(๐‘ฅ๐‘ฅ) possesses at least ๐‘›๐‘› โˆ’ 1 derivatives Then

๐‘Š๐‘Š ๐‘“๐‘“1,๐‘“๐‘“2, โ€ฆ ,๐‘“๐‘“๐‘›๐‘› =

๐‘“๐‘“1 ๐‘“๐‘“2 โ€ฆ โ‹ฏ ๐‘“๐‘“๐‘›๐‘›๐‘“๐‘“1โ€ฒ ๐‘“๐‘“2โ€ฒ โ€ฆ โ€ฆ ๐‘“๐‘“๐‘›๐‘›โ€ฒ

โ‹ฎ๐‘“๐‘“1

(๐‘›๐‘›โˆ’1) ๐‘“๐‘“2(๐‘›๐‘›โˆ’1) โ€ฆ ๐‘“๐‘“๐‘›๐‘›

(๐‘›๐‘›โˆ’1)

Page 32: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 32

Wronskian

Criterion for Linearly Independent solutions Let ๐‘ฆ๐‘ฆ1, ๐‘ฆ๐‘ฆ2, โ€ฆ ,๐‘ฆ๐‘ฆ๐‘›๐‘› be n-solutions of the homogeneous linear nth order differential equation on an interval ๐ผ๐ผ. Then the set of solutions is linearly independent on ๐ผ๐ผ if and only if

๐‘พ๐‘พ ๐’‡๐’‡๐Ÿ๐Ÿ,๐’‡๐’‡๐Ÿ๐Ÿ, โ€ฆ ,๐’‡๐’‡๐’๐’ โ‰  ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

Page 33: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 33

Wronskian

E.g. ๐‘ฆ๐‘ฆ1 = ๐‘’๐‘’3๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ2 = ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ are both the solutions of the homogeneous linear equation ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 9๐‘ฆ๐‘ฆ = 0; ๐ผ๐ผ = (โˆ’โˆž,โˆž) Check: ๐‘Š๐‘Š ๐‘’๐‘’3๐‘ฅ๐‘ฅ, ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ = ๐‘’๐‘’3๐‘ฅ๐‘ฅ ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ

3๐‘’๐‘’3๐‘ฅ๐‘ฅ โˆ’3๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ

= ๐‘’๐‘’3๐‘ฅ๐‘ฅ โˆ’3๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ 3๐‘’๐‘’3๐‘ฅ๐‘ฅ = โˆ’3 โˆ’ 3 = โˆ’6 โ‰  0 Thus, ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ is the general solution

๐‘พ๐‘พ ๐’‡๐’‡๐Ÿ๐Ÿ,๐’‡๐’‡๐Ÿ๐Ÿ, โ€ฆ ,๐’‡๐’‡๐’๐’ โ‰  ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

Page 34: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 34

Wronskian

E.g. ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 0 The functions ๐‘ฆ๐‘ฆ1 = ๐‘’๐‘’๐‘ฅ๐‘ฅ;๐‘ฆ๐‘ฆ2 = ๐‘’๐‘’2๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ3 = ๐‘’๐‘’3๐‘ฅ๐‘ฅ satisfy the D.E. above Check:

๐‘Š๐‘Š ๐‘’๐‘’๐‘ฅ๐‘ฅ, ๐‘’๐‘’2๐‘ฅ๐‘ฅ, ๐‘’๐‘’3๐‘ฅ๐‘ฅ =๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘’๐‘’3๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ 2๐‘’๐‘’2๐‘ฅ๐‘ฅ 3๐‘’๐‘’3๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ 4๐‘’๐‘’2๐‘ฅ๐‘ฅ 9๐‘’๐‘’3๐‘ฅ๐‘ฅ

= ๐‘’๐‘’๐‘ฅ๐‘ฅ 2๐‘’๐‘’2๐‘ฅ๐‘ฅ 3๐‘’๐‘’3๐‘ฅ๐‘ฅ

4๐‘’๐‘’2๐‘ฅ๐‘ฅ 9๐‘’๐‘’3๐‘ฅ๐‘ฅโˆ’ ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ 3๐‘’๐‘’3๐‘ฅ๐‘ฅ

๐‘’๐‘’๐‘ฅ๐‘ฅ 9๐‘’๐‘’3๐‘ฅ๐‘ฅ+ ๐‘’๐‘’3๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ 2๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘’๐‘’๐‘ฅ๐‘ฅ 4๐‘’๐‘’2๐‘ฅ๐‘ฅ= ๐‘Ž๐‘Ž๐‘“๐‘“๐‘ก๐‘ก๐‘’๐‘’๐‘“๐‘“ ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘›๐‘”๐‘”

= 2๐‘’๐‘’6๐‘ฅ๐‘ฅ โ‰  0 Hence, ๐’†๐’†๐Ÿ๐Ÿ, ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐’†๐’†๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ form a fundamental set & ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ‘๐Ÿ‘๐’†๐’†๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ is the general solution

๐‘พ๐‘พ ๐’‡๐’‡๐Ÿ๐Ÿ,๐’‡๐’‡๐Ÿ๐Ÿ, โ€ฆ ,๐’‡๐’‡๐’๐’ โ‰  ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

Page 35: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 35

Non Homogeneous Equations

๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›

+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

+ โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

,where ๐‘”๐‘”(๐‘ฅ๐‘ฅ) โ‰  0 โ€ข If ๐‘ฆ๐‘ฆ๐‘๐‘ (free of arbitrary parameter) satisfies the equation above, ๐‘ฆ๐‘ฆ๐‘๐‘ is called

particular solution E.g. ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 9๐‘ฆ๐‘ฆ = 27 Let ๐‘ฆ๐‘ฆ๐‘๐‘ = 3 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 9๐‘ฆ๐‘ฆ = 0 + 9 3 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ€ข If ๐‘ฆ๐‘ฆ1,๐‘ฆ๐‘ฆ2, โ€ฆ , ๐‘ฆ๐‘ฆ๐‘›๐‘› are solutions of Homogeneous equations and ๐‘ฆ๐‘ฆ๐‘๐‘ is any particular

solution,

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ + โ‹ฏ+ ๐‘๐‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘›๐‘› ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ๐‘๐‘ a

General solution Complementary S๐‘“๐‘“๐‘”๐‘”๐‘œ๐‘œ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘› ๐’š๐’š๐’„๐’„

Particular Solution ๐’š๐’š๐’‘๐’‘

Page 36: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 36

Non Homogeneous Equations

E.g. ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 3๐‘ฅ๐‘ฅ non-homogeneous equation

Let ๐’š๐’š๐’‘๐’‘ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ. Is it a solution?

Page 37: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 37

Non Homogeneous Equations

E.g.

๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = โˆ’12

; ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = 0; ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒโ€ฒ = 0

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 0 โˆ’ 6 0 + 11 โˆ’12

โˆ’ 6 โˆ’1112

โˆ’12๐‘ฅ๐‘ฅ

= โˆ’112 +

112 + 3๐‘ฅ๐‘ฅ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

Verified.

๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 3๐‘ฅ๐‘ฅ ; ๐‘ฆ๐‘ฆ๐‘๐‘= โˆ’1112โˆ’ 1

2๐‘ฅ๐‘ฅ

Page 38: Chapter 3-Higher Order Differential Equations

Theory of Linear Equations

9/30/2014 Dr. Eli Saber 38

Non Homogeneous Equations

Homogeneous Equation: ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 0 Let ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘’๐‘’3๐‘ฅ๐‘ฅ be a complimentary solution Hence, the general solution is given by:

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘’๐‘’3๐‘ฅ๐‘ฅ + (โˆ’1112 โˆ’

12 ๐‘ฅ๐‘ฅ)

๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆ๐‘ฆโ€ฒ โˆ’ 6๐‘ฆ๐‘ฆ = 3๐‘ฅ๐‘ฅ ; ๐‘ฆ๐‘ฆ๐‘๐‘= โˆ’1112โˆ’ 1

2๐‘ฅ๐‘ฅ

๐’š๐’š๐’„๐’„ ๐’š๐’š๐’‘๐’‘

Page 39: Chapter 3-Higher Order Differential Equations

Section 3.2 Reduction of Order

9/30/2014 Dr. Eli Saber 39

Page 40: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 40

Introduction

2nd ๐‘“๐‘“๐‘“๐‘“๐‘‘๐‘‘๐‘’๐‘’๐‘“๐‘“ ๐ป๐ป๐‘“๐‘“๐‘š๐‘š๐‘“๐‘“๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘œ๐‘œ๐‘ ๐‘  ๐ท๐ท.๐ธ๐ธ.: ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0 Solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2 Where ๐‘ฆ๐‘ฆ1&๐‘ฆ๐‘ฆ2 are linearly independent (L.I.) solutions on ๐ผ๐ผ Objective: Assume that we know ๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) solution seek a 2nd solution ๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) such that ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) are independent on ๐ผ๐ผ

Page 41: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 41

Introduction

Approach:

โ€ข Recall if ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) are L.I. => ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1

is non-constant

๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1

= ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘“๐‘“๐‘“๐‘“ ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ)

Seek to find ๐‘œ๐‘œ(๐‘ฅ๐‘ฅ) in order to find

๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ = ๐’–๐’– ๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

Page 42: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 42

E.g. Given ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฆ๐‘ฆ = 0; ๐ผ๐ผ = (โˆ’โˆž,โˆž) and assume that ๐‘ฆ๐‘ฆ1 = ๐‘’๐‘’๐‘ฅ๐‘ฅ is a solution. Find

a second solution ๐‘ฆ๐‘ฆ2 Check:

๐‘ฆ๐‘ฆ = ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = ๐‘’๐‘’๐‘ฅ๐‘ฅ

And substituting back in the equation, ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฆ๐‘ฆ = ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’๐‘ฅ๐‘ฅ = ๐ŸŽ๐ŸŽ

Page 43: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 43

Let ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ

Hence, ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ = 0 โ‡’ ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ = 0

Page 44: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 44

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

โˆ’ ๐‘ฆ๐‘ฆ = 0 โ‡’ 2๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ = 0

โ‡’ ๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ = 0 But ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‰  0. โ‡’ ๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ = 0 Let ๐‘ค๐‘ค = ๐‘œ๐‘œ๐‘ฆ change of variable โ‡’ ๐‘ค๐‘คโ€ฒ + 2๐‘ค๐‘ค = 0 (Linear First Order D.E.) โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ 2๐‘ค๐‘ค = 0

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= โˆ’2๐‘ค๐‘ค

Page 45: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 45

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= โˆ’2๐‘ค๐‘ค

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= โˆ’2 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๏ฟฝ๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค = ๏ฟฝโˆ’2๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ln ๐‘ค๐‘ค = โˆ’2๐‘ฅ๐‘ฅ + ๐‘๐‘ โ‡’ ๐‘ค๐‘ค = ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ+๐‘๐‘ = ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘๐‘ = ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ ๐‘๐‘1 โ‡’ ๐‘ค๐‘ค = ๐‘๐‘1๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ

Page 46: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 46

Introduction

๐‘ค๐‘ค = ๐‘๐‘1๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ

But ๐‘ค๐‘ค = ๐‘œ๐‘œโ€ฒ โ‡’ ๐‘œ๐‘œโ€ฒ = ๐‘๐‘1๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ โ‡’๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘๐‘1๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ

Hence, โˆซ๐‘‘๐‘‘๐‘œ๐‘œ = โˆซ ๐‘๐‘1๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ = โˆ’ 12 ๐‘๐‘1๐‘’๐‘’

โˆ’2๐‘ฅ๐‘ฅ + ๐‘๐‘2

Hence, ๐‘ฆ๐‘ฆ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ = โˆ’๐‘๐‘12๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ ๐‘ฆ๐‘ฆ = โˆ’๐‘๐‘12 ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘ฅ๐‘ฅ

Page 47: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 47

๐‘ฆ๐‘ฆ = โˆ’๐‘๐‘12 ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘ฅ๐‘ฅ

Let, ๐‘๐‘1 = โˆ’2 & ๐‘๐‘2 = 0 โ‡’ ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ Let us check for independence in the two solutions ๐‘Š๐‘Š ๐‘’๐‘’๐‘ฅ๐‘ฅ, ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ

๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ = โˆ’๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ = โˆ’1 โˆ’ 1 = โˆ’2 โ‰  0

๐‘’๐‘’๐‘ฅ๐‘ฅ & ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ are independent

General solution: ๐‘ฆ๐‘ฆ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ

Wronskian

Page 48: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 48

Check: ๐‘ฆ๐‘ฆ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ

Hence, ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ โˆ’ ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ = ๐ŸŽ๐ŸŽ

Page 49: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 49

General case: ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0

๐‘‘๐‘‘๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘‘๐‘‘๐‘’๐‘’ ๐‘๐‘๐‘ฆ๐‘ฆ ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ +๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒ +๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ = 0

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0 ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ & ๐‘„๐‘„(๐‘ฅ๐‘ฅ) are continuous on ๐ผ๐ผ

Assume ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ is a known solution on ๐ผ๐ผ and ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ โ‰  0โˆ€๐‘ฅ๐‘ฅ โˆˆ ๐ผ๐ผ

P(x) Q(x)

Page 50: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 50

Introduction

Let ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒ ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1โ€ฒ ๐‘ฅ๐‘ฅ + ๐‘œ๐‘œโ€ฒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ โ‡’ ๐’š๐’šโ€ฒ = ๐’–๐’–๐’š๐’š๐Ÿ๐Ÿโ€ฒ + ๐’–๐’–โ€ฒ๐’š๐’š๐Ÿ๐Ÿ โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 โ‡’ ๐’š๐’šโ€ฒโ€ฒ = ๐’–๐’–๐’š๐’š๐Ÿ๐Ÿโ€ฒโ€ฒ + ๐Ÿ๐Ÿ๐’–๐’–โ€ฒ๐’š๐’š๐Ÿ๐Ÿโ€ฒ + ๐’–๐’–โ€ฒโ€ฒ๐’š๐’š๐Ÿ๐Ÿ Now, ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0 Replacing, ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1 = 0

Page 51: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 51

Rearranging terms, โ‡’ ๐‘œ๐‘œ ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘„๐‘„๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ1๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘ƒ๐‘ƒ๐‘ฆ๐‘ฆ1 ๐‘œ๐‘œโ€ฒ = 0 โ‡’ ๐‘ฆ๐‘ฆ1๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘ƒ๐‘ƒ๐‘ฆ๐‘ฆ1 ๐‘œ๐‘œโ€ฒ = 0 Let ๐‘ค๐‘ค = ๐‘œ๐‘œ๐‘ฆ change of variables ๐‘ค๐‘คโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ1๐‘ค๐‘คโ€ฒ + 2๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘ƒ๐‘ƒ๐‘ฆ๐‘ฆ1 ๐‘ค๐‘ค = 0 linear and separable

โ‡’ ๐‘ฆ๐‘ฆ1๐‘ค๐‘คโ€ฒ = โˆ’ 2๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘ƒ๐‘ƒ๐‘ฆ๐‘ฆ1 ๐‘ค๐‘ค ๐‘“๐‘“๐‘“๐‘“ ๐‘ฆ๐‘ฆ1๐‘‘๐‘‘๐‘ค๐‘ค๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= โˆ’ 2๐‘‘๐‘‘๐‘ฆ๐‘ฆ1๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘ƒ๐‘ƒ ๐‘ฆ๐‘ฆ1 ๐‘ค๐‘ค

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= โˆ’1๐‘ฆ๐‘ฆ1

2๐‘‘๐‘‘๐‘ฆ๐‘ฆ1๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘ƒ๐‘ƒ ๐‘ฆ๐‘ฆ1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

=0 since ๐‘ฆ๐‘ฆ1 is a solution

๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1 = 0

Page 52: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 52

๏ฟฝ๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= ๏ฟฝโˆ’1๐‘ฆ๐‘ฆ1

2๐‘‘๐‘‘๐‘ฆ๐‘ฆ1๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘ƒ๐‘ƒ ๐‘ฆ๐‘ฆ1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๏ฟฝ๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= ๏ฟฝโˆ’2๐‘‘๐‘‘๐‘ฆ๐‘ฆ1๐‘ฆ๐‘ฆ1

โˆ’๏ฟฝ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ln ๐‘ค๐‘ค = โˆ’2 ln ๐‘ฆ๐‘ฆ1 โˆ’ ๏ฟฝ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘

โ‡’ ln ๐‘ค๐‘ค + 2 ln ๐‘ฆ๐‘ฆ1 = โˆ’๏ฟฝ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘ โ‡’ ln ๐‘ค๐‘ค + ln ๐‘ฆ๐‘ฆ12 = โˆ’๏ฟฝ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘

โ‡’ ln ๐‘ค๐‘ค๐‘ฆ๐‘ฆ12 = โˆ’๏ฟฝ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘

โ‡’ ๐‘ค๐‘ค๐‘ฆ๐‘ฆ12 = ๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ +๐‘๐‘ = ๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Page 53: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 53

๐‘ค๐‘ค๐‘ฆ๐‘ฆ12 = ๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โ‡’ ๐‘ค๐‘ค = ๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ /๐‘ฆ๐‘ฆ12 But,

๐‘ค๐‘ค = ๐‘œ๐‘œโ€ฒ โ‡’ ๐‘ค๐‘ค = ๐‘œ๐‘œโ€ฒ =๐‘‘๐‘‘๐‘œ๐‘œ๐‘‘๐‘‘๐‘ฅ๐‘ฅ =

๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ12

โ‡’ ๐‘‘๐‘‘๐‘œ๐‘œ =๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ12 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โ‡’ ๏ฟฝ๐‘‘๐‘‘๐‘œ๐‘œ = ๏ฟฝ

๐‘๐‘1๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ12 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ = ๐‘๐‘1 ๏ฟฝ๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ12๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘2

Let ๐‘๐‘1 = 1 & ๐‘๐‘2 = 0 & note: ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ)

โ‡’ ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ = ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ ๏ฟฝ๐’†๐’†โˆ’ โˆซ ๐‘ท๐‘ท๐’…๐’…๐Ÿ๐Ÿ

๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐’…๐’…๐Ÿ๐Ÿ ; ๐‘ท๐‘ท ๐Ÿ๐Ÿ =

๐’‚๐’‚๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

Page 54: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 54

E.g. ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 0; ๐ผ๐ผ โ‰ก 0,โˆž Let ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 be a solution. Find a 2nd solution ๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) and the general solution ๐‘ฆ๐‘ฆ(๐‘ฅ๐‘ฅ) Solution: ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 0

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆโ€ฒ +

4๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ = 0

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + โˆ’ 3๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ +

4๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ = 0

P(x) Q(x)

Page 55: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 55

According to our derivation, ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ โˆซ ๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘ฆ๐‘ฆ12(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ2 ๏ฟฝ๐‘’๐‘’โˆ’ โˆซ โˆ’3๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ2 2 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ2 ๏ฟฝ๐‘’๐‘’โˆซ

3๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ4๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ2 ๏ฟฝ๐‘’๐‘’3 ln ๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ4๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 ๏ฟฝ

๐‘’๐‘’ln ๐‘ฅ๐‘ฅ3

๐‘ฅ๐‘ฅ4๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 ๏ฟฝ

๐‘ฅ๐‘ฅ3

๐‘ฅ๐‘ฅ4๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ2 ๏ฟฝ1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ

โ‡’ ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ General solution: ๐’š๐’š ๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 0

Page 56: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 56

Check: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ2 + ๐‘๐‘2 ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ

โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = 2 ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2 2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ +๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ

โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = 2๐‘๐‘1๐‘ฅ๐‘ฅ + 2๐‘๐‘2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 2๐‘๐‘1 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ +๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘๐‘2

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 2๐‘๐‘1 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ + 2๐‘๐‘2 + ๐‘๐‘2 = 2๐‘๐‘1 + 3๐‘๐‘2 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 0

Page 57: Chapter 3-Higher Order Differential Equations

Reduction of Order

9/30/2014 Dr. Eli Saber 57

We know, ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ2 + ๐‘๐‘2 ๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ = 2๐‘๐‘1๐‘ฅ๐‘ฅ + 2๐‘๐‘2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = 2๐‘๐‘1 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ + 2๐‘๐‘2 + ๐‘๐‘2 = 2๐‘๐‘1 + 3๐‘๐‘2 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ Replace in D.E.: ๐‘ฅ๐‘ฅ2 2๐‘๐‘1 + 3๐‘๐‘2 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ โˆ’ 3x 2๐‘๐‘1๐‘ฅ๐‘ฅ + 2๐‘๐‘2๐‘ฅ๐‘ฅ ln ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ + 4 ๐‘๐‘1๐‘ฅ๐‘ฅ2 + ๐‘๐‘2๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ = 2๐‘๐‘1๐‘ฅ๐‘ฅ2 + 3๐‘๐‘2๐‘ฅ๐‘ฅ2 + 2๐‘๐‘2 ln ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘๐‘1๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘๐‘2๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ โˆ’ 3๐‘๐‘2๐‘ฅ๐‘ฅ2 + 4๐‘๐‘1๐‘ฅ๐‘ฅ2

+ 4๐‘๐‘2๐‘ฅ๐‘ฅ2 ln ๐‘ฅ๐‘ฅ = ๐ŸŽ๐ŸŽ

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 0

Page 58: Chapter 3-Higher Order Differential Equations

Section 3.3 Homogeneous Linear Eq. with

Constant Coefficients

9/30/2014 Dr. Eli Saber 58

Page 59: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 59

Introduction

๐’‚๐’‚๐’๐’๐’š๐’š ๐’๐’ + ๐’‚๐’‚๐’๐’โˆ’๐Ÿ๐Ÿ๐’š๐’š(๐’๐’โˆ’๐Ÿ๐Ÿ) + โ‹ฏ+ ๐’‚๐’‚๐Ÿ๐Ÿ๐’š๐’šโ€ฒ + ๐’‚๐’‚๐ŸŽ๐ŸŽ๐’š๐’š = ๐ŸŽ๐ŸŽ โ€ข ๐‘Ž๐‘Ž๐‘–๐‘–; ๐‘ ๐‘  = 0,1, โ€ฆ ,๐‘›๐‘› are real constant coefficients and ๐‘Ž๐‘Ž๐‘›๐‘› โ‰  0 Objective: To find a solution to the above homogeneous solution

๐‘›๐‘›๐‘ก๐‘ก๐‘ก order Linear Constant Coefficients Differential Equation

Page 60: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 60

Auxiliary Equation

Consider the special Case ( 2nd order LCCDE) given as: ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘๐‘๐‘ฆ๐‘ฆโ€ฒ + ๐‘๐‘๐‘ฆ๐‘ฆ = 0 Try a solution of the form ๐‘ฆ๐‘ฆ = ๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘š๐‘š๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘š๐‘š2๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ Substituting back in the given D.E., ๐‘Ž๐‘Ž ๐‘š๐‘š2๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ + ๐‘๐‘ ๐‘š๐‘š๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ + ๐‘๐‘ ๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ = 0 โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š2 + ๐‘๐‘๐‘š๐‘š + ๐‘๐‘ ๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ = 0 Now, ๐’†๐’†๐’Ž๐’Ž๐Ÿ๐Ÿ โ‰  ๐ŸŽ๐ŸŽ โˆ€๐Ÿ๐Ÿ๐’“๐’“๐’†๐’†๐’‚๐’‚๐’“๐’“ โ‡’ ๐’‚๐’‚๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’Ž๐’Ž + ๐’„๐’„ = ๐ŸŽ๐ŸŽ

Auxiliary Eqn. of the LCCDE

Page 61: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 61

Introduction

๐’‚๐’‚๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’Ž๐’Ž + ๐’„๐’„ = ๐ŸŽ๐ŸŽ Auxiliary Eqn. of the LCCDE The only way that ๐‘ฆ๐‘ฆ = ๐‘’๐‘’๐‘š๐‘š๐‘ฅ๐‘ฅ can satisfy the D.E. is if ๐‘Ž๐‘Ž๐‘š๐‘š2 + ๐‘๐‘๐‘š๐‘š + ๐‘๐‘ = 0 Hence, choose ๐’Ž๐’Ž as the root of the equation to solve the problem

โ‡’ ๐‘š๐‘š1,2 =โˆ’๐‘๐‘ ยฑ ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

The ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ leads to 3 cases:

1) ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ > 0

2) ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ = 0

3) ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ < 0

Page 62: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 62

Introduction

Case 1: ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’‚๐’‚๐’„๐’„ > ๐ŸŽ๐ŸŽ Here, ๐‘š๐‘š1& ๐‘š๐‘š2 are real and distinct 2 solutions: ๐‘ฆ๐‘ฆ1 = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ2 = ๐‘’๐‘’๐‘š๐‘š2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1&๐‘ฆ๐‘ฆ2 are linearly independent

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘š๐‘š2๐‘ฅ๐‘ฅ is the general solution

๐‘š๐‘š1,2 =โˆ’๐‘๐‘ ยฑ ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

Page 63: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 63

Introduction

Case 2: ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’‚๐’‚๐’„๐’„ = ๐ŸŽ๐ŸŽ

๐‘š๐‘š1 = ๐‘š๐‘š2 = โˆ’๐‘๐‘2๐‘Ž๐‘Ž

โ‡’ ๐‘ฆ๐‘ฆ1 = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ

Digression:

๐‘Ž๐‘Ž๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘๐‘๐‘ฆ๐‘ฆโ€ฒ + ๐‘๐‘๐‘ฆ๐‘ฆ = 0 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ +๐‘๐‘๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆโ€ฒ +

๐‘๐‘๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆ = 0

โ‡’ ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ ๏ฟฝ๐‘’๐‘’โˆ’ โˆซ ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ 2 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ ๏ฟฝ๐‘’๐‘’โˆ’ โˆซ๐‘๐‘๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘’๐‘’2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ ๏ฟฝ

๐‘’๐‘’โˆซ 2๐‘š๐‘š1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘’๐‘’2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘š๐‘š1,2 =โˆ’๐‘๐‘ ยฑ ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

P(x) Q(x)

(Note: ๐‘š๐‘š1 = โˆ’ ๐‘๐‘2๐‘Ž๐‘Žโ‡’ โˆ’ ๐‘๐‘

๐‘Ž๐‘Ž= 2๐‘š๐‘š1)

Page 64: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 64

Introduction

๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ ๏ฟฝ๐‘’๐‘’โˆซ 2๐‘š๐‘š1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘’๐‘’2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ ๏ฟฝ

๐‘’๐‘’2๐‘š๐‘š1๐‘ฅ๐‘ฅ

๐‘’๐‘’2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ ๏ฟฝ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ General solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ

๐‘š๐‘š1,2 =โˆ’๐‘๐‘ ยฑ ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

Page 65: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 65

Introduction

Case 3: ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’‚๐’‚๐’„๐’„ < ๐ŸŽ๐ŸŽ ๐‘š๐‘š1 & ๐‘š๐‘š2 are complex conjugate numbers

๐‘š๐‘š1 = ๐›ผ๐›ผ + ๐‘—๐‘—๐›ฝ๐›ฝ & ๐‘š๐‘š2 = ๐›ผ๐›ผ โˆ’ ๐‘—๐‘—๐›ฝ๐›ฝ

โ€ข ๐›ผ๐›ผ,๐›ฝ๐›ฝ > 0 and are real โ€ข ๐‘—๐‘—2 = โˆ’1

General solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘š๐‘š2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ

๐‘š๐‘š1,2 =โˆ’๐‘๐‘ ยฑ ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

Page 66: Chapter 3-Higher Order Differential Equations

Since ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ is a solution โˆ€๐‘๐‘1 &โˆ€๐‘๐‘2

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 66

Introduction

๐‘ฆ๐‘ฆ1 = ๐‘๐‘1๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ + ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ2 cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 = 2๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ2 = ๐‘๐‘1๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ2๐‘—๐‘— sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ2 = 2๐‘—๐‘—๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ

Choose ๐‘๐‘1 = ๐‘๐‘2 = 1 Choose ๐‘๐‘1 = 1 & ๐‘๐‘2 = โˆ’1

General solution: ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐œถ๐œถ๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ๐œท๐œท๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐œถ๐œถ๐Ÿ๐Ÿ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐œท๐œท๐Ÿ๐Ÿ

Page 67: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 67

Alternate Derivation: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’ ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐‘๐‘1๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ฅ๐‘ฅ = ๐‘๐‘1๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ + ๐‘—๐‘— sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘— sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ = ๐‘๐‘1๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ + ๐‘—๐‘—๐‘๐‘1๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘—๐‘๐‘2๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ ๐‘๐‘1 + ๐‘๐‘2 cos๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ + ๐‘’๐‘’๐›ผ๐›ผ๐‘ฅ๐‘ฅ ๐‘—๐‘—๐‘๐‘1 โˆ’ ๐‘—๐‘—๐‘๐‘2 sin๐›ฝ๐›ฝ๐‘ฅ๐‘ฅ Hence, ๐’š๐’š = โˆ๐Ÿ๐Ÿ ๐’†๐’†๐œถ๐œถ๐Ÿ๐Ÿ ๐’„๐’„๐’„๐’„๐’„๐’„๐œท๐œท๐Ÿ๐Ÿ+โˆ๐Ÿ๐Ÿ ๐’†๐’†๐œถ๐œถ๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’๐’๐œท๐œท๐Ÿ๐Ÿ

โˆ1 โˆ2

Page 68: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 68

Example: a) 2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 0 Now, 2๐‘š๐‘š2 โˆ’ 5๐‘š๐‘š โˆ’ 3 = 0 โ‡’ 2๐‘š๐‘š + 1 ๐‘š๐‘š โˆ’ 3 = 0

โ‡’ ๐‘š๐‘š1 = โˆ’ 12 ;๐‘š๐‘š2 = 3

General solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’โˆ’ 12๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’3๐‘ฅ๐‘ฅ

Page 69: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 69

b) ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 10๐‘ฆ๐‘ฆโ€ฒ + 25๐‘ฆ๐‘ฆ = 0 ๐‘š๐‘š2 โˆ’ 10๐‘š๐‘š + 25 = 0 โ‡’ ๐‘š๐‘š โˆ’ 5 2 = 0 โ‡’ ๐‘š๐‘š1 = ๐‘š๐‘š2 = 5 General solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’5๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’5๐‘ฅ๐‘ฅ

Page 70: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 70

c) ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ๐‘ฆโ€ฒ + 7๐‘ฆ๐‘ฆ = 0 โ‡’ ๐‘š๐‘š2 + 4๐‘š๐‘š + 7 = 0

โ‡’ ๐‘š๐‘š =โˆ’4 ยฑ 4 2 โˆ’ 4(1)(7)

2(1)=โˆ’4 ยฑ 16โˆ’ 28

2

โ‡’ ๐‘š๐‘š = โˆ’4 ยฑ โˆ’12

2=โˆ’4 ยฑ 12 โˆ’1

2=โˆ’4 ยฑ ๐‘—๐‘— 12

2

โ‡’ ๐‘š๐‘š =โˆ’4 ยฑ ๐‘—๐‘— 2 3

2= โˆ’2 ยฑ ๐‘—๐‘— 3

General solution: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’ โˆ’2+๐‘—๐‘— 3 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ โˆ’2โˆ’๐‘—๐‘— 3 ๐‘ฅ๐‘ฅ or ๐‘ฆ๐‘ฆ = ๐‘’๐‘’โˆ’2๐‘ฅ๐‘ฅ ๐‘๐‘1 cos 3๐‘ฅ๐‘ฅ + ๐‘๐‘2 sin 3๐‘ฅ๐‘ฅ

Page 71: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 71

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 & ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 ๐พ๐พ:real Where do we see these equations??

D.E. Free of Undamped Motion: ๐‘‘๐‘‘2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก2

+ ๐œ”๐œ”2๐‘ฅ๐‘ฅ = 0 With the solution: ๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ๐’˜๐’˜๐’˜๐’˜ + ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐’˜๐’˜๐’˜๐’˜

Two important Equations

HOW?

Ref. D. Zill & W. Wright, Advanced Engineering Mathematics. 5th Ed. Ref. D. Zill & W. Wright, Advanced

Engineering Mathematics. 5th Ed.

Page 72: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 72

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 & ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 ๐พ๐พ:real ๐‘š๐‘š2 + ๐พ๐พ2 = 0 โ‡’ ๐‘š๐‘š2 = โˆ’๐พ๐พ2 = ๐พ๐พ2๐‘—๐‘—2 โ‡’ ๐‘š๐‘š = ยฑ๐พ๐พ๐‘—๐‘— Which results in: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐พ๐พ๐‘—๐‘—๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’โˆ’๐พ๐พ๐‘—๐‘—๐‘ฅ๐‘ฅ or ๐‘ฆ๐‘ฆ = ๐‘๐‘1 cos๐พ๐พ๐‘ฅ๐‘ฅ + ๐‘๐‘2 sin๐พ๐พ๐‘ฅ๐‘ฅ

Two important Equations

Page 73: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 73

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 & ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 ๐พ๐พ:real ๐‘š๐‘š2 โˆ’ ๐พ๐พ2 = 0 โ‡’ ๐‘š๐‘š2 = ๐พ๐พ2 โ‡’ ๐‘š๐‘š = ยฑ๐พ๐พ Which results in: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐พ๐พ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’โˆ’๐พ๐พ๐‘ฅ๐‘ฅ

Two important Equations

Page 74: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 74

Note: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐‘ฒ๐‘ฒ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’๐‘ฒ๐‘ฒ๐Ÿ๐Ÿ

โ€ข If ๐‘๐‘1 = ๐‘๐‘2 = 12โ‡’ ๐‘ฆ๐‘ฆ = 1

2 ๐‘’๐‘’๐พ๐พ๐‘ฅ๐‘ฅ + 1

2 ๐‘’๐‘’โˆ’๐พ๐พ๐‘ฅ๐‘ฅ = cosh๐พ๐พ๐‘ฅ๐‘ฅ

โ€ข If ๐‘๐‘1 = 12

& ๐‘๐‘2 = โˆ’12โ‡’ ๐‘ฆ๐‘ฆ = 1

2 ๐‘’๐‘’๐พ๐พ๐‘ฅ๐‘ฅ โˆ’ 1

2 ๐‘’๐‘’โˆ’๐พ๐พ๐‘ฅ๐‘ฅ = sinh๐พ๐พ๐‘ฅ๐‘ฅ

โ€ข Since cosh๐พ๐พ๐‘ฅ๐‘ฅ & sinh๐พ๐พ๐‘ฅ๐‘ฅ are linearly independent

โ€“ Alternate solution of ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐พ๐พ2๐‘ฆ๐‘ฆ = 0 is ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ๐œ๐œ๐‘ฒ๐‘ฒ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐œ๐œ๐‘ฒ๐‘ฒ๐Ÿ๐Ÿ

Two important Equations

Page 75: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 75

๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›

+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

+ โ€ฆ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = 0

,where ๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘ ๐‘  = 0,1, โ€ฆ ,๐‘›๐‘› are real constants Auxiliary Equation: ๐‘Ž๐‘Ž๐‘›๐‘›๐‘š๐‘š๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐‘š๐‘š๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž2๐‘š๐‘š2 + ๐‘Ž๐‘Ž1๐‘š๐‘š + ๐‘Ž๐‘Ž0 ๐‘š๐‘š0 = 0 Case 1: If all roots are distinct โ€“ general solution is given by:

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘š๐‘š2๐‘ฅ๐‘ฅ + โ‹ฏ+ ๐‘๐‘๐‘›๐‘›๐‘’๐‘’๐‘š๐‘š๐‘›๐‘›๐‘ฅ๐‘ฅ (similar to a 2nd order D.E.)

Higher Order Equations

Page 76: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 76

Case 2: For multiple roots, if ๐‘š๐‘š1 is a root with multiplicity ๐พ๐พ i.e. ๐พ๐พ roots equal to ๐‘š๐‘š1

Then the general solution will have terms: ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ,โ€ฆ, ๐‘ฅ๐‘ฅ๐‘˜๐‘˜โˆ’1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ Case 3: Complex roots appear in conjugate pairs when the coefficients of the D.E. are real

Higher Order Equations

Page 77: Chapter 3-Higher Order Differential Equations

Homogeneous Linear Eq. with Constant Coefficients

9/30/2014 Dr. Eli Saber 77

E.g. ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ + 3๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆ = 0 Auxiliary equation: ๐‘š๐‘š3 + 3๐‘š๐‘š2 โˆ’ 4 = 0 By inspection, ๐‘š๐‘š1 = 1 is a root since 1 3 + 3 1 2 โˆ’ 4 = 1 + 3 โˆ’ 4 = 4 โˆ’ 4 = ๐ŸŽ๐ŸŽ Dividing the Auxiliary equation ๐‘š๐‘š3 + 3๐‘š๐‘š2 โˆ’ 4 = 0 by ๐‘š๐‘š โˆ’ 1 , we get ๐‘š๐‘š2 + 4๐‘š๐‘š + 4 โ‡’ ๐‘š๐‘šโˆ’ 1 ๐‘š๐‘š2 + 4๐‘š๐‘š + 4 = ๐‘š๐‘š3 + 3๐‘š๐‘š2 โˆ’ 4 โ‡’ ๐‘š๐‘šโˆ’ 1 ๐‘š๐‘š2 + 4๐‘š๐‘š + 4 = 0 โ‡’ ๐‘š๐‘šโˆ’ 1 ๐‘š๐‘š + 2 2 = 0 Roots: ๐‘š๐‘š1 = 1,๐‘š๐‘š2 = ๐‘š๐‘š3 = โˆ’2 General solution: ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’†๐’†โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Higher Order Equations

Page 78: Chapter 3-Higher Order Differential Equations

Section 3.4 Undetermined Coefficients

9/30/2014 Dr. Eli Saber 78

Page 79: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 79

By: 1. Finding a complementary solution ๐‘ฆ๐‘ฆ๐‘๐‘ for the homogeneous equation. 2. Finding a particular solution ๐‘ฆ๐‘ฆ๐‘๐‘.

โ‡’ ๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘”๐‘” ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘œ๐‘œ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘›: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

Solve a non-homogeneous Linear Differential Equation: ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฆ๐‘ฆ ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ ๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆ1 + ๐‘Ž๐‘Ž0๐‘ฆ๐‘ฆ0 = ๐‘”๐‘” ๐‘ฅ๐‘ฅ

Page 80: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 80

Method of undetermined coefficient ๐’–๐’–๐’„๐’„ โ€œEducated guess about the form of ๐’š๐’š๐’‘๐’‘โ€ Method is limited to non-homogeneous linear D.E. such that: 1. The coefficient ๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘ ๐‘  = 0,1,2, โ€ฆ ,๐‘›๐‘› are constant. 2. ๐‘”๐‘” ๐‘ฅ๐‘ฅ is a constant, polynomial function, exponential function, sin or cos or

finite sums and products of these functions. E.g.: ๐‘”๐‘” ๐‘ฅ๐‘ฅ = 10;๐‘”๐‘” ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ, โ€ฆ โ€ฆ

Page 81: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 81

Ref. D. Zill & W. Wright, Advanced Engineering Mathematics. 5th Ed.

Page 82: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 82

E.g. 1: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 6 Step 1: Solve the associated Homogeneous equation. ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆ = 0

๐‘š๐‘š2 + 4๐‘š๐‘š โˆ’ 2 = 0 โ‡’ ๐‘š๐‘š =โˆ’4 ยฑ 16 โˆ’ 4 1 โˆ’2

2

โ‡’ ๐‘š๐‘š =โˆ’4 ยฑ 24

2 =โˆ’4 ยฑ 2 6

2

โ‡’ ๐‘š๐‘š = โˆ’2 ยฑ 6 โ‡’ ๐‘š๐‘š1 = โˆ’2 โˆ’ 6 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘š๐‘š2 = โˆ’2 + 6

๐‘”๐‘” ๐‘ฅ๐‘ฅ

Page 83: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 83

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘š๐‘š1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’๐‘š๐‘š2๐‘ฅ๐‘ฅ

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’ โˆ’2โˆ’ 6 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ โˆ’2+ 6 ๐‘ฅ๐‘ฅ Step 2: Note ๐‘”๐‘”(๐‘ฅ๐‘ฅ) is a quadratic โ‡’ assume a particular solution of quadratic form. (See Table 3.4.1) โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ2 + ๐ต๐ต๐‘ฅ๐‘ฅ + ๐ถ๐ถ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = 2๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = 2๐ด๐ด Substitute into D.E. ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ + 4๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ โˆ’ 2๐‘ฆ๐‘ฆ๐‘๐‘ = 3๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 6 โ‡’ 2๐ด๐ด + 4 2๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต โˆ’ 2 ๐ด๐ด๐‘ฅ๐‘ฅ2 + ๐ต๐ต๐‘ฅ๐‘ฅ + ๐ถ๐ถ = 2๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 6

๐‘š๐‘š1 = โˆ’2 โˆ’ 6 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘š๐‘š2 = โˆ’2 + 6

Page 84: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 84

โ‡’ 2๐ด๐ด + 8๐ด๐ด๐‘ฅ๐‘ฅ + 4๐ต๐ต โˆ’ 2๐ด๐ด๐‘ฅ๐‘ฅ2 โˆ’ 2๐ต๐ต๐‘ฅ๐‘ฅ โˆ’ 2๐ถ๐ถ = 2๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 6 โ‡’ โˆ’๐Ÿ๐Ÿ๐‘จ๐‘จ๐‘ฅ๐‘ฅ2 + ๐Ÿ–๐Ÿ–๐‘จ๐‘จ โˆ’ ๐Ÿ๐Ÿ๐‘ฉ๐‘ฉ ๐‘ฅ๐‘ฅ + ๐Ÿ๐Ÿ๐‘จ๐‘จ + ๐Ÿ’๐Ÿ’๐‘ฉ๐‘ฉ โˆ’ ๐Ÿ๐Ÿ๐‘ช๐‘ช = 2๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 6 โ€ข โˆ’2๐ด๐ด = 2 โ‡’ ๐ด๐ด = โˆ’1

โ€ข 8๐ด๐ด โˆ’ 2๐ต๐ต = โˆ’3 โ‡’ 2๐ต๐ต = 8๐ด๐ด + 3 = 8 โˆ’1 + 3 = โˆ’5

โ‡’ 2๐ต๐ต = โˆ’5 โ‡’ ๐ต๐ต =โˆ’52

โ€ข 2๐ด๐ด + 4๐ต๐ต โˆ’ 2๐ถ๐ถ = 6 โ‡’ 2๐ถ๐ถ = 2๐ด๐ด + 4๐ต๐ต โˆ’ 6 = 2 โˆ’1 + 4 โˆ’52

โˆ’ 6

2๐ถ๐ถ = โˆ’2 โˆ’ 10 โˆ’ 6 โ‡’ 2๐ถ๐ถ = โˆ’18 โ‡’ ๐ถ๐ถ = โˆ’9

Page 85: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 85

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = โˆ’๐‘ฅ๐‘ฅ2 โˆ’52๐‘ฅ๐‘ฅ โˆ’ 9

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’ โˆ’2โˆ’ 6 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’ โˆ’2+ 6 ๐‘ฅ๐‘ฅ โ‡’ ๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘”๐‘” ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘œ๐‘œ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘›: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’ ๐Ÿ๐Ÿ+ ๐Ÿ”๐Ÿ” ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’† โˆ’๐Ÿ๐Ÿ+ ๐Ÿ”๐Ÿ” ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—

Page 86: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 86

E.g. 2: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘ฆ๐‘ฆ = 2 sin 3๐‘ฅ๐‘ฅ Step 1: Find ๐‘ฆ๐‘ฆ๐‘๐‘ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘ฆ๐‘ฆ = 0

๐‘š๐‘š2 โˆ’๐‘š๐‘š + 1 = 0 โ‡’ ๐‘š๐‘š =1 ยฑ 1 โˆ’ 4 1 1

2

โ‡’ ๐‘š๐‘š =1 ยฑ 3๐‘—๐‘—2

2 โ‡’ ๐‘š๐‘š =12 ยฑ ๐‘—๐‘—

32

โ‡’ ๐‘š๐‘š1 =12 + ๐‘—๐‘—

32 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘š๐‘š2 =

12 โˆ’ ๐‘—๐‘—

32

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’12+๐‘—๐‘—

32 ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’

12 โˆ’ ๐‘—๐‘— 3

2 ๐‘ฅ๐‘ฅ

Page 87: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 87

Step 2: ๐น๐น๐‘ ๐‘ ๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘. ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด cos3๐‘ฅ๐‘ฅ + ๐ต๐ต sin 3๐‘ฅ๐‘ฅ (see Table 3.4.1) โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = โˆ’3๐ด๐ด sin3๐‘ฅ๐‘ฅ + 3๐ต๐ต cos3๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = โˆ’9๐ด๐ด cos3๐‘ฅ๐‘ฅ โˆ’ 9๐ต๐ต sin 3๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ โˆ’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ + ๐‘ฆ๐‘ฆ = 2 sin 3๐‘ฅ๐‘ฅ โ‡’ โˆ’9๐ด๐ด cos3๐‘ฅ๐‘ฅ โˆ’ 9๐ต๐ต sin 3๐‘ฅ๐‘ฅ โˆ’ โˆ’3๐ด๐ด sin 3๐‘ฅ๐‘ฅ + 3๐ต๐ต cos3๐‘ฅ๐‘ฅ + ๐ด๐ด cos3๐‘ฅ๐‘ฅ + ๐ต๐ต sin 3๐‘ฅ๐‘ฅ

= 2 sin 3๐‘ฅ๐‘ฅ โ‡’ โˆ’9๐ด๐ด cos3๐‘ฅ๐‘ฅ โˆ’ 9๐ต๐ต sin3๐‘ฅ๐‘ฅ + 3๐ด๐ด sin 3๐‘ฅ๐‘ฅ โˆ’ 3๐ต๐ต cos3๐‘ฅ๐‘ฅ + ๐ด๐ด cos3๐‘ฅ๐‘ฅ + ๐ต๐ต sin3๐‘ฅ๐‘ฅ = 2 sin ๐‘ฅ๐‘ฅ โ‡’ โˆ’9๐ด๐ด cos3๐‘ฅ๐‘ฅ โˆ’ 3๐ต๐ต cos3๐‘ฅ๐‘ฅ + ๐ด๐ด cos3๐‘ฅ๐‘ฅ โˆ’ 9๐ต๐ต sin 3๐‘ฅ๐‘ฅ + 3๐ด๐ด sin 3๐‘ฅ๐‘ฅ + ๐ต๐ต sin3๐‘ฅ๐‘ฅ = 2 sin ๐‘ฅ๐‘ฅ โ‡’ ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐‘จ๐‘จ โˆ’ ๐Ÿ‘๐Ÿ‘๐‘ฉ๐‘ฉ + ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐‘ฉ๐‘ฉ + ๐Ÿ‘๐Ÿ‘๐‘จ๐‘จ = 2 sin ๐‘ฅ๐‘ฅ โ‡’ 3๐ด๐ด โˆ’ 8๐ต๐ต = 2 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ โˆ’ 8๐ด๐ด โˆ’ 3๐ต๐ต = 0

Page 88: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 88

โ‡’ ๐ด๐ด =6

73 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐ต๐ต = โˆ’

1673

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ =6

73cos3๐‘ฅ๐‘ฅ โˆ’

1673

sin 3๐‘ฅ๐‘ฅ

โ‡’ ๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘”๐‘” ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘œ๐‘œ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘›: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐’‹๐’‹

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†

๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐’‹๐’‹

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ ๐Ÿ๐Ÿ +

๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’

๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

Page 89: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 89

E.g. 3: Using superposition ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

Given:

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

Step 1: ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’3๐‘ฅ๐‘ฅ Step 2: Find ๐‘ฆ๐‘ฆ๐‘๐‘

polynomial exponential

๐’ˆ๐’ˆ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) ๐’ˆ๐’ˆ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

Page 90: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 90

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 0 ๐‘š๐‘š2 โˆ’ 2๐‘š๐‘š โˆ’ 3 = 0 โ‡’ (๐‘š๐‘š โˆ’ 3)(๐‘š๐‘š + 1) = 0 โ‡’ ๐‘š๐‘š1 = 3,๐‘š๐‘š2 = โˆ’1 Complimentary Solution: ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’3๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

Page 91: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 91

โ‡’ ๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘ฆ๐‘ฆ๐‘๐‘1 + ๐‘ฆ๐‘ฆ๐‘๐‘2 ๐‘ ๐‘ ๐‘œ๐‘œ๐‘ ๐‘ ๐‘’๐‘’๐‘“๐‘“๐‘ ๐‘ ๐‘“๐‘“๐‘ ๐‘ ๐‘ ๐‘ ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘› โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต + ๐ถ๐ถ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = ๐ด๐ด + ๐ถ๐ถ ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = 2๐ถ๐ถ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐ถ๐ถ ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ Substitute ๐‘ฆ๐‘ฆโ€ฒโ€ฒ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆโ€ฒ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ: โ‡’ 2๐ถ๐ถ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐ถ๐ถ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐ถ๐ถ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 4๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 2๐ด๐ด โˆ’ 2๐ถ๐ถ๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 4๐ถ๐ถ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 4๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 3๐ด๐ด๐‘ฅ๐‘ฅ

โˆ’ 3๐ต๐ต โˆ’ 3๐ถ๐ถ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ 3๐ท๐ท๐‘’๐‘’2๐‘ฅ๐‘ฅ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐’š๐’š๐’‘๐’‘๐Ÿ๐Ÿ :for ๐’ˆ๐’ˆ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

๐’š๐’š๐’‘๐’‘๐Ÿ๐Ÿ :for ๐’ˆ๐’ˆ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

Page 92: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 92

โ‡’ โˆ’3๐ด๐ด๐‘ฅ๐‘ฅ โˆ’ 2๐ด๐ด โˆ’ 3๐ต๐ต โˆ’ 3๐ถ๐ถ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘’๐‘’2๐‘ฅ๐‘ฅ 2๐ถ๐ถ โˆ’ 3๐ท๐ท = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

โ€ข โˆ’3๐ด๐ด = 4 โ‡’ ๐ด๐ด = โˆ’43

โ€ข โˆ’2๐ด๐ด โˆ’ 3๐ต๐ต = โˆ’5 โ‡’ โˆ’3๐ต๐ต = โˆ’5 + 2๐ด๐ด = โˆ’5 + 2 โˆ’43

โ‡’ โˆ’3๐ต๐ต = โˆ’5 โˆ’83 = โˆ’

153 โˆ’

83 = โˆ’

233 โ‡’ ๐ต๐ต =

239

โ€ข โˆ’3๐ถ๐ถ = 6 โ‡’ ๐ถ๐ถ = โˆ’2

โ€ข 2๐ถ๐ถ โˆ’ 3๐ท๐ท = 0 โ‡’ 3๐ท๐ท = 2๐ถ๐ถ = 2 โˆ’2 = โˆ’4 โ‡’ D = โˆ’43

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

Page 93: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 93

๐‘ฆ๐‘ฆ๐‘๐‘ = โˆ’43๐‘ฅ๐‘ฅ +

239โˆ’ 2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’

43๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘”๐‘”๐‘’๐‘’๐‘›๐‘›๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘”๐‘” ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘œ๐‘œ๐‘ก๐‘ก๐‘ ๐‘ ๐‘“๐‘“๐‘›๐‘›: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ +

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’

๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐’†๐’†

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ โˆ’ 3๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 5 + 6๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

Page 94: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 94

E.g. 4: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ Step 1: Find ๐‘ฆ๐‘ฆ๐‘๐‘ โ†’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ถ๐ถ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ถ๐ถ2๐‘’๐‘’4๐‘ฅ๐‘ฅ Step 2: Find ๐‘ฆ๐‘ฆ๐‘๐‘ โ†’ ๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ Re-substituting back โ‡’ ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 5๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + 4๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ 0๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ ๐ŸŽ๐ŸŽ = ๐Ÿ–๐Ÿ–๐’†๐’†๐Ÿ๐Ÿ โˆ’ ๐’๐’๐’„๐’„๐’˜๐’˜ ๐’‘๐’‘๐’„๐’„๐’„๐’„๐’„๐’„๐’”๐’”๐’ƒ๐’ƒ๐’“๐’“๐’†๐’† Note: ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’4๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ โ€ข ๐‘’๐‘’๐‘ฅ๐‘ฅ is already present in ๐‘ฆ๐‘ฆ๐‘๐‘ โ‡’ ๐‘’๐‘’๐‘ฅ๐‘ฅ is a solution of the homogeneous equation. โ‡’ ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ when substituted into the D.E. produces zero โ‡’(see case II in section 3.3)

Not Independent

Page 95: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 95

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ = 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 5 ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + 4๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 5๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 5๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + 4๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ โˆ’3๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ โˆ’3๐ด๐ด = 8 โ‡’ ๐ด๐ด = โˆ’83

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = โˆ’83๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ

Now, ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’4๐‘ฅ๐‘ฅ

Page 96: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 96

Ref. D. Zill & W. Wright, Advanced Engineering Mathematics. 5th Ed.

Page 97: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 97

E.g. 5.1 ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 8๐‘ฆ๐‘ฆโ€ฒ + 25๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ3๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ โˆ’ 7๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 8๐‘ฆ๐‘ฆโ€ฒ + 25๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ3 โˆ’ 7 ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ Homogeneous solution: ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘’๐‘’4๐‘ฅ๐‘ฅ ๐‘๐‘1 cos3๐‘ฅ๐‘ฅ + ๐‘๐‘2 sin 3๐‘ฅ๐‘ฅ Assume ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ3 + ๐ต๐ต๐‘ฅ๐‘ฅ2 + ๐ถ๐ถ๐‘ฅ๐‘ฅ + ๐ธ๐ธ ๐‘’๐‘’โˆ’๐‘ฅ๐‘ฅ Note no duplication of terms between ๐‘ฆ๐‘ฆ๐‘๐‘๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘

Case I: No function in the assumed particular solution ๐‘ฆ๐‘ฆ๐‘๐‘ is a solution of the associated Homogeneous Differential Equation.

Page 98: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 98

E.g. 5.2 ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1 cos2๐‘ฅ๐‘ฅ + ๐‘๐‘2 sin2๐‘ฅ๐‘ฅ ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต cos๐‘ฅ๐‘ฅ + ๐ถ๐ถ๐‘ฅ๐‘ฅ + ๐ธ๐ธ sin ๐‘ฅ๐‘ฅ No duplication of terms between ๐‘ฆ๐‘ฆ๐‘๐‘ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘

Page 99: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 99

E.g. 6: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 9๐‘ฆ๐‘ฆโ€ฒ + 14๐‘ฆ๐‘ฆ = 3๐‘ฅ๐‘ฅ2 โˆ’ 5 sin 2๐‘ฅ๐‘ฅ + 7๐‘ฅ๐‘ฅ๐‘’๐‘’6๐‘ฅ๐‘ฅ Given ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’7๐‘ฅ๐‘ฅ (computer earlier) Since ๐‘”๐‘” ๐‘ฅ๐‘ฅ has various terms, form ๐‘ฆ๐‘ฆ๐‘๐‘ by superposition 3๐‘ฅ๐‘ฅ2 โ†’ ๐‘ฆ๐‘ฆ๐‘๐‘1 = ๐ด๐ด๐‘ฅ๐‘ฅ2 + ๐ต๐ต๐‘ฅ๐‘ฅ + ๐ถ๐ถ โˆ’5 sin 2๐‘ฅ๐‘ฅ โ†’ ๐‘ฆ๐‘ฆ๐‘๐‘2 = ๐ธ๐ธ cos2๐‘ฅ๐‘ฅ + ๐น๐น sin 2๐‘ฅ๐‘ฅ 7๐‘ฅ๐‘ฅ๐‘’๐‘’6๐‘ฅ๐‘ฅ โ†’ ๐‘ฆ๐‘ฆ๐‘๐‘3 = ๐บ๐บ๐‘ฅ๐‘ฅ + ๐ป๐ป ๐‘’๐‘’6๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘ฆ๐‘ฆ๐‘๐‘1 + ๐‘ฆ๐‘ฆ๐‘๐‘2 + ๐‘ฆ๐‘ฆ๐‘๐‘3 โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ2 + ๐ต๐ต๐‘ฅ๐‘ฅ + ๐ถ๐ถ + ๐ธ๐ธ cos2๐‘ฅ๐‘ฅ + ๐น๐น sin 2๐‘ฅ๐‘ฅ + ๐บ๐บ๐‘ฅ๐‘ฅ + ๐ป๐ป ๐‘’๐‘’6๐‘ฅ๐‘ฅ Note: No duplication of terms between ๐‘ฆ๐‘ฆ๐‘๐‘ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘

Page 100: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 100

E.g. 7: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ + ๐‘ฆ๐‘ฆ = ๐‘’๐‘’๐‘ฅ๐‘ฅ With ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ (computed earlier) What do we assume for ๐‘ฆ๐‘ฆ๐‘๐‘? โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ โ†’ will fail since ๐‘’๐‘’๐‘ฅ๐‘ฅ is part of ๐‘ฆ๐‘ฆ๐‘๐‘

โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โ†’ will fail since ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ is part of ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = 2๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

Case II: A function in the potential particular solution is also a solution of the associated Homogeneous Differential Equation.

Page 101: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 101

โ‡’ 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ + 4๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 4๐ด๐ด๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 2๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ 2๐ด๐ด๐‘’๐‘’๐‘ฅ๐‘ฅ = ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ 2๐ด๐ด = 1 โ‡’ ๐ด๐ด =12

โ‡’ ๐’š๐’š๐’‘๐’‘ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ

โ‡’ ๐’š๐’š๐’„๐’„ = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ

Page 102: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 102

Hence if ๐‘”๐‘” ๐‘ฅ๐‘ฅ consists of no terms similar to Table 3.4.1 and that:

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘ฆ๐‘ฆ๐‘๐‘1 + ๐‘ฆ๐‘ฆ๐‘๐‘2 + โ‹ฏ+ ๐‘ฆ๐‘ฆ๐‘๐‘๐‘š๐‘š (assumption) Where ๐‘ฆ๐‘ฆ๐‘๐‘๐‘–๐‘– , ๐‘ ๐‘  = 1, 2, 3, โ€ฆ โ€ฆ ,๐‘š๐‘š are potential particular solution Multiplication rule: If any ๐’š๐’š๐’‘๐’‘๐’”๐’” contains terms that duplicate terms in ๐’š๐’š๐’„๐’„, then that ๐’š๐’š๐’‘๐’‘๐’”๐’” must be multiplied by ๐Ÿ๐Ÿ๐’๐’, where n is the smallest positive integer that eliminates that duplication

Page 103: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 103

E.g. 8: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ Initial conditions: ๐‘ฆ๐‘ฆ ๐œ‹๐œ‹ = 0;๐‘ฆ๐‘ฆโ€ฒ ๐œ‹๐œ‹ = 2 Step 1: ๐‘†๐‘†๐‘“๐‘“๐‘”๐‘”๐‘ ๐‘ ๐‘’๐‘’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 0 ๐‘š๐‘š2 + 1 = 0 โ‡’ ๐‘š๐‘š2 = โˆ’1 = ๐‘—๐‘—2 โ‡’ ๐‘š๐‘š = ยฑ๐‘—๐‘— โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’๐‘—๐‘—๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘’๐‘’โˆ’๐‘—๐‘—๐‘ฅ๐‘ฅ = ๐‘๐‘1 cos๐‘ฅ๐‘ฅ + ๐‘—๐‘—๐‘๐‘1 sin ๐‘ฅ๐‘ฅ + ๐‘๐‘2 cos ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘—๐‘๐‘2 sin ๐‘ฅ๐‘ฅ = ๐‘๐‘1 + ๐‘๐‘2 cos๐‘ฅ๐‘ฅ + ๐‘—๐‘— ๐‘๐‘1 โˆ’ ๐‘๐‘2 sin ๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐›ผ๐›ผ1 cos ๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2 sin ๐‘ฅ๐‘ฅ

Page 104: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 104

๐‘”๐‘” ๐‘ฅ๐‘ฅ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

โ€ข 4๐‘ฅ๐‘ฅ โ†’ ๐‘ฆ๐‘ฆ๐‘๐‘๐ด๐ด๐‘ฅ๐‘ฅ+๐ต๐ต

โ€ข 10 sin ๐‘ฅ๐‘ฅ โ†’ ๐ถ๐ถ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ sin ๐‘ฅ๐‘ฅ

(but these are part of ๐‘ฆ๐‘ฆ๐‘๐‘)

= ๐ถ๐ถ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต + ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = ๐ด๐ด + ๐ถ๐ถ cos ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ โˆ’ sin ๐‘ฅ๐‘ฅ + ๐ธ๐ธ sin ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ = ๐ด๐ด + ๐ถ๐ถ cos๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ + ๐ธ๐ธ sin ๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

Page 105: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 105

โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = โˆ’๐ถ๐ถ sin ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ sin ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ + ๐ธ๐ธ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ cos๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ = โˆ’๐ถ๐ถ sin ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ sin ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ = โˆ’2๐ถ๐ถ sin ๐‘ฅ๐‘ฅ + 2๐ธ๐ธ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ We have: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ โ‡’ โˆ’2๐ถ๐ถ sin ๐‘ฅ๐‘ฅ + 2๐ธ๐ธ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ โˆ’ ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต + ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ

= 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

Page 106: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 106

โ‡’ โˆ’2๐ถ๐ถ sin ๐‘ฅ๐‘ฅ + 2๐ธ๐ธ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ + ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต + ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ

= 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ โ‡’ ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต โˆ’ 2๐ถ๐ถ sin ๐‘ฅ๐‘ฅ โˆ’ ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + ๐ถ๐ถ๐‘ฅ๐‘ฅ cos ๐‘ฅ๐‘ฅ + 2๐ธ๐ธ cos ๐‘ฅ๐‘ฅ โˆ’ ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ

= 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ โ‡’ ๐‘จ๐‘จ๐Ÿ๐Ÿ + ๐‘ฉ๐‘ฉ + โˆ’๐Ÿ๐Ÿ๐‘ช๐‘ช๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ + ๐ŸŽ๐ŸŽ + ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ + ๐ŸŽ๐ŸŽ โ‡’ ๐ด๐ด๐‘ฅ๐‘ฅ = 4๐‘ฅ๐‘ฅ โ‡’ ๐ด๐ด = 4 โ‡’ ๐ต๐ต = 0 โ‡’ โˆ’2๐ถ๐ถ sin ๐‘ฅ๐‘ฅ = 10 sin ๐‘ฅ๐‘ฅ โ‡’ โˆ’2๐ถ๐ถ = 10 โ‡’ ๐ถ๐ถ = โˆ’5 โ‡’ 2๐ธ๐ธ cos ๐‘ฅ๐‘ฅ = 0 โ‡’ ๐ธ๐ธ = 0

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

Page 107: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 107

WE know, ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ฅ๐‘ฅ + ๐ต๐ต + ๐ถ๐ถ๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ & ๐ด๐ด = 4,๐ต๐ต = 0,๐ถ๐ถ = โˆ’5,๐ท๐ท = 0 โ‡’ ๐’š๐’š๐’‘๐’‘ = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐œ๐œ๐œ๐œ๐œ๐œ ๐Ÿ๐Ÿ We know: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘ โ‡’ ๐‘ฆ๐‘ฆ = ๐›ผ๐›ผ1 cos ๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2 sin ๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ โˆ’ 5๐‘ฅ๐‘ฅ cos๐‘ฅ๐‘ฅ Initial conditions: ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ = 0 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ฆ๐‘ฆโ€ฒ ๐‘ฅ๐‘ฅ = 2 โ€ข ๐‘ฆ๐‘ฆ ๐œ‹๐œ‹ = 0 โ‡’ 0 = ๐›ผ๐›ผ1 cos๐œ‹๐œ‹ + ๐›ผ๐›ผ2 sin๐œ‹๐œ‹ + 4๐œ‹๐œ‹ โˆ’ 5๐œ‹๐œ‹ cos๐œ‹๐œ‹

โ‡’ 0 = โˆ’๐›ผ๐›ผ1 + 0 + 4๐œ‹๐œ‹ + 5๐œ‹๐œ‹ โ‡’ ๐›ผ๐›ผ1 = 9๐œ‹๐œ‹

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ

Page 108: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 108

โ€ข ๐‘ฆ๐‘ฆโ€ฒ ๐œ‹๐œ‹ = 2

โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = โˆ’๐›ผ๐›ผ1 sin ๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2 cos ๐‘ฅ๐‘ฅ + 4 โˆ’ 5 cos๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ sin ๐‘ฅ๐‘ฅ โ‡’ 2 = โˆ’9๐œ‹๐œ‹ sin๐œ‹๐œ‹ + ๐›ผ๐›ผ2 cos๐œ‹๐œ‹ + 4 โˆ’ 5 cos๐œ‹๐œ‹ + 5๐œ‹๐œ‹ sin๐œ‹๐œ‹ โ‡’ 2 = โˆ’๐›ผ๐›ผ2 + 4 + 5 โ‡’ ๐›ผ๐›ผ2 = 9 โˆ’ 2 โ‡’ ๐›ผ๐›ผ2 = 7 Therefore:

๐’š๐’š = ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ + 10 sin ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = 4๐‘ฅ๐‘ฅ โˆ’ 5๐‘ฅ๐‘ฅ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐‘ฅ๐‘ฅ

Page 109: Chapter 3-Higher Order Differential Equations

Undetermined Coefficients

9/30/2014 Dr. Eli Saber 109

โ€ข To solve a non-Homogeneous D.E.

๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฆ๐‘ฆ ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ ๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆ1 + ๐‘Ž๐‘Ž0๐‘ฆ๐‘ฆ0= ๐‘”๐‘” ๐‘ฅ๐‘ฅ

Step1: Finding a complementary solution ๐‘ฆ๐‘ฆ๐‘๐‘ by equating it to 0. Step2: Finding a particular solution ๐‘ฆ๐‘ฆ๐‘๐‘. Step3: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ€ข In case of multiple additive terms in the right

hand side that constitute ๐‘”๐‘”(๐‘ฅ๐‘ฅ), take into account all factors contributing to ๐‘ฆ๐‘ฆ๐‘๐‘

โ€ข Multiplication rule: If any ๐’š๐’š๐’‘๐’‘๐’”๐’” contains terms

that duplicate terms in ๐’š๐’š๐’„๐’„, then that ๐’š๐’š๐’‘๐’‘๐’”๐’” must be multiplied by ๐Ÿ๐Ÿ๐’๐’, where n is the smallest positive integer that eliminates that duplication

Summary

Ref. D. Zill & W. Wright, Advanced Engineering Mathematics. 5th Ed.

Page 110: Chapter 3-Higher Order Differential Equations

Section 3.5 Variation of Parameters

9/30/2014 Dr. Eli Saber 110

Page 111: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 111

โ€ข See also section 2.3 for first order differential equations

Advantages: โ€ข Always yields a particular solution ๐‘ฆ๐‘ฆ๐‘๐‘ assuming ๐‘ฆ๐‘ฆ๐‘๐‘ can be found. โ€ข Not limited to cases such as the described in Table 3.4.1 (slide 109) โ€ข Not limited to differential equation with constant coefficients.

Page 112: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 112

Given ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘Ž๐‘Ž0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘”๐‘” ๐‘ฅ๐‘ฅ

Divide by ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ

โŸน ๐‘ฆ๐‘ฆโ€ฒโ€ฒ +๐‘Ž๐‘Ž1๐‘Ž๐‘Ž2

๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ +๐‘Ž๐‘Ž0๐‘Ž๐‘Ž2

๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ =๐‘”๐‘” ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž2

โŸน ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ (similar to ๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)) Assumptions: โ€ข ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ),๐‘„๐‘„(๐‘ฅ๐‘ฅ), ๐‘“๐‘“(๐‘ฅ๐‘ฅ) are continuous on some interval ๐ผ๐ผ โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘ can be found

๐‘ท๐‘ท(๐Ÿ๐Ÿ) ๐‘ธ๐‘ธ(๐Ÿ๐Ÿ) ๐’‡๐’‡(๐Ÿ๐Ÿ)

Page 113: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 113

Method: โ€ข For first order differential equation ๐‘ฆ๐‘ฆโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ , seek a solution ๐’š๐’š๐’‘๐’‘ = ๐๐๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) ๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ๐Ÿ): fundamental solution for homogeneous D.E โ€ข For second order D.E ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ , seek a solution ๐’š๐’š๐’‘๐’‘ = ๐๐๐Ÿ๐Ÿ ๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐๐๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ๐Ÿ , ๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ๐Ÿ): fundamental solution for homogeneous D.E

Page 114: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 114

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2 โŸน ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2 โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘๐‘ฆ๐‘ฆ = ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2โ€ฒโ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒโ€ฒ๐‘ฆ๐‘ฆ2 Substitute into D.E: ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ โŸน ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2โ€ฒโ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒโ€ฒ๐‘ฆ๐‘ฆ2 ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1โ€ฒ + ๐œ‡๐œ‡1โ€ฒ ๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2โ€ฒ + ๐œ‡๐œ‡2โ€ฒ ๐‘ฆ๐‘ฆ2 +๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐œ‡๐œ‡1๐‘ฆ๐‘ฆ1 + ๐œ‡๐œ‡2๐‘ฆ๐‘ฆ2 = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

Page 115: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 115

Rearranging the equations, ๐‘œ๐‘œ1 ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2 ๐‘ฆ๐‘ฆ2โ€ฒโ€ฒ + ๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐‘„๐‘„ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ2 +๐‘œ๐‘œ1โ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œ2โ€ฒโ€ฒ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ + ๐‘ƒ๐‘ƒ ๐‘œ๐‘œ1โ€ฒ ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2โ€ฒ ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1โ€ฒ ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œ2โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

= ๐ŸŽ๐ŸŽ = ๐ŸŽ๐ŸŽ

Since ๐‘ฆ๐‘ฆ1 & ๐‘ฆ๐‘ฆ2 are the solutions to the homogeneous equation

Page 116: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 116

๐‘œ๐‘œ1โ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ1

โ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œ2

โ€ฒโ€ฒ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ2โ€ฒ๐‘ฆ๐‘ฆ2

โ€ฒ + ๐‘ƒ๐‘ƒ ๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2

โ€ฒ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1

โ€ฒ + ๐‘œ๐‘œ2โ€ฒ๐‘ฆ๐‘ฆ2

โ€ฒ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

โŸน๐’…๐’…๐’…๐’…๐Ÿ๐Ÿ

๐’–๐’–๐Ÿ๐Ÿโ€ฒ๐’š๐’š๐Ÿ๐Ÿ +๐’…๐’…๐’…๐’…๐Ÿ๐Ÿ

๐’–๐’–๐Ÿ๐Ÿโ€ฒ๐’š๐’š๐Ÿ๐Ÿ + ๐‘ƒ๐‘ƒ ๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2

โ€ฒ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1

โ€ฒ + ๐‘œ๐‘œ2โ€ฒ๐‘ฆ๐‘ฆ2

โ€ฒ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

โŸน๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘œ๐‘œ1

โ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2โ€ฒ๐‘ฆ๐‘ฆ2

+ ๐‘ƒ๐‘ƒ[๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2

โ€ฒ๐‘ฆ๐‘ฆ2] + ๐‘œ๐‘œ1โ€ฒ๐‘ฆ๐‘ฆ1

โ€ฒ + ๐‘œ๐‘œ2โ€ฒ๐‘ฆ๐‘ฆ2

โ€ฒ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

โ€ข Have two unknown functions ๐‘œ๐‘œ1 & ๐‘œ๐‘œ2 โŸน Need two equations โŸน make further assumption that ๐’–๐’–๐Ÿ๐Ÿโ€™๐’š๐’š๐Ÿ๐Ÿ + ๐’–๐’–๐Ÿ๐Ÿโ€™๐’š๐’š๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ โŸน ๐’–๐’–๐Ÿ๐Ÿโ€™๐’š๐’š๐Ÿ๐Ÿโ€™ + ๐’–๐’–๐Ÿ๐Ÿโ€™๐’š๐’š๐Ÿ๐Ÿโ€™ = ๐’‡๐’‡(๐Ÿ๐Ÿ)

Page 117: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 117

โ€ข Hence, we have two equations with two unknowns:

๐‘ฆ๐‘ฆ1๐‘œ๐‘œ1โ€™ + ๐‘ฆ๐‘ฆ2๐‘œ๐‘œ2โ€™ = 0

๐‘ฆ๐‘ฆ1๐‘ฆ๐‘œ๐‘œ1โ€™ + ๐‘ฆ๐‘ฆ2โ€ฒ๐‘œ๐‘œ2โ€™ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

โ€ข Solve for ๐‘œ๐‘œ1โ€ฒ & ๐‘œ๐‘œ2โ€ฒ & then integrate to get ๐‘œ๐‘œ1 & ๐‘œ๐‘œ2

โ€ข Using Cramerโ€™s rule: ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

๐‘œ๐‘œ1๐‘ฆ๐‘œ๐‘œ2๐‘ฆ

= 0๐‘“๐‘“(๐‘ฅ๐‘ฅ)

(1)

(2)

๐’–๐’– ๐‘จ๐‘จ ๐’ƒ๐’ƒ

Page 118: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 118

We have, ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

๐‘œ๐‘œ1๐‘ฆ๐‘œ๐‘œ2๐‘ฆ

= 0๐‘“๐‘“(๐‘ฅ๐‘ฅ)

๐’–๐’–๐Ÿ๐Ÿโ€ฒ =

๐ŸŽ๐ŸŽ ๐’š๐’š๐Ÿ๐Ÿ๐’‡๐’‡(๐Ÿ๐Ÿ) ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ๐’š๐’š๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ

& ๐’–๐’–๐Ÿ๐Ÿโ€ฒ =

๐’š๐’š๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ ๐’‡๐’‡(๐Ÿ๐Ÿ)๐’š๐’š๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ ๐’š๐’š๐Ÿ๐Ÿ๐‘ฆ

Note:

Wโ‰ก๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ

โ‡’ ๐‘ก๐‘กโ„Ž๐‘’๐‘’ ๐‘พ๐‘พ๐’“๐’“๐’„๐’„๐’๐’๐’„๐’„๐’“๐’“๐’”๐’”๐’‚๐’‚๐’๐’ ๐‘“๐‘“๐‘“๐‘“ ๐‘ฆ๐‘ฆ1 & ๐‘ฆ๐‘ฆ2

Hence, Since y1 & y2 are independent โŸน Wโ‰  ๐ŸŽ๐ŸŽ ๐’‡๐’‡๐’„๐’„๐’“๐’“ โˆ€๐Ÿ๐Ÿ โˆˆ ๐‘ฐ๐‘ฐ

Page 119: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 119

Summary: Given ๐‘Ž๐‘Ž2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘Ž๐‘Ž0๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

1. Put Eq. into standard form by dividing throughout by a2(x)

๐‘ฆ๐‘ฆโ€ฒโ€ฒ +๐‘Ž๐‘Ž1๐‘Ž๐‘Ž2

๐‘ฆ๐‘ฆโ€ฒ +๐‘Ž๐‘Ž0๐‘Ž๐‘Ž2๐‘ฆ๐‘ฆ =

๐‘”๐‘” ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž2(๐‘ฅ๐‘ฅ)

2. Find the complementary solution ๐‘ฆ๐‘ฆ๐‘๐‘

= ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2

3. Compute Wronskian of ๐‘ฆ๐‘ฆ1 & ๐‘ฆ๐‘ฆ2 ๐‘Š๐‘Š =๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ

๐‘ท๐‘ท(๐Ÿ๐Ÿ) ๐‘ธ๐‘ธ(๐Ÿ๐Ÿ) ๐’‡๐’‡(๐Ÿ๐Ÿ)

Page 120: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 120

4. Compute ๐‘œ๐‘œ1โ€™ & ๐‘œ๐‘œ2โ€™ using:

๐‘œ๐‘œ1โ€ฒ =

0 ๐‘ฆ๐‘ฆ2๐‘“๐‘“(๐‘ฅ๐‘ฅ) ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

;๐‘œ๐‘œ2โ€ฒ =

๐‘ฆ๐‘ฆ1 0๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘“๐‘“(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

5. Find ๐‘œ๐‘œ1 & ๐‘œ๐‘œ2 by integrating ๐‘œ๐‘œ1๐‘ฆ & ๐‘œ๐‘œ2๐‘ฆ respectively. 6. Form ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) + ๐‘œ๐‘œ2(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) 7. General Solution: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

Page 121: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 121

Note: When integrating ๐‘œ๐‘œ1โ€™ & ๐‘œ๐‘œ2โ€™, you donโ€™t need to introduce any constants because:

โ€ข ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2

๏ฟฝ๐‘œ๐‘œ1๐‘ฆ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ1 + ๐‘Ž๐‘Ž1,๏ฟฝ๐‘œ๐‘œ2๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘œ๐‘œ2 + ๐‘Ž๐‘Ž2

โŸน ๐‘ฆ๐‘ฆ๐‘๐‘ = (๐‘œ๐‘œ1 + ๐‘Ž๐‘Ž1)๐‘ฆ๐‘ฆ1 + (๐‘œ๐‘œ2 + ๐‘Ž๐‘Ž2)๐‘ฆ๐‘ฆ2 โŸน ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1๐‘ฆ๐‘ฆ1 + ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2๐‘ฆ๐‘ฆ2 + ๐‘Ž๐‘Ž2๐‘ฆ๐‘ฆ2

Rearranging, ๐‘ฆ๐‘ฆ = (๐‘๐‘1 + ๐‘Ž๐‘Ž1)๐‘ฆ๐‘ฆ1 + (๐‘๐‘2 + ๐‘Ž๐‘Ž2)๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2๐‘ฆ๐‘ฆ2

โŸน ๐‘ฆ๐‘ฆ = ๐œถ๐œถ๐Ÿ๐Ÿ๐‘ฆ๐‘ฆ1 + ๐œถ๐œถ๐Ÿ๐Ÿ๐‘ฆ๐‘ฆ2 + ๐‘œ๐‘œ1๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2๐‘ฆ๐‘ฆ2

Where, ๐›ผ๐›ผ1&๐›ผ๐›ผ2: constants computed using initial conditions or boundary conditions

๐‘Ž๐‘Ž1, ๐‘Ž๐‘Ž2 are constants

Page 122: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 122

E.g.1: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ

1. Equation is already in standard form: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ 2. Find ๐‘ฆ๐‘ฆ๐‘๐‘: โ‡’ ๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 4 = 0 โ†’ ๐‘š๐‘šโˆ’ 2 2 = 0 โ‡’ ๐‘š๐‘š1 = ๐‘š๐‘š2 = 2 ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ 3. Compute ๐‘Š๐‘Š

๐‘Š๐‘Š =๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

= ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ2๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ

= ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ 2๐‘’๐‘’2๐‘ฅ๐‘ฅ = ๐‘’๐‘’4๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ ๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ ๐‘’๐‘’4๐‘ฅ๐‘ฅ โ‡’ ๐‘Š๐‘Š = ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘ท๐‘ท(๐Ÿ๐Ÿ) ๐‘ธ๐‘ธ(๐Ÿ๐Ÿ) ๐’‡๐’‡(๐Ÿ๐Ÿ)

๐’š๐’š๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ

Page 123: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 123

4. Compute ๐‘œ๐‘œ1โ€ฒ& ๐‘œ๐‘œ2๐‘ฆ

๐‘Š๐‘Š1 = 0 ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘’๐‘’2๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ = โˆ’๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

๐‘Š๐‘Š2 = ๐‘’๐‘’2๐‘ฅ๐‘ฅ 02๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

Now,

๐‘œ๐‘œ1โ€ฒ =๐‘Š๐‘Š1๐‘Š๐‘Š = โˆ’

๐‘ฅ๐‘ฅ + 1 ๐‘ฅ๐‘ฅ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘’๐‘’4๐‘ฅ๐‘ฅ = โˆ’๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ + 1 โ‡’ ๐‘œ๐‘œ1โ€ฒ = โˆ’๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ

๐‘œ๐‘œ1 = ๏ฟฝ โˆ’๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘œ๐‘œ1 = โˆ’13 ๐‘ฅ๐‘ฅ

3 โˆ’๐‘ฅ๐‘ฅ2

2

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘Š๐‘Š = ๐‘’๐‘’4๐‘ฅ๐‘ฅ

Page 124: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 124

Now,

๐‘œ๐‘œ2โ€ฒ =๐‘Š๐‘Š2๐‘Š๐‘Š =

๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘’๐‘’4๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ + 1 โ†’ ๐‘œ๐‘œ2๐‘ฆ

๐‘œ๐‘œ2 = ๏ฟฝ ๐‘ฅ๐‘ฅ + 1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘œ๐‘œ2 =๐‘ฅ๐‘ฅ2

2 + ๐‘ฅ๐‘ฅ

Hence, ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ + ๐‘œ๐‘œ2 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘๐‘ ๐‘ฅ๐‘ฅ = โˆ’13๐‘ฅ๐‘ฅ3 โˆ’

๐‘ฅ๐‘ฅ2

2๐‘’๐‘’2๐‘ฅ๐‘ฅ +

๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ+ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘Š๐‘Š = ๐‘’๐‘’4๐‘ฅ๐‘ฅ ๐‘Š๐‘Š2 = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘œ๐‘œ1 = โˆ’13๐‘ฅ๐‘ฅ3 โˆ’

๐‘ฅ๐‘ฅ2

2

Page 125: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 125

๐‘ฆ๐‘ฆ๐‘๐‘ ๐‘ฅ๐‘ฅ = โˆ’13๐‘ฅ๐‘ฅ3 โˆ’

๐‘ฅ๐‘ฅ2

2๐‘’๐‘’2๐‘ฅ๐‘ฅ +

๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ+ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

= โˆ’13

๐‘ฅ๐‘ฅ3๐‘’๐‘’2๐‘ฅ๐‘ฅ โˆ’12๐‘ฅ๐‘ฅ2๐‘’๐‘’2๐‘ฅ๐‘ฅ +

12๐‘ฅ๐‘ฅ3๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ2๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘๐‘ =16 ๐‘ฅ๐‘ฅ3๐‘’๐‘’2๐‘ฅ๐‘ฅ +

12 ๐‘ฅ๐‘ฅ2๐‘’๐‘’2๐‘ฅ๐‘ฅ

And, ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’2๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘’๐‘’2๐‘ฅ๐‘ฅ

๐‘Š๐‘Š = ๐‘’๐‘’4๐‘ฅ๐‘ฅ ๐‘Š๐‘Š2 = ๐‘ฅ๐‘ฅ + 1 ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘œ๐‘œ1 = โˆ’13๐‘ฅ๐‘ฅ3 โˆ’

๐‘ฅ๐‘ฅ2

2

๐‘œ๐‘œ2 =๐‘ฅ๐‘ฅ2

2+ ๐‘ฅ๐‘ฅ

Page 126: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 126

E.g.2: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ

1. Equation is already in standard form: ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ 2. Find ๐‘ฆ๐‘ฆ๐‘๐‘: โ‡’ ๐‘š๐‘š2 โˆ’ 5๐‘š๐‘š + 4 = 0 โ†’ (๐‘š๐‘šโˆ’ 1)(๐‘š๐‘šโˆ’ 4) = 0 โ‡’ ๐‘š๐‘š1 = 1&๐‘š๐‘š2 = 4 ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ 3. Compute ๐‘Š๐‘Š

๐‘Š๐‘Š =๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

= ๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘’๐‘’4๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ 4๐‘’๐‘’4๐‘ฅ๐‘ฅ

= ๐‘’๐‘’๐‘ฅ๐‘ฅ 4๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘’๐‘’4๐‘ฅ๐‘ฅ = 4๐‘’๐‘’5๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’5๐‘ฅ๐‘ฅ โ‡’ ๐‘Š๐‘Š = 3๐‘’๐‘’5๐‘ฅ๐‘ฅ

๐‘ท๐‘ท(๐Ÿ๐Ÿ) ๐‘ธ๐‘ธ(๐Ÿ๐Ÿ) ๐’‡๐’‡(๐Ÿ๐Ÿ)

๐’š๐’š๐Ÿ๐Ÿ ๐’š๐’š๐Ÿ๐Ÿ

Sec. 3.4. E.g. 4 (slide 94-95)

Page 127: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 127

4. Compute ๐‘œ๐‘œ1โ€ฒ& ๐‘œ๐‘œ2๐‘ฆ

๐‘œ๐‘œ1โ€ฒ =

0 ๐‘ฆ๐‘ฆ2๐‘“๐‘“(๐‘ฅ๐‘ฅ) ๐‘ฆ๐‘ฆ2๐‘ฆ

๐‘Š๐‘Š =0 ๐‘’๐‘’4๐‘ฅ๐‘ฅ

8๐‘’๐‘’๐‘ฅ๐‘ฅ 4๐‘’๐‘’4๐‘ฅ๐‘ฅ3๐‘’๐‘’5๐‘ฅ๐‘ฅ = โˆ’

8๐‘’๐‘’5๐‘ฅ๐‘ฅ

3๐‘’๐‘’5๐‘ฅ๐‘ฅ = โˆ’83

๐‘œ๐‘œ2โ€ฒ =

๐‘ฆ๐‘ฆ1 0๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

๐‘Š๐‘Š =๐‘’๐‘’๐‘ฅ๐‘ฅ 0๐‘’๐‘’๐‘ฅ๐‘ฅ 8๐‘’๐‘’๐‘ฅ๐‘ฅ

3๐‘’๐‘’5๐‘ฅ๐‘ฅ =8๐‘’๐‘’2๐‘ฅ๐‘ฅ

3๐‘’๐‘’5๐‘ฅ๐‘ฅ =83 ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ

5. Find ๐‘œ๐‘œ1 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘œ๐‘œ2

๐‘œ๐‘œ1 = ๏ฟฝโˆ’83๐‘‘๐‘‘๐‘ฅ๐‘ฅ = โˆ’

83 ๐‘ฅ๐‘ฅ

๐‘œ๐‘œ2 = ๏ฟฝ83 ๐‘’๐‘’

โˆ’3๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = โˆ’89 ๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘Š๐‘Š = 3๐‘’๐‘’5๐‘ฅ๐‘ฅ

Page 128: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 128

Hence, ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ + ๐‘œ๐‘œ2 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ2 ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘๐‘ = โˆ’83๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ + โˆ’

89

๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ ๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘๐‘ = โˆ’83 ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’

89 ๐‘’๐‘’

๐‘ฅ๐‘ฅ

And, ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐œถ๐œถ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐œถ๐œถ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’†๐’†

๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐Ÿ—๐Ÿ—๐’†๐’†

๐Ÿ๐Ÿ

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฆ๐‘ฆ = 8๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ

๐‘Š๐‘Š = 3๐‘’๐‘’5๐‘ฅ๐‘ฅ

๐‘œ๐‘œ1 = โˆ’83๐‘ฅ๐‘ฅ & ๐‘œ๐‘œ2 = โˆ’

89๐‘’๐‘’โˆ’3๐‘ฅ๐‘ฅ

Page 129: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 129

We got,

โ‡’ ๐’š๐’š = ๐œถ๐œถ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐œถ๐œถ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ โˆ’

๐Ÿ–๐Ÿ–๐Ÿ—๐Ÿ—๐’†๐’†๐Ÿ๐Ÿ

From Sec. 3.4. E.g. 4 (slide 94-95), we have:

๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ

as the solution.

Notice, ๐‘ฆ๐‘ฆ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’83๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 8

9๐‘’๐‘’๐‘ฅ๐‘ฅ = ๐›ผ๐›ผ1๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’

89๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’

83๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ

= ๐›ผ๐›ผ1 โˆ’89

๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐›ผ๐›ผ2๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’83๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ

= ๐’„๐’„๐Ÿ๐Ÿ๐‘’๐‘’๐‘ฅ๐‘ฅ + ๐’„๐’„๐Ÿ๐Ÿ๐‘’๐‘’4๐‘ฅ๐‘ฅ โˆ’83๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ

Page 130: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 130

โ€ข Higher Order Equations Generalize method to linear nth order D.E.

๐‘ฆ๐‘ฆ(๐‘›๐‘›) + ๐‘ƒ๐‘ƒ๐‘›๐‘›โˆ’1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ(๐‘›๐‘›โˆ’1) + โ‹ฏ+ ๐‘ƒ๐‘ƒ1 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ + ๐‘ƒ๐‘ƒ0 ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ

If ๐‘ฆ๐‘ฆc = ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2+. . . +๐‘๐‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘›๐‘› is the complementary function , then a particular solution is:

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) + ๐‘œ๐‘œ2(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ)+. . . +๐‘œ๐‘œ๐‘›๐‘›(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ๐‘›๐‘› (๐‘ฅ๐‘ฅ)

,where the ๐‘œ๐‘œ๐‘˜๐‘˜โ€ฒ , ๐‘˜๐‘˜ = 1,2, โ€ฆ ,๐‘›๐‘› are determined by the ๐‘›๐‘› eqn.

๐‘ฆ๐‘ฆ1๐‘œ๐‘œ1โ€ฒ + ๐‘ฆ๐‘ฆ2๐‘œ๐‘œ2โ€ฒ + โ‹ฏ+ ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘œ๐‘œ๐‘›๐‘›โ€ฒ = 0 ๐‘ฆ๐‘ฆ1โ€ฒ๐‘œ๐‘œ1โ€ฒ + ๐‘ฆ๐‘ฆ2โ€ฒ๐‘œ๐‘œ2โ€ฒ + โ‹ฏ+ ๐‘ฆ๐‘ฆ๐‘›๐‘›โ€ฒ๐‘œ๐‘œ๐‘›๐‘›โ€ฒ = 0

โ‹ฎ โ‹ฎ

๐‘ฆ๐‘ฆ1(๐‘›๐‘›โˆ’1)๐‘œ๐‘œ1โ€ฒ + ๐‘ฆ๐‘ฆ2

(๐‘›๐‘›โˆ’1)๐‘œ๐‘œ2โ€ฒ + โ‹ฏ+ ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘›๐‘›โˆ’1 ๐‘œ๐‘œ๐‘›๐‘›โ€ฒ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

Page 131: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 131

โ‡’

๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2 โ€ฆ ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2โ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ฆโ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

๐‘ฆ๐‘ฆ1๐‘›๐‘›โˆ’1 ๐‘ฆ๐‘ฆ2

๐‘›๐‘›โˆ’1 โ€ฆ ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘›๐‘›โˆ’1

๐‘œ๐‘œ1โ€ฒ

๐‘œ๐‘œ2โ€ฒโ‹ฎ๐‘œ๐‘œ๐‘›๐‘›โ€ฒ

=

00โ‹ฎ

๐‘“๐‘“(๐‘ฅ๐‘ฅ)

And, ๐‘œ๐‘œ๐‘˜๐‘˜โ€ฒ =๐‘Š๐‘Š๐‘˜๐‘˜๐‘Š๐‘Š ; ๐‘˜๐‘˜ = 1,2, โ€ฆ ,๐‘›๐‘›

Where, ๐‘Š๐‘Š1 =

0 ๐‘ฆ๐‘ฆ2 โ‹ฏ ๐‘ฆ๐‘ฆ๐‘›๐‘›0 ๐‘ฆ๐‘ฆ2โ€ฒ โ‹ฏ ๐‘ฆ๐‘ฆ๐‘›๐‘›โ€ฒโ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

๐‘“๐‘“(๐‘ฅ๐‘ฅ) ๐‘ฆ๐‘ฆ2(๐‘›๐‘›โˆ’1) โ‹ฏ ๐‘ฆ๐‘ฆ๐‘›๐‘› (๐‘›๐‘›โˆ’1)

๐‘œ๐‘œ๐‘˜๐‘˜ can be computed by integrating ๐‘œ๐‘œ๐‘˜๐‘˜โ€ฒ ;๐‘˜๐‘˜ = 1,2, โ€ฆ ,๐‘›๐‘› ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) + ๐‘œ๐‘œ2(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ)+. . . +๐‘œ๐‘œ๐‘›๐‘›(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ๐‘›๐‘›

(๐‘ฅ๐‘ฅ)

Page 132: Chapter 3-Higher Order Differential Equations

Variation of Parameters

9/30/2014 Dr. Eli Saber 132

Summary

Given ๐‘Ž๐‘Ž2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘Ž๐‘Ž0๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ) 1. Put Eq. into standard form by dividing throughout by a2(x)

๐‘ฆ๐‘ฆโ€ฒโ€ฒ +๐‘Ž๐‘Ž1๐‘Ž๐‘Ž2

๐‘ฆ๐‘ฆโ€ฒ +๐‘Ž๐‘Ž0๐‘Ž๐‘Ž2๐‘ฆ๐‘ฆ =

๐‘”๐‘” ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž2(๐‘ฅ๐‘ฅ)

2. Find ๐‘ฆ๐‘ฆ๐‘๐‘

= ๐‘๐‘1๐‘ฆ๐‘ฆ1 + ๐‘๐‘2๐‘ฆ๐‘ฆ2

Verify ๐‘ฆ๐‘ฆ๐‘๐‘

for the D.E.

3. Compute ๐‘Š๐‘Š =๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1โ€ฒ ๐‘ฆ๐‘ฆ2โ€ฒ

4. Compute ๐‘œ๐‘œ1โ€™ & ๐‘œ๐‘œ2โ€™ using:

๐‘œ๐‘œ1โ€ฒ =

0 ๐‘ฆ๐‘ฆ2๐‘“๐‘“(๐‘ฅ๐‘ฅ) ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

;๐‘œ๐‘œ2โ€ฒ =

๐‘ฆ๐‘ฆ1 0๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘“๐‘“(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2๐‘ฆ

5. Find ๐‘œ๐‘œ1 & ๐‘œ๐‘œ2 by integrating ๐‘œ๐‘œ1โ€ฒ & ๐‘œ๐‘œ2โ€ฒ respectively. 6. Form ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ1(๐‘ฅ๐‘ฅ) + ๐‘œ๐‘œ2(๐‘ฅ๐‘ฅ)๐‘ฆ๐‘ฆ2(๐‘ฅ๐‘ฅ) 7. General Solution: ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘ verify the solution for the D.E.

Page 133: Chapter 3-Higher Order Differential Equations

Section 3.6 Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 133

Page 134: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 134

Any linear Differential Equation of the form:

๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›

+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 ๐‘‘๐‘‘๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

+ โ€ฆ + ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

, where ๐‘Ž๐‘Ž๐‘›๐‘›,๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1, โ€ฆ ,๐‘Ž๐‘Ž1,๐‘Ž๐‘Ž0 are constants

And the degree ๐‘›๐‘› at ๐‘ฅ๐‘ฅ๐‘›๐‘› matches the order ๐‘›๐‘› of the differentiation ๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›

is called a Cauchy-Euler Equation E.g.

1) ๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

โˆ’ 2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆ’ 4๐‘ฆ๐‘ฆ = 0

2) ๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

โˆ’ 3๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ

same same

Page 135: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 135

General 2nd order: ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2+ ๐‘๐‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ+ ๐‘๐‘๐‘ฆ๐‘ฆ = 0

Proceed to develop solution for 2nd order and then generalize.

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘ฆ๐‘ฆ = 0

Note: ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 = 0 @ ๐‘ฅ๐‘ฅ = 0 confine attention to interval ๐ผ๐ผ โ‰ก 0,โˆž For (โˆ’โˆž, 0), let ๐‘ก๐‘ก = โˆ’๐‘ฅ๐‘ฅ

Homogeneous

Page 136: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 136

Try a solution of the form ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š

โ‡’๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 &๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

= ๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2

โ‡’ ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 + ๐‘๐‘๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 + ๐‘๐‘๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘š + ๐‘๐‘๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘š + ๐‘๐‘๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 + ๐‘๐‘๐‘š๐‘š + ๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š2 โˆ’ ๐‘Ž๐‘Ž๐‘š๐‘š + ๐‘๐‘๐‘š๐‘š + ๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š2 + ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ๐‘š๐‘š + ๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 Thus, ๐’š๐’š = ๐Ÿ๐Ÿ๐’Ž๐’Ž is a solution of the D.E. whenever ๐‘š๐‘š is a solution to the auxiliary equation

๐’‚๐’‚๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ โˆ’ ๐’‚๐’‚ ๐’Ž๐’Ž + ๐’„๐’„ = ๐ŸŽ๐ŸŽ

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

+ ๐‘๐‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘๐‘๐‘ฆ๐‘ฆ = 0

Page 137: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 137

Case 1: Distinct Real Roots If ๐‘š๐‘š1 & ๐‘š๐‘š2 are the real roots of ๐‘Ž๐‘Ž๐‘š๐‘š2 + ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ๐‘š๐‘š + ๐‘๐‘ = 0 with ๐‘š๐‘š1 โ‰  ๐‘š๐‘š2 โ‡’ ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 & ๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ๐‘š๐‘š2 form a fundamental set of solutions and the general solution is ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐‘š๐‘š1 + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š2 General case: ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐‘š๐‘š1 + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š2 + โ‹ฏ+ ๐‘๐‘๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘š๐‘š๐‘›๐‘› ๐‘›๐‘›๐‘ก๐‘ก๐‘ก order

Case 1: Distinct Real Roots

Page 138: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 138

E.g. ๐‘ฅ๐‘ฅ2 ๐‘‘๐‘‘2๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2โˆ’ 2๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 0

Assume ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š as the solution. โ‡’ ๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โˆ’ 2๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 โˆ’ 4๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘š โˆ’ 2๐‘š๐‘š ๐‘ฅ๐‘ฅ๐‘š๐‘š โˆ’ 4๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 โˆ’ 2๐‘š๐‘š โˆ’ 4 ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š2 โˆ’๐‘š๐‘š โˆ’ 2๐‘š๐‘š โˆ’ 4 ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š2 โˆ’ 3๐‘š๐‘š โˆ’ 4 ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 = ๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2

Auxiliary Equation

Case 1: Distinct Real Roots

Page 139: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 139

๐‘š๐‘š2 โˆ’ 3๐‘š๐‘š โˆ’ 4 = 0 โ‡’ ๐‘š๐‘š + 1 ๐‘š๐‘š โˆ’ 4 = 0 โ‡’ ๐‘š๐‘š = โˆ’1 ๐‘“๐‘“๐‘“๐‘“ ๐‘š๐‘š = 4 Hence,

๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Case 1: Distinct Real Roots

Page 140: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 140

Case 2: Repeated Real Roots If the roots are repeated i.e. ๐‘š๐‘š1 = ๐‘š๐‘š2, only one solution: ๐’š๐’š = ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ โ‡’ ๐‘Ž๐‘Ž๐‘š๐‘š2 + ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ๐‘š๐‘š + ๐‘๐‘ = 0

โ‡’ ๐‘š๐‘š =โˆ’ ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ยฑ ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž 2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘

2๐‘Ž๐‘Ž

For ๐‘š๐‘š1 = ๐‘š๐‘š2,โ‡’ ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž 2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ = 0 โ‡’ ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž 2 = 4๐‘Ž๐‘Ž๐‘๐‘

Hence, ๐‘š๐‘š1 = ๐‘š๐‘š2 = โˆ’ (๐‘๐‘โˆ’๐‘Ž๐‘Ž)2๐‘Ž๐‘Ž

Case 2: Repeated Real Roots

Page 141: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 141

Construct a second solution like Section 3.2.

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

+ ๐‘๐‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘๐‘๐‘ฆ๐‘ฆ = 0

โ‡’๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 +

๐‘๐‘๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ = 0

โ‡’๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ = 0

Let ๐‘ฆ๐‘ฆ = ๐‘œ๐‘œ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ฅ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 & ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1

Case 2: Repeated Real Roots

๐‘ท๐‘ท(๐Ÿ๐Ÿ) Q(๐Ÿ๐Ÿ)

Page 142: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 142

๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

+๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆ = 0

Replace ๐‘ฆ๐‘ฆ1,๐‘ฆ๐‘ฆ1โ€ฒ ,๐‘ฆ๐‘ฆ1โ€ฒ ๐‘ฆ

โ‡’ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1 +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1 = 0

โ‡’ ๐‘œ๐‘œ ๐‘ฆ๐‘ฆ1โ€ฒโ€ฒ +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1

โ€ฒ +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ1๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘ฆ๐‘ฆ1โ€ฒ +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘œ๐‘œโ€ฒ = 0

= ๐‘ฆ๐‘ฆ1๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘ฆ๐‘ฆโ€ฒ +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘œ๐‘œโ€ฒ = 0

Case 2: Repeated Real Roots

๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘ฆ๐‘ฆ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1

๐‘ฆ๐‘ฆโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1

=0 since ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐’Ž๐’Ž is a solution

Page 143: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 143

๐‘ฆ๐‘ฆ1๐‘œ๐‘œโ€ฒโ€ฒ + 2๐‘ฆ๐‘ฆโ€ฒ +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1 ๐‘œ๐‘œโ€ฒ = 0

Let ๐‘ค๐‘ค = ๐‘œ๐‘œโ€ฒ โ‡’ ๐‘ฆ๐‘ฆ1๐‘ค๐‘คโ€ฒ + 2๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1 ๐‘ค๐‘ค = 0

โ‡’ ๐‘ฆ๐‘ฆ1๐‘‘๐‘‘๐‘ค๐‘ค๐‘‘๐‘‘๐‘ฅ๐‘ฅ = โˆ’ 2 ๐‘ฆ๐‘ฆ1โ€ฒ +

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘ค๐‘ค

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค = โˆ’

1๐‘ฆ๐‘ฆ1

2๐‘ฆ๐‘ฆ1โ€ฒ +๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค = โˆ’2

๐‘ฆ๐‘ฆ1โ€ฒ

๐‘ฆ๐‘ฆ1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘ฆ๐‘ฆ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1

๐‘ฆ๐‘ฆโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘œ๐‘œ๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 2๐‘œ๐‘œโ€ฒ๐‘ฆ๐‘ฆ1โ€ฒ + ๐‘œ๐‘œโ€ฒโ€ฒ๐‘ฆ๐‘ฆ1

Case 2: Repeated Real Roots

Page 144: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 144

โ‡’๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= โˆ’2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘š๐‘š1โˆ’1

๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๏ฟฝ๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= ๏ฟฝโˆ’2๐‘š๐‘š1๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’ ๏ฟฝ

๐‘๐‘๐‘Ž๐‘Ž

1๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ln |๐‘ค๐‘ค| = โˆ’2 ๐‘š๐‘š1 ln ๐‘ฅ๐‘ฅ โˆ’๐‘๐‘๐‘Ž๐‘Ž ln ๐‘ฅ๐‘ฅ + ๐‘๐‘

โ‡’ ln |๐‘ค๐‘ค| + 2 ๐‘š๐‘š1 ln ๐‘ฅ๐‘ฅ +๐‘๐‘๐‘Ž๐‘Ž ln ๐‘ฅ๐‘ฅ = ๐‘๐‘

โ‡’ ln ๐‘ค๐‘ค + ln ๐‘ฅ๐‘ฅ 2๐‘š๐‘š1 + ln ๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Ž = ๐‘๐‘

โ‡’ ln ๐‘ค๐‘ค๐‘ฅ๐‘ฅ2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Ž = ๐‘๐‘

Case 2: Repeated Real Roots

๐‘‘๐‘‘๐‘ค๐‘ค๐‘ค๐‘ค

= โˆ’2๐‘ฆ๐‘ฆ1โ€ฒ

๐‘ฆ๐‘ฆ1 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’

๐‘๐‘๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1

โ‡’ ๐‘ฆ๐‘ฆ1โ€ฒ = ๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘š๐‘š1โˆ’1

Page 145: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 145

โ‡’ ln ๐‘ค๐‘ค๐‘ฅ๐‘ฅ2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Ž = ๐‘๐‘

โ‡’ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Ž = ๐‘’๐‘’๐‘๐‘

But ๐‘ค๐‘ค = ๐‘œ๐‘œโ€ฒ โ‡’ ๐‘œ๐‘œโ€ฒ๐‘ฅ๐‘ฅ2๐‘š๐‘š1๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Ž = ๐‘’๐‘’๐‘๐‘

โ‡’ ๐‘œ๐‘œโ€ฒ = ๐‘’๐‘’๐‘๐‘๐‘ฅ๐‘ฅโˆ’2๐‘š๐‘š1๐‘ฅ๐‘ฅโˆ’ ๐‘๐‘๐‘Ž๐‘Ž

โ‡’ ๐‘œ๐‘œ = ๏ฟฝ๐‘’๐‘’๐‘๐‘๐‘ฅ๐‘ฅโˆ’2๐‘š๐‘š1๐‘ฅ๐‘ฅโˆ’ ๐‘๐‘๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Now, ๐‘ฆ๐‘ฆ2 = ๐‘œ๐‘œ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 โˆซ ๐‘’๐‘’๐‘๐‘๐‘ฅ๐‘ฅ๐’ƒ๐’ƒโˆ’๐’‚๐’‚๐’‚๐’‚ ๐‘ฅ๐‘ฅโˆ’ ๐‘๐‘๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๏ฟฝ๐‘’๐‘’๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘๐‘๐‘Ž๐‘Žโˆ’1โˆ’

๐‘๐‘๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๏ฟฝ๐‘’๐‘’๐‘๐‘ ๐‘ฅ๐‘ฅโˆ’1๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Case 2: Repeated Real Roots

๐‘š๐‘š1 = โˆ’๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž2๐‘Ž๐‘Ž

โ‡’ 2๐‘š๐‘š1 = โˆ’๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Page 146: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 146

๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๏ฟฝ๐‘’๐‘’๐‘๐‘ ๐‘ฅ๐‘ฅโˆ’1๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ2 = ๐‘’๐‘’๐‘๐‘๐‘ฅ๐‘ฅ๐‘š๐‘š1 ln ๐‘ฅ๐‘ฅ = ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š1 ln ๐‘ฅ๐‘ฅ General solution: ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ ๐’“๐’“๐’๐’๐Ÿ๐Ÿ

Case 2: Repeated Real Roots

Page 147: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 147

E.g. 4๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 8๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + ๐‘ฆ๐‘ฆ = 0

Let ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โ‡’ 4๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 + 8๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 + ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ 4๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘š + 8๐‘š๐‘š ๐‘ฅ๐‘ฅ๐‘š๐‘š + ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ 4๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 8๐‘š๐‘š + 1 ๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ 4๐‘š๐‘š2 + 4๐‘š๐‘š + 1 = 0

โ‡’ 2๐‘š๐‘š + 1 2 = 0 โ‡’ ๐‘š๐‘š = โˆ’12

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ

Case 2: Repeated Real Roots

๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐‘š๐‘š1 + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ

Repeated roots

Page 148: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 148

Note: For higher order equations, if ๐‘š๐‘š1 is a root of multiplicity ๐พ๐พ

โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š1 , ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ln๐‘ฅ๐‘ฅ , ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ln๐‘ฅ๐‘ฅ 2, โ€ฆ , ๐‘ฅ๐‘ฅ๐‘š๐‘š1 ln ๐‘ฅ๐‘ฅ ๐‘˜๐‘˜โˆ’1 are ๐พ๐พ linearly independent solutions

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ ๐’“๐’“๐’๐’๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ ๐’“๐’“๐’๐’๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + โ‹ฏ+ ๐’„๐’„๐’“๐’“๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ๐Ÿ ๐’“๐’“๐’๐’๐Ÿ๐Ÿ ๐’“๐’“โˆ’๐Ÿ๐Ÿ

Case 2: Repeated Real Roots

Page 149: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 149

Case 3: Conjugate Complex Roots If the roots are conjugate pairs i.e. ๐‘š๐‘š1 = ๐›ผ๐›ผ + ๐‘—๐‘—๐›ฝ๐›ฝ & ๐‘š๐‘š2 = ๐›ผ๐›ผ โˆ’ ๐‘—๐‘—๐›ฝ๐›ฝ (๐›ผ๐›ผ,๐›ฝ๐›ฝ > 0)

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐œถ๐œถ+๐’‹๐’‹๐œท๐œท + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐œถ๐œถโˆ’๐’‹๐’‹๐œท๐œท We can rewrite that in terms of ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  & ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› as:

๐‘ฅ๐‘ฅ๐‘—๐‘—๐‘—๐‘— = ๐‘’๐‘’ln ๐‘ฅ๐‘ฅ ๐‘—๐‘—๐‘—๐‘— = ๐‘’๐‘’ln ๐‘ฅ๐‘ฅ๐‘—๐‘—๐‘—๐‘— = cos ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘—๐‘— sin(๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ)

๐‘ฅ๐‘ฅโˆ’๐‘—๐‘—๐‘—๐‘— = ๐‘’๐‘’ln ๐‘ฅ๐‘ฅ โˆ’๐‘—๐‘—๐‘—๐‘— = ๐‘’๐‘’โˆ’ ln ๐‘ฅ๐‘ฅ๐‘—๐‘—๐‘—๐‘— = cos ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘— sin(๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ)

Case 3: Conjugate Complex Roots

Page 150: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 150

We have, ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐›ผ๐›ผ+๐‘—๐‘—๐‘—๐‘— + ๐‘๐‘2๐‘ฅ๐‘ฅ๐›ผ๐›ผโˆ’๐‘—๐‘—๐‘—๐‘— โ‡’ ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘—๐‘— ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘›(๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ) + ๐‘๐‘2๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘— ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘›(๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ)

= ๐‘๐‘1๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘—๐‘—๐‘๐‘1๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘—๐‘๐‘2๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘1 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ + ๐‘—๐‘—๐‘๐‘1 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ โˆ’ ๐‘—๐‘—๐‘๐‘2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐›ผ๐›ผ ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ {๐‘๐‘1 + ๐‘๐‘2} + ๐‘—๐‘—{๐‘๐‘1 โˆ’ ๐‘๐‘2} ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ln ๐‘ฅ๐‘ฅ ๐’š๐’š = ๐Ÿ๐Ÿ๐œถ๐œถ โˆ๐Ÿ๐Ÿ ๐’„๐’„๐’„๐’„๐’„๐’„ ๐œท๐œท ๐’“๐’“๐’๐’๐Ÿ๐Ÿ +โˆ๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’๐’ ๐œท๐œท ๐’“๐’“๐’๐’๐Ÿ๐Ÿ

Case 3: Conjugate Complex Roots

Page 151: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 151

E.g.

4๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ + 17๐‘ฆ๐‘ฆ = 0 with I.C. ๐‘ฆ๐‘ฆ 1 = โˆ’1; ๐‘ฆ๐‘ฆโ€ฒ 1 = โˆ’12

Let ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โ‡’ 4๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 + 17๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ 4๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘š + 17๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š 4๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 17 = 0 Auxiliary Eqn. : ๐Ÿ’๐Ÿ’๐’Ž๐’Ž๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’Ž๐’Ž + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

Case 3: Conjugate Complex Roots

Page 152: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 152

Auxiliary Eqn. : 4๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 17 = 0

๐‘š๐‘š =โˆ’ โˆ’4 ยฑ 16 โˆ’ 4(4)(17)

8=

4 ยฑ 16 โˆ’ 2728

=4 ยฑ 256 ๐‘—๐‘—2

8

๐‘š๐‘š =4 ยฑ 4 โˆ— 64 ๐‘—๐‘—2

8 =4 ยฑ ๐‘—๐‘—2(8)

8 =12 ยฑ 2๐‘—๐‘—

โ‡’ ๐’Ž๐’Ž๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’‹๐’‹ & ๐’Ž๐’Ž๐Ÿ๐Ÿ =

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’‹๐’‹

๐›ผ๐›ผ =12 & ๐›ฝ๐›ฝ = 2

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐’‹๐’‹ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’‹๐’‹ ๐’„๐’„๐’“๐’“ ๐’š๐’š = ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ๐Ÿ๐Ÿ ๐’„๐’„๐’„๐’„๐’„๐’„ ๐Ÿ๐Ÿ ๐’“๐’“๐’๐’ ๐Ÿ๐Ÿ +โˆ๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’๐’ ๐Ÿ๐Ÿ ๐’“๐’“๐’๐’ ๐Ÿ๐Ÿ

Case 3: Conjugate Complex Roots

Page 153: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 153

Now,

I.C. ๐‘ฆ๐‘ฆ 1 = โˆ’1;๐‘ฆ๐‘ฆโ€ฒ 1 = โˆ’12

๐‘ฆ๐‘ฆ 1 = โˆ’1 โ‡’ โˆ’1 = 112 โˆ1 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2 ๐‘”๐‘”๐‘›๐‘› 1 +โˆ2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2 ๐‘”๐‘”๐‘›๐‘› 1

โ‡’ โˆ’1 = 1 โˆ1 1 +โˆ2 0 โ‡’ โˆ1= โˆ’1

๐‘ฆ๐‘ฆโ€ฒ 1 = โˆ’12

๐‘ฆ๐‘ฆโ€ฒ =โˆ112 ๐‘ฅ๐‘ฅ

โˆ’12 cos 2 ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ12 โˆ’ sin 2 ln ๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ +

โˆ212๐‘ฅ๐‘ฅโˆ’

12 sin 2 ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

12 cos 2 ln ๐‘ฅ๐‘ฅ 2

๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ12 โˆ1 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ +โˆ2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ

Case 3: Conjugate Complex Roots

Page 154: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 154

๐‘ฆ๐‘ฆโ€ฒ =โˆ112๐‘ฅ๐‘ฅโˆ’

12 cos 2 ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

12 โˆ’ sin 2 ln ๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ

+

โˆ212๐‘ฅ๐‘ฅโˆ’

12 sin 2 ln ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

12 cos 2 ln ๐‘ฅ๐‘ฅ 2

๐‘ฅ๐‘ฅ

โ‡’ โˆ’12

= โˆ’1 1

2 112

cos 0 + 112 โˆ’ sin 0

21

+

+โˆ2 1

2 112

sin 0 + 112 cos 0 2

1

โ‡’ โˆ’12

= โˆ’112

+โˆ2โ‡’โˆ2= โˆ’12

+12

= 0 โ‡’โˆ2= 0

โ‡’ ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐œ๐œ๐œ๐œ๐œ๐œ (๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ)

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ12 โˆ1 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ +โˆ2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ

โˆ1= โˆ’1

Case 3: Conjugate Complex Roots

Page 155: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 155

E.g.

๐‘ฅ๐‘ฅ3๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3

+ 5๐‘ฅ๐‘ฅ2๐‘‘๐‘‘2๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

+ 7๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ 8๐‘ฆ๐‘ฆ = 0

Assume ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘š๐‘š ๐‘š๐‘šโˆ’ 1 ๐‘š๐‘šโˆ’ 2 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’3 โ‡’ ๐‘ฅ๐‘ฅ3 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘š๐‘šโˆ’ 2 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’3 + 5๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 +7๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 + 8๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘š๐‘šโˆ’ 2 + 5๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 + 7๐‘š๐‘š + 8 = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š ๐‘š๐‘š2 โˆ’ 3๐‘š๐‘š + 2 + 5๐‘š๐‘š2 โˆ’ 5๐‘š๐‘š + 7๐‘š๐‘š + 8 = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š3 โˆ’ 3๐‘š๐‘š2 + 2๐‘š๐‘š + 5๐‘š๐‘š2 + 2๐‘š๐‘š + 8 = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š3 + 2๐‘š๐‘š2 + 4๐‘š๐‘š + 8 = 0

Case 3: Conjugate Complex Roots

Page 156: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 156

โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š3 + 2๐‘š๐‘š2 + 4๐‘š๐‘š + 8 = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š + 2 ๐‘š๐‘š2 + 4 = 0 ๐‘š๐‘š + 2 ๐‘š๐‘š2 + 4 = 0

โ‡’ ๐‘š๐‘š + 2 ๐‘š๐‘š + 2๐‘—๐‘— ๐‘š๐‘š โˆ’ 2๐‘—๐‘— = 0 โ‡’ ๐‘š๐‘š1 = โˆ’2,๐‘š๐‘š2 = โˆ’2๐‘—๐‘—,๐‘š๐‘š3 = 2๐‘—๐‘— Solution: ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‹๐’‹ + ๐’„๐’„๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’‹๐’‹ or ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ(๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ) + ๐’„๐’„๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ(๐Ÿ๐Ÿ ๐ฅ๐ฅ๐ฅ๐ฅ ๐Ÿ๐Ÿ)

Case 3: Conjugate Complex Roots

Auxiliary Equation

๐‘š๐‘š2 + 4 = 0 โ‡’ ๐‘š๐‘š2 = โˆ’4 โ‡’ ๐‘š๐‘š2 = 4๐‘—๐‘—2 โ‡’ ๐‘š๐‘š = ยฑ2๐‘—๐‘—

Page 157: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 157

E.g. ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ

โ€ข Non Homogeneous Eqn. solve associated Homogeneous Eqn.

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 0 Assume ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘š๐‘š โ‡’ ๐‘ฆ๐‘ฆโ€ฒ = ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โ‡’ ๐‘ฅ๐‘ฅ2 ๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 ๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’2 โˆ’ 3๐‘ฅ๐‘ฅ ๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘šโˆ’1 + 3๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š2 โˆ’๐‘š๐‘š ๐‘ฅ๐‘ฅ๐‘š๐‘š โˆ’ 3๐‘š๐‘š๐‘ฅ๐‘ฅ๐‘š๐‘š + 3๐‘ฅ๐‘ฅ๐‘š๐‘š = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š2 โˆ’๐‘š๐‘š โˆ’ 3๐‘š๐‘š + 3 = 0 โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 3 = 0

Case 3: Conjugate Complex Roots

Page 158: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 158

โ‡’ ๐‘ฅ๐‘ฅ๐‘š๐‘š ๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 3 = 0 Auxiliary Eqn. ๐‘š๐‘š2 โˆ’ 4๐‘š๐‘š + 3 = 0 โ‡’ ๐‘š๐‘š โˆ’ 1 ๐‘š๐‘š โˆ’ 3 = 0 โ‡’ ๐‘š๐‘š1 = 1 & ๐‘š๐‘š2 = 3

โ‡’ ๐’š๐’š๐’„๐’„ = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โ€ข Utilize Variation of Parameters to solve for particular solution ๐‘ฆ๐‘ฆ๐‘๐‘

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2๐‘ฆ๐‘ฆ2

,where ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ & ๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ3

Case 3: Conjugate Complex Roots

Auxiliary Equation

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ

Page 159: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 159

Note: To use Variation of Parameters must transform the equation

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ

Divide by ๐‘ฅ๐‘ฅ2,

๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆโ€ฒ +

3๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ =

2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ2

โ‡’ ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’3๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆโ€ฒ +

3๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

Case 3: Conjugate Complex Roots

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ3 ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ &๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ3

๐‘ท๐‘ท(๐Ÿ๐Ÿ) ๐‘ธ๐‘ธ(๐Ÿ๐Ÿ) ๐’‡๐’‡(๐Ÿ๐Ÿ)

Page 160: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 160

Form all Wronskians: ๐‘Š๐‘Š =

๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2๐‘ฆ๐‘ฆ1๐‘ฆ ๐‘ฆ๐‘ฆ2โ€ฒ

= ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ31 3๐‘ฅ๐‘ฅ2

= 3๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ3 = 2๐‘ฅ๐‘ฅ3

๐‘Š๐‘Š1 =0 ๐‘ฆ๐‘ฆ2

๐‘“๐‘“(๐‘ฅ๐‘ฅ) ๐‘ฆ๐‘ฆ2โ€ฒ= 0 ๐‘ฅ๐‘ฅ3

2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ 3๐‘ฅ๐‘ฅ2= โˆ’2๐‘ฅ๐‘ฅ5๐‘’๐‘’๐‘ฅ๐‘ฅ

๐‘Š๐‘Š2 = ๐‘ฅ๐‘ฅ 01 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ3๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ1โ€ฒ =๐‘Š๐‘Š1๐‘Š๐‘Š = โˆ’

2๐‘ฅ๐‘ฅ5๐‘’๐‘’๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ3 = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ2โ€ฒ =๐‘Š๐‘Š2๐‘Š๐‘Š =

2๐‘ฅ๐‘ฅ3๐‘’๐‘’๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ3 = ๐‘’๐‘’๐‘ฅ๐‘ฅ

Case 3: Conjugate Complex Roots

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ3 ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ &๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ3 ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

Page 161: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 161

Integrate ๐‘œ๐‘œ1โ€ฒ & ๐‘œ๐‘œ2โ€ฒ to get ๐‘œ๐‘œ1&๐‘œ๐‘œ2 :

๐‘œ๐‘œ2 = ๏ฟฝ๐‘œ๐‘œ2โ€ฒ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐’†๐’†๐Ÿ๐Ÿ

๐‘œ๐‘œ1 = ๏ฟฝ๐‘œ๐‘œ1โ€ฒ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = โˆ’๏ฟฝ๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Let ๐›ผ๐›ผ = ๐‘ฅ๐‘ฅ2 โ‡’ ๐‘‘๐‘‘๐›ผ๐›ผ = 2๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ;๐‘‘๐‘‘๐›ฝ๐›ฝ = ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โ‡’ ๐›ฝ๐›ฝ = ๐‘’๐‘’๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ1 = โˆ’ ๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ ๏ฟฝ๐‘’๐‘’๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ1 = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๏ฟฝ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Case 3: Conjugate Complex Roots

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ3 ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ &๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ3 ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘œ๐‘œ1โ€ฒ = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

๐‘œ๐‘œ2โ€ฒ = ๐‘’๐‘’๐‘ฅ๐‘ฅ

Integration by parts

Page 162: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 162

โ‡’ ๐‘œ๐‘œ1 = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๏ฟฝ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ‡’ ๐‘œ๐‘œ1 = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ + 2 ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ ๐‘’๐‘’๐‘ฅ๐‘ฅ โ‡’ ๐’–๐’–๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ Now, ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘œ๐‘œ1๐‘ฆ๐‘ฆ1 + ๐‘œ๐‘œ2๐‘ฆ๐‘ฆ2 = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 2๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ + ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 = โˆ’๐‘ฅ๐‘ฅ3๐‘’๐‘’๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ โˆ’ 2๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ โ‡’ ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’†๐’†๐Ÿ๐Ÿ

Case 3: Conjugate Complex Roots

๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆโ€ฒ + 3๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ4๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ3 ๐‘ฆ๐‘ฆ1 = ๐‘ฅ๐‘ฅ &๐‘ฆ๐‘ฆ2 = ๐‘ฅ๐‘ฅ3 ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ ๐‘œ๐‘œ1โ€ฒ = โˆ’๐‘ฅ๐‘ฅ2๐‘’๐‘’๐‘ฅ๐‘ฅ

๐‘œ๐‘œ2 = ๐‘’๐‘’๐‘ฅ๐‘ฅ

Page 163: Chapter 3-Higher Order Differential Equations

Cauchy-Euler Equations

9/30/2014 Dr. Eli Saber 163

Summary

โ€ข Identified when ๐Ÿ๐Ÿ๐’๐’ matches the order of the differentiation ๐’…๐’…

๐’๐’๐’š๐’š๐’…๐’…๐Ÿ๐Ÿ๐’๐’

๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘‘๐‘‘๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘›๐‘›

+ โ€ฆ + ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘Ž๐‘Ž0 ๐‘ฆ๐‘ฆ = ๐‘”๐‘”(๐‘ฅ๐‘ฅ)

Step1: Obtain Complementary Solution(๐‘ฆ๐‘ฆ๐‘๐‘) โ€ข Consider ๐’ˆ๐’ˆ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

โ€ข Try the form ๐’š๐’š = ๐Ÿ๐Ÿ๐’Ž๐’Ž

โ€ข Auxiliary Equation:

๐’‚๐’‚๐’Ž๐’Ž๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ โˆ’ ๐’‚๐’‚ ๐’Ž๐’Ž + ๐’„๐’„ = ๐ŸŽ๐ŸŽ

โ€ข Obtain roots for the equation โ€“ Case 1: Distinct Real Roots โ€“ ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐‘š๐‘š1 + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š2 + โ‹ฏ+ ๐‘๐‘๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘š๐‘š๐‘›๐‘›

โ€“ Case 2: Repeated Real Roots โ€“ ๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘ฅ๐‘ฅ๐‘š๐‘š1 + ๐‘๐‘2๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ +

๐‘๐‘3๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ 2 + โ‹ฏ+๐‘๐‘๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘š๐‘š1 ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ ๐‘˜๐‘˜โˆ’1

โ€“ Case 3: Conjugate Complex Roots โ€“ ๐‘ฆ๐‘ฆ =

๐‘ฅ๐‘ฅ๐›ผ๐›ผ โˆ1 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  ๐›ฝ๐›ฝ ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ +โˆ2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› ๐›ฝ๐›ฝ ๐‘”๐‘”๐‘›๐‘› ๐‘ฅ๐‘ฅ

Step2: Obtain Particular Solution (๐‘ฆ๐‘ฆ๐‘๐‘) โ€ข Use either Undetermined Coefficients

(3.4) or Variation of Parameters (3.5)

Step3: Combine to obtain general solution โ€ข ๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

Step4: Verify the solution

Page 164: Chapter 3-Higher Order Differential Equations

Section 3.8 Linear Models

9/30/2014 Dr. Eli Saber 164

Page 165: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 165

Note: ๐‘‰๐‘‰๐‘…๐‘… = ๐‘…๐‘…๐‘ ๐‘ 

๐‘‰๐‘‰๐ฟ๐ฟ = ๐ฟ๐ฟ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

๐‘ ๐‘ ๐‘๐‘ = ๐‘๐‘๐‘‘๐‘‘๐‘‰๐‘‰๐‘๐‘๐‘‘๐‘‘๐‘ก๐‘ก

; ๐‘ ๐‘  =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

โ‡’๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

=๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก โ‡’ ๐‘‘๐‘‘ = โˆซ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก ๐‘‘๐‘‘ charge

Kirchoffโ€™s Voltage Law:

๐ธ๐ธ = ๐‘…๐‘…๐‘ ๐‘  + ๐ฟ๐ฟ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

+1๐ถ๐ถ

๏ฟฝ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก

C

L

R

E

3.8.4. : Series Circuit (LRC)

๐‘ ๐‘ (๐‘ก๐‘ก)

Page 166: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 166

๐ธ๐ธ = ๐‘…๐‘…๐‘ ๐‘  + ๐ฟ๐ฟ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

+1๐ถ๐ถ

๏ฟฝ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก

โ‡’ ๐ธ๐ธ = ๐‘…๐‘…๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+ ๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+๐‘‘๐‘‘๐ถ๐ถ

โ‡’ ๐‘น๐‘น๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก + ๐‘ณ๐‘ณ

๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2 +

๐Ÿ๐Ÿ๐‘ช๐‘ช๐‘‘๐‘‘ = ๐ธ๐ธ

โ€ข ๐‘ ๐‘  = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

;๐‘‰๐‘‰๐‘…๐‘… = ๐‘…๐‘…๐‘ ๐‘ 

โ€ข ๐‘‰๐‘‰๐ฟ๐ฟ = ๐ฟ๐ฟ ๐‘‘๐‘‘๐‘–๐‘–๐‘‘๐‘‘๐‘ก๐‘ก

โ€ข ๐‘‰๐‘‰๐ถ๐ถ = 1๐ถ๐ถ โˆซ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก

โ€ข ๐ธ๐ธ(๐‘ก๐‘ก): forcing function

C

L

R

E

3.8.4. : Series Circuit (LRC)

๐‘ ๐‘ (๐‘ก๐‘ก)

Page 167: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 167

๐‘…๐‘…๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+ ๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+๐‘‘๐‘‘๐ถ๐ถ

= ๐ธ๐ธ

Rearranging the equation, we get:

๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ ๐‘…๐‘…๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+1๐ถ๐ถ๐‘‘๐‘‘ = ๐ธ๐ธ

Auxiliary Eqn: ๐ฟ๐ฟ๐‘š๐‘š2 + ๐‘…๐‘…๐‘š๐‘š + 1๐ถ๐ถ

= 0

โ‡’ ๐‘š๐‘š =โˆ’๐‘…๐‘… ยฑ ๐‘…๐‘…2 โˆ’ 4 ๐ฟ๐ฟ 1

๐ถ๐ถ2๐ฟ๐ฟ

โ‡’ ๐‘š๐‘š =โˆ’๐‘…๐‘… ยฑ ๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ

๐ถ๐ถ2๐ฟ๐ฟ

C

L

R

E

3.8.4. : Series Circuit (LRC)

๐‘ ๐‘ (๐‘ก๐‘ก)

(Assume ๐ธ๐ธ ๐‘ก๐‘ก = 0)

Page 168: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 168

๐‘š๐‘š =โˆ’๐‘…๐‘… ยฑ ๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ

๐ถ๐ถ2๐ฟ๐ฟ

โ€ข If ๐‘น๐‘น๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐‘ณ๐‘ณ๐‘ช๐‘ช

> ๐ŸŽ๐ŸŽ over damped

โ€ข If ๐‘น๐‘น๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐‘ณ๐‘ณ๐‘ช๐‘ช

= ๐ŸŽ๐ŸŽ critically damped

โ€ข If ๐‘น๐‘น๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐‘ณ๐‘ณ๐‘ช๐‘ช

< ๐ŸŽ๐ŸŽ under damped

Now,

๐‘š๐‘š =โˆ’๐‘…๐‘… ยฑ ๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ

๐ถ๐ถ2๐ฟ๐ฟ = โˆ’

๐‘…๐‘…2๐ฟ๐ฟ ยฑ

๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ๐ถ๐ถ

2๐ฟ๐ฟ

3.8.4. : Series Circuit (LRC)

๐œถ๐œถ ๐œท๐œท

C

L

R

E ๐‘ ๐‘ (๐‘ก๐‘ก)

Page 169: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 169

E.g. ๐ฟ๐ฟ = 0.25๐ป๐ป;๐‘…๐‘… = 10ฮฉ;๐ถ๐ถ = 0.001๐น๐น ๐ธ๐ธ ๐‘ก๐‘ก = 0๐‘‰๐‘‰; ๐‘‘๐‘‘ 0 = ๐‘‘๐‘‘0; ๐‘ ๐‘  0 = 0๐ด๐ด Solution:

๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2 + ๐‘…๐‘…

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก +

1๐ถ๐ถ ๐‘‘๐‘‘ = 0 โ‡’ 0.25๐‘‘๐‘‘โ€ฒโ€ฒ + 10๐‘‘๐‘‘โ€ฒ + 1000๐‘‘๐‘‘ = 0

โ‡’ ๐‘‘๐‘‘โ€ฒโ€ฒ + 40๐‘‘๐‘‘โ€ฒ + 4000๐‘‘๐‘‘ = 0 Aux. Eq.: ๐‘š๐‘š2 + 40๐‘š๐‘š + 4000 = 0

๐‘š๐‘š =โˆ’40 ยฑ 1600 โˆ’ 4(1)(4000)

2 =โˆ’40 ยฑ 1600 โˆ’ 16000

2

3.8.4. : Series Circuit (LRC)

C= 0.001๐น๐น

L= 0.25๐ป๐ป

R=10 ฮฉ

E=0V ๐‘ ๐‘ (๐‘ก๐‘ก)

Page 170: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 170

๐‘š๐‘š =โˆ’40 ยฑ โˆ’14400

2

๐‘š๐‘š =โˆ’40 ยฑ 14400๐‘—๐‘—2

2 =โˆ’40 ยฑ 16(900)๐‘—๐‘—2

2

=โˆ’40 ยฑ 4 30 ๐‘—๐‘—

2 = โˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ยฑ ๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ๐’‹๐’‹

๐‘š๐‘š1 = โˆ’20 + 60๐‘—๐‘— & ๐‘š๐‘š2 = โˆ’20 โˆ’ 60๐‘—๐‘— Hence: ๐›ผ๐›ผ = โˆ’20 & ๐›ฝ๐›ฝ = 60 โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘๐‘1 cos60๐‘ก๐‘ก + ๐‘๐‘2 sin60๐‘ก๐‘ก

3.8.4. : Series Circuit (LRC) ๐ฟ๐ฟ = 0.25๐ป๐ป; ๐‘…๐‘… = 10ฮฉ; ๐ถ๐ถ = 0.001๐น๐น ๐ธ๐ธ ๐‘ก๐‘ก = 0๐‘‰๐‘‰; ๐‘‘๐‘‘ 0 = ๐‘‘๐‘‘0; ๐‘ ๐‘  0 = 0๐ด๐ด Aux. Eqn. ๐‘š๐‘š2 + 40๐‘š๐‘š + 4000 = 0

Page 171: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 171

โ€ข ๐‘‘๐‘‘ 0 = ๐‘‘๐‘‘0

โ‡’ ๐‘‘๐‘‘0 = ๐‘’๐‘’0 ๐‘๐‘1 cos 0 + ๐‘๐‘2 sin 0 โ‡’ ๐‘‘๐‘‘0 = 1 ๐‘๐‘1 + 0 โ‡’ ๐‘๐‘1 = ๐‘‘๐‘‘0 Hence, we now have:

๐’’๐’’ ๐’˜๐’˜ = ๐’†๐’†โˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐’˜๐’˜ ๐’’๐’’๐ŸŽ๐ŸŽ ๐’„๐’„๐’„๐’„๐’„๐’„๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ๐’˜๐’˜ + ๐’„๐’„๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’๐’๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ๐’˜๐’˜

โ‡’ ๐‘ ๐‘  ๐‘ก๐‘ก =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก = โˆ’20๐‘’๐‘’โˆ’20๐‘ก๐‘ก[๐‘‘๐‘‘0 cos60๐‘ก๐‘ก + ๐‘๐‘2 sin 60๐‘ก๐‘ก]

+๐‘’๐‘’โˆ’20๐‘ก๐‘ก[โˆ’60๐‘‘๐‘‘0 sin 60๐‘ก๐‘ก + 60๐‘๐‘2 cos60๐‘ก๐‘ก]

3.8.4. : Series Circuit (LRC) ๐ฟ๐ฟ = 0.25๐ป๐ป; ๐‘…๐‘… = 10ฮฉ; ๐ถ๐ถ = 0.001๐น๐น ๐ธ๐ธ ๐‘ก๐‘ก = 0๐‘‰๐‘‰; ๐‘‘๐‘‘ 0 = ๐‘‘๐‘‘0; ๐‘ ๐‘  0 = 0๐ด๐ด Aux. Eqn. ๐‘š๐‘š2 + 40๐‘š๐‘š + 4000 = 0

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘๐‘1 cos60๐‘ก๐‘ก + ๐‘๐‘2 sin 60๐‘ก๐‘ก

Page 172: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 172

๐‘ ๐‘  ๐‘ก๐‘ก =โˆ’20๐‘’๐‘’โˆ’20๐‘ก๐‘ก[๐‘‘๐‘‘0 cos60๐‘ก๐‘ก + ๐‘๐‘2 sin 60๐‘ก๐‘ก]

+๐‘’๐‘’โˆ’20๐‘ก๐‘ก[โˆ’60๐‘‘๐‘‘0 sin 60๐‘ก๐‘ก + 60๐‘๐‘2 cos60๐‘ก๐‘ก]

But ๐‘ ๐‘  0 = 0 โ‡’ 0 = โˆ’20 ๐‘‘๐‘‘0 + 0 + 1 0 + 60 ๐‘๐‘2 โ‡’ 0 = โˆ’20 ๐‘‘๐‘‘0 + 60๐‘๐‘2 โ‡’ 60๐‘๐‘2 = 20๐‘‘๐‘‘0

โ‡’ ๐‘๐‘2 =2060 ๐‘‘๐‘‘0 โ‡’ ๐‘๐‘2 =

13 ๐‘‘๐‘‘0

โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘‘๐‘‘0 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก +๐‘‘๐‘‘03 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก +13 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

3.8.4. : Series Circuit (LRC) ๐ฟ๐ฟ = 0.25๐ป๐ป; ๐‘…๐‘… = 10ฮฉ; ๐ถ๐ถ = 0.001๐น๐น ๐ธ๐ธ ๐‘ก๐‘ก = 0๐‘‰๐‘‰; ๐‘‘๐‘‘ 0 = ๐‘‘๐‘‘0; ๐‘ ๐‘  0 = 0๐ด๐ด Aux. Eqn. ๐‘š๐‘š2 + 40๐‘š๐‘š + 4000 = 0

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘‘๐‘‘0 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก + ๐‘๐‘2 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

Page 173: Chapter 3-Higher Order Differential Equations

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0๐‘’๐‘’โˆ’20๐‘ก๐‘ก ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก +13๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

We know, sin ๐ด๐ด + ๐ต๐ต = sin๐ด๐ด cos๐ต๐ต + cos๐ด๐ด sin๐ต๐ต We can transform ๐‘‘๐‘‘(๐‘ก๐‘ก) into an alternate form:

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0๐‘’๐‘’โˆ’20๐‘ก๐‘ก (1) ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก +13 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0๐‘’๐‘’โˆ’20๐‘ก๐‘ก103

1103

๐‘๐‘๐‘“๐‘“๐‘ ๐‘  60๐‘ก๐‘ก +13103

๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 60๐‘ก๐‘ก

Linear Models

9/30/2014 Dr. Eli Saber 173

3.8.4. : Series Circuit (LRC)

๐“๐“ 13

1 1 2 +

13

2

=๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘

sin๐œ™๐œ™ =1103

; cos๐œ™๐œ™ =13103

๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐“๐“ ๐œ๐œ๐œ๐œ๐œ๐œ๐“๐“

Page 174: Chapter 3-Higher Order Differential Equations

โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0103

๐‘’๐‘’โˆ’20๐‘ก๐‘ก sin[60๐‘ก๐‘ก + ๐œ™๐œ™]

Note: sin๐œ™๐œ™ = 310โ‡’ ๐œ™๐œ™ = sinโˆ’1 3

10= 1.249 rad

โ‡’ ๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘‘๐‘‘0103 ๐‘’๐‘’โˆ’20๐‘ก๐‘ก sin[60๐‘ก๐‘ก + 1.249]

Linear Models

9/30/2014 Dr. Eli Saber 174

3.8.4. : Series Circuit (LRC)

๐“๐“ 13

1 1 2 +

13

2

=๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘

sin๐œ™๐œ™ =1103

; cos๐œ™๐œ™ =13103

Page 175: Chapter 3-Higher Order Differential Equations

Note: โ€ข ๐‘‘๐‘‘๐‘๐‘(๐‘ก๐‘ก): solution to the homogeneous equation is called the transient solution

โ€ข ๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก : solution to the non-homogeneous equation (i.e. ๐ธ๐ธ(๐‘ก๐‘ก) โ‰  0) is called the

steady-state solution

Linear Models

9/30/2014 Dr. Eli Saber 175

3.8.4. : Series Circuit (LRC)

Page 176: Chapter 3-Higher Order Differential Equations

E.g. ๐ฟ๐ฟ = 1๐ป๐ป;๐‘…๐‘… = 2ฮฉ;๐ถ๐ถ = 0.25๐น๐น; ๐ธ๐ธ ๐‘ก๐‘ก = 50 cos ๐‘ก๐‘ก ๐‘ ๐‘ ๐‘“๐‘“๐‘”๐‘”๐‘ก๐‘ก๐‘ ๐‘  Find the steady-state charge and the steady-state current in the LRC Circuit (Advanced Eng. Mathematics โ€“ 5th Edition โ€“ Ex. 3.8 Prob. 49) Solution:

๐ธ๐ธ ๐‘ก๐‘ก = ๐ฟ๐ฟ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

+ ๐‘…๐‘…๐‘ ๐‘  +๐‘‘๐‘‘๐ถ๐ถ

โ‡’ ๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ ๐‘…๐‘…๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+๐‘‘๐‘‘๐ถ๐ถ

= ๐ธ๐ธ ๐‘ก๐‘ก

โ‡’ 1๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ 2๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+๐‘‘๐‘‘

0.25= 50 cos ๐‘ก๐‘ก

Linear Models

9/30/2014 Dr. Eli Saber 176

3.8.4. : Series Circuit (LRC)

C= 0.25๐น๐น

L= 1๐ป๐ป

R=2 ฮฉ

E=50 cos (t) V ๐‘ ๐‘ (๐‘ก๐‘ก)

Page 177: Chapter 3-Higher Order Differential Equations

โ‡’ 1๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ 2๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+ 4 ๐‘‘๐‘‘ = 50 cos ๐‘ก๐‘ก

Homogeneous Eqn. ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ 2 ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+ 4 ๐‘‘๐‘‘ = 0 โ‡’ ๐‘š๐‘š2 + 2๐‘š๐‘š + 4 = 0

โ‡’ ๐‘š๐‘š =โˆ’2 ยฑ 4 โˆ’ 4(1)(4)

2 =โˆ’2 ยฑ 12

2 =โˆ’2 ยฑ 4 3 ๐‘—๐‘—2

2

โ‡’ ๐‘š๐‘š = โˆ’1 ยฑ ๐‘—๐‘— 3 โ‡’ ๐›ผ๐›ผ = โˆ’1 & ๐›ฝ๐›ฝ = 3

๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก = ๐‘๐‘1๐‘’๐‘’ โˆ’1+๐‘—๐‘— 3 ๐‘ก๐‘ก + ๐‘๐‘2๐‘’๐‘’ โˆ’1โˆ’๐‘—๐‘— 3 ๐‘ก๐‘ก or

๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ก๐‘ก โˆ1 cos 3๐‘ก๐‘ก+โˆ2 sin 3๐‘ก๐‘ก

Linear Models

9/30/2014 Dr. Eli Saber 177

3.8.4. : Series Circuit (LRC)

Page 178: Chapter 3-Higher Order Differential Equations

From table 3.4.1., we can write: ๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก = ๐ด๐ด cos ๐‘ก๐‘ก + ๐ต๐ต sin ๐‘ก๐‘ก ๐‘‘๐‘‘โ€ฒ ๐‘ก๐‘ก = โˆ’๐ด๐ด sin ๐‘ก๐‘ก + ๐ต๐ต cos ๐‘ก๐‘ก ๐‘‘๐‘‘โ€ฒโ€ฒ ๐‘ก๐‘ก = โˆ’๐ด๐ด cos ๐‘ก๐‘ก โˆ’ ๐ต๐ต sin ๐‘ก๐‘ก Reโˆ’Substituting back in eqn. โ‡’ โˆ’๐ด๐ด cos ๐‘ก๐‘ก โˆ’ ๐ต๐ต sin ๐‘ก๐‘ก + 2 โˆ’๐ด๐ด sin ๐‘ก๐‘ก + ๐ต๐ต cos ๐‘ก๐‘ก + 4 ๐ด๐ด cos ๐‘ก๐‘ก + ๐ต๐ต sin ๐‘ก๐‘ก = 50 cos ๐‘ก๐‘ก โ‡’ โˆ’๐ด๐ด cos ๐‘ก๐‘ก โˆ’ ๐ต๐ต sin ๐‘ก๐‘ก โˆ’ 2๐ด๐ด sin ๐‘ก๐‘ก + 2๐ต๐ต cos ๐‘ก๐‘ก + 4๐ด๐ด cos ๐‘ก๐‘ก + 4๐ต๐ต sin ๐‘ก๐‘ก = 50 cos ๐‘ก๐‘ก โ‡’ cos ๐‘ก๐‘ก 3๐ด๐ด + 2๐ต๐ต + sin ๐‘ก๐‘ก โˆ’2๐ด๐ด + 3๐ต๐ต = 50 cos ๐‘ก๐‘ก โ‡’ 3๐ด๐ด + 2๐ต๐ต = 50

โ‡’ โˆ’2๐ด๐ด + 3๐ต๐ต = 0 โ‡’ 2๐ด๐ด = 3๐ต๐ต โ‡’ ๐ด๐ด =32๐ต๐ต

Linear Models

9/30/2014 Dr. Eli Saber 178

3.8.4. : Series Circuit (LRC)

1๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2 + 2

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก + 4 ๐‘‘๐‘‘ = 50 cos ๐‘ก๐‘ก

Page 179: Chapter 3-Higher Order Differential Equations

3๐ด๐ด + 2๐ต๐ต = 50

332๐ต๐ต + 2๐ต๐ต = 50 โ‡’

92๐ต๐ต + 2๐ต๐ต = 50 โ‡’

132๐ต๐ต = 50 โ‡’ ๐ต๐ต =

10013

๐ด๐ด =32๐ต๐ต =

32โˆ—

10013

=30026

โ‡’ ๐ด๐ด =15013

๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก =15013

cos ๐‘ก๐‘ก +10013

sin ๐‘ก๐‘ก

We already have: ๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ก๐‘ก โˆ1 cos 3๐‘ก๐‘ก+โˆ2 sin 3๐‘ก๐‘ก Hence,

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ก๐‘ก ๐‘๐‘1 cos 3๐‘ก๐‘ก + ๐‘๐‘2 sin 3๐‘ก๐‘ก +15013

cos ๐‘ก๐‘ก +10013

sin ๐‘ก๐‘ก

Linear Models

9/30/2014 Dr. Eli Saber 179

3.8.4. : Series Circuit (LRC)

1๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2 + 2

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก + 4 ๐‘‘๐‘‘ = 50 cos ๐‘ก๐‘ก

3๐ด๐ด + 2๐ต๐ต = 50

๐ด๐ด =32๐ต๐ต

Transient Solution Steady-State Solution

Page 180: Chapter 3-Higher Order Differential Equations

๐‘‘๐‘‘๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก = ๐‘‘๐‘‘๐‘๐‘ ๐‘ก๐‘ก โ‡’ ๐‘‘๐‘‘๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก =15013

cos ๐‘ก๐‘ก +10013

sin ๐‘ก๐‘ก

๐‘ ๐‘  ๐‘ก๐‘ก =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

= โˆ’๐‘’๐‘’โˆ’๐‘ก๐‘ก ๐‘๐‘1 cos 3๐‘ก๐‘ก + ๐‘๐‘2 sin 3๐‘ก๐‘ก + ๐‘’๐‘’โˆ’๐‘ก๐‘ก โˆ’๐‘๐‘1 3 sin 3๐‘ก๐‘ก + ๐‘๐‘2 3 cos 3๐‘ก๐‘ก โˆ’15013

sin ๐‘ก๐‘ก +10013

cos ๐‘ก๐‘ก

โ‡’ ๐‘ ๐‘  ๐‘ก๐‘ก = โˆ’๐‘๐‘1๐‘’๐‘’โˆ’๐‘ก๐‘ก cos 3๐‘ก๐‘ก โˆ’ ๐‘๐‘2๐‘’๐‘’โˆ’๐‘ก๐‘ก sin 3๐‘ก๐‘ก โˆ’ ๐‘๐‘1๐‘’๐‘’โˆ’๐‘ก๐‘ก 3 sin 3๐‘ก๐‘ก + ๐‘๐‘2๐‘’๐‘’โˆ’๐‘ก๐‘ก 3 cos 3๐‘ก๐‘ก โˆ’15013

sin ๐‘ก๐‘ก

+10013

cos ๐‘ก๐‘ก

โ‡’ ๐‘ ๐‘  ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ก๐‘ก โˆ’๐‘๐‘1 + 3๐‘๐‘2 cos 3๐‘ก๐‘ก + ๐‘’๐‘’โˆ’๐‘ก๐‘ก โˆ’๐‘๐‘2 โˆ’ 3๐‘๐‘1 sin 3๐‘ก๐‘ก โˆ’15013

sin ๐‘ก๐‘ก +10013

cos ๐‘ก๐‘ก

โ‡’ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก = โˆ’15013

sin ๐‘ก๐‘ก + 10013

cos ๐‘ก๐‘ก

Linear Models

9/30/2014 Dr. Eli Saber 180

3.8.4. : Series Circuit (LRC)

๐‘‘๐‘‘ ๐‘ก๐‘ก = ๐‘’๐‘’โˆ’๐‘ก๐‘ก ๐‘๐‘1 cos 3๐‘ก๐‘ก + ๐‘๐‘2 sin 3๐‘ก๐‘ก +15013

cos ๐‘ก๐‘ก +10013

sin ๐‘ก๐‘ก

Page 181: Chapter 3-Higher Order Differential Equations

Linear Models

9/30/2014 Dr. Eli Saber 181

Summary

๐ฟ๐ฟ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

+ ๐‘…๐‘…๐‘ ๐‘  +1๐ถ๐ถ๏ฟฝ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ก๐‘ก = ๐ธ๐ธ(๐‘ก๐‘ก)

โ‡’ ๐ฟ๐ฟ๐‘‘๐‘‘2๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก2

+ ๐‘…๐‘…๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

+๐‘‘๐‘‘๐ถ๐ถ

= ๐ธ๐ธ ๐‘ก๐‘ก

Auxiliary Eqn: ๐ฟ๐ฟ๐‘š๐‘š2 + ๐‘…๐‘…๐‘š๐‘š + 1๐ถ๐ถ

= 0

๐‘š๐‘š =โˆ’๐‘…๐‘… ยฑ ๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ

๐ถ๐ถ2๐ฟ๐ฟ

= โˆ’๐‘…๐‘…2๐ฟ๐ฟ

ยฑ๐‘…๐‘…2 โˆ’ 4๐ฟ๐ฟ

๐ถ๐ถ2๐ฟ๐ฟ

Use already known methods to obtain ๐‘ฆ๐‘ฆ๐‘๐‘

๐’š๐’š = ๐’š๐’š๐’„๐’„ + ๐’š๐’š๐’‘๐’‘

C

L

R

E ๐‘ ๐‘ (๐‘ก๐‘ก)

๐œถ๐œถ ๐œท๐œท

โ‡’ obtain ๐‘ฆ๐‘ฆ๐‘๐‘

Page 182: Chapter 3-Higher Order Differential Equations

Section 3.12 Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 182

Page 183: Chapter 3-Higher Order Differential Equations

Newtonโ€™s 2nd Law:

๐‘š๐‘š1๐‘‘๐‘‘2๐‘ฅ๐‘ฅ1๐‘‘๐‘‘๐‘ก๐‘ก2 = โˆ’๐‘˜๐‘˜1๐‘ฅ๐‘ฅ1 + ๐‘˜๐‘˜2 ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1

๐‘š๐‘š2๐‘‘๐‘‘2๐‘ฅ๐‘ฅ2๐‘‘๐‘‘๐‘ก๐‘ก2 = โˆ’๐‘˜๐‘˜2 ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1

Also can be written as: ๐‘š๐‘š1๐‘ฅ๐‘ฅ1โ€ฒโ€ฒ = โˆ’๐‘˜๐‘˜1๐‘ฅ๐‘ฅ1 + ๐‘˜๐‘˜2 ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1 ๐‘š๐‘š2๐‘ฅ๐‘ฅ2โ€ฒโ€ฒ = โˆ’๐‘˜๐‘˜2 ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 183

Coupled Spring/Mass Systems

A coupled system of Differential Equations

Ref. D. Zill & W. Wright, Advanced Engineering Mathematics. 5th Ed.

Page 184: Chapter 3-Higher Order Differential Equations

Given ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฆ๐‘ฆ ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐‘ฆ๐‘ฆ ๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž1๐‘ฆ๐‘ฆโ€ฒ + ๐‘Ž๐‘Ž0๐‘ฆ๐‘ฆ = ๐‘”๐‘” ๐‘ฅ๐‘ฅ ,where ๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘ ๐‘  = 0,1,2,3, โ€ฆ ,๐‘›๐‘› are constants Rewrite as: ๐‘Ž๐‘Ž๐‘›๐‘›๐ท๐ท๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1๐ท๐ท๐‘›๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘Ž1๐ท๐ท + ๐‘Ž๐‘Ž0 ๐‘ฆ๐‘ฆ = ๐‘”๐‘” ๐‘ฅ๐‘ฅ Then group like terms for solving.

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 184

Systematic Elimination

Page 185: Chapter 3-Higher Order Differential Equations

Given: ๐‘ฅ๐‘ฅโ€ฒโ€ฒ + 2๐‘ฅ๐‘ฅโ€ฒ + ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ + sin ๐‘ก๐‘ก ๐‘ฅ๐‘ฅโ€ฒ + ๐‘ฆ๐‘ฆโ€ฒ = โˆ’4๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + ๐‘’๐‘’โˆ’๐‘ก๐‘ก โ‡’ ๐‘ฅ๐‘ฅโ€ฒโ€ฒ + 2๐‘ฅ๐‘ฅโ€ฒ + ๐‘ฆ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = sin ๐‘ก๐‘ก โ‡’ ๐‘ฅ๐‘ฅโ€ฒ + ๐‘ฆ๐‘ฆโ€ฒ + 4๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = ๐‘’๐‘’โˆ’๐‘ก๐‘ก โ‡’ ๐ท๐ท2๐‘ฅ๐‘ฅ + 2๐ท๐ท๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = sin ๐‘ก๐‘ก โ‡’ ๐ท๐ท๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘ฆ๐‘ฆ + 4๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = ๐‘’๐‘’โˆ’๐‘ก๐‘ก โ‡’ ๐‘ซ๐‘ซ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐‘ซ๐‘ซ โˆ’ ๐Ÿ๐Ÿ ๐‘ฅ๐‘ฅ + ๐‘ซ๐‘ซ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐‘ฆ๐‘ฆ = sin ๐‘ก๐‘ก โ‡’ ๐‘ซ๐‘ซ + ๐Ÿ’๐Ÿ’ ๐‘ฅ๐‘ฅ + ๐‘ซ๐‘ซโˆ’ ๐Ÿ๐Ÿ ๐‘ฆ๐‘ฆ = ๐‘’๐‘’โˆ’๐‘ก๐‘ก

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 185

Page 186: Chapter 3-Higher Order Differential Equations

A solution of a system of D.E. is a set of sufficiently differentiable functions

๐‘ฅ๐‘ฅ = โˆ…1 ๐‘ก๐‘ก ๐‘ฆ๐‘ฆ = โˆ…2 ๐‘ก๐‘ก ๐‘ง๐‘ง = โˆ…3 ๐‘ก๐‘ก

โ‹ฎ ๐‘Ž๐‘Ž๐‘›๐‘›๐‘‘๐‘‘ ๐‘ ๐‘ ๐‘“๐‘“ ๐‘“๐‘“๐‘›๐‘›

that satisfies each equation in the system on some common interval ๐ผ๐ผ

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 186

Solution of System

Page 187: Chapter 3-Higher Order Differential Equations

E.g. Linear 1st order equations: ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก

= 3๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก

= 2๐‘ฅ๐‘ฅ

Solution: ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก = 3๐‘ฆ๐‘ฆ โ‡’ ๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = 0

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก = 2๐‘ฅ๐‘ฅ โ‡’ ๐ท๐ท๐‘ฆ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ฅ = 0

๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = 0 โ†’ ๐‘“๐‘“๐‘ ๐‘ ๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘’๐‘’ ๐‘ค๐‘ค๐‘ ๐‘ ๐‘ก๐‘กโ„Ž ๐ท๐ท โ†’ ๐ท๐ท2๐‘ฅ๐‘ฅ โˆ’ 3๐ท๐ท๐‘ฆ๐‘ฆ = 0 ๐ท๐ท๐‘ฆ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ฅ = 0 โ†’ ๐‘š๐‘š๐‘œ๐‘œ๐‘”๐‘”๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘ ๐‘”๐‘”๐‘ฆ๐‘ฆ ๐‘๐‘๐‘ฆ๐‘ฆ 3 โ†’ +3๐ท๐ท๐‘ฆ๐‘ฆ โˆ’ 6๐‘ฅ๐‘ฅ = 0

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 187

๐‘ซ๐‘ซ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

Page 188: Chapter 3-Higher Order Differential Equations

โ‡’ ๐ท๐ท2๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฅ๐‘ฅ = 0 Auxiliary Equation: ๐‘š๐‘š2 โˆ’ 6 = 0 โ‡’ ๐‘š๐‘š2 = 6 โ‡’ ๐‘š๐‘š = ยฑ 6

๐Ÿ๐Ÿ ๐’˜๐’˜ = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’ ๐Ÿ”๐Ÿ”๐’˜๐’˜ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’† ๐Ÿ”๐Ÿ”๐’˜๐’˜ Now, to obtain ๐‘ฆ๐‘ฆ(๐‘ก๐‘ก): ๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = 0 โ†’ ๐‘š๐‘š๐‘œ๐‘œ๐‘”๐‘”๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘ ๐‘”๐‘”๐‘ฆ๐‘ฆ ๐‘๐‘๐‘ฆ๐‘ฆ 2 โ†’ 2๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ = 0 ๐ท๐ท๐‘ฆ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ฅ = 0 โ†’ ๐‘“๐‘“๐‘ ๐‘ ๐‘’๐‘’๐‘“๐‘“๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘’๐‘’ ๐‘ค๐‘ค๐‘ ๐‘ ๐‘ก๐‘กโ„Ž ๐ท๐ท โ†’ ๐ท๐ท2๐‘ฆ๐‘ฆ โˆ’ 2๐ท๐ท๐‘ฅ๐‘ฅ = 0 Auxiliary Equation: ๐‘š๐‘š2 โˆ’ 6 = 0 โ‡’ ๐‘š๐‘š2 = 6 โ‡’ ๐‘š๐‘š = ยฑ 6

๐’š๐’š ๐’˜๐’˜ = ๐’„๐’„๐Ÿ‘๐Ÿ‘๐’†๐’†โˆ’ ๐Ÿ”๐Ÿ”๐’˜๐’˜ + ๐’„๐’„๐Ÿ’๐Ÿ’๐’†๐’† ๐Ÿ”๐Ÿ”๐’˜๐’˜

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 188

๐‘ซ๐‘ซ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ”๐’š๐’š = ๐ŸŽ๐ŸŽ

Page 189: Chapter 3-Higher Order Differential Equations

๐‘ฅ๐‘ฅ๐‘ฆ ๐‘ก๐‘ก = โˆ’ 6๐‘๐‘1๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + 6๐‘๐‘2๐‘’๐‘’ 6๐‘ก๐‘ก

We know: ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ก๐‘ก

= 3๐‘ฆ๐‘ฆ

โ‡’ โˆ’ 6๐‘๐‘1๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + 6๐‘๐‘2๐‘’๐‘’ 6๐‘ก๐‘ก = 3๐‘๐‘3๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + 3๐‘๐‘4๐‘’๐‘’ 6๐‘ก๐‘ก โ‡’ โˆ’ 6๐‘๐‘1 โˆ’ 3๐‘๐‘3 ๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + 6๐‘๐‘2 โˆ’ 3๐‘๐‘4 ๐‘’๐‘’ 6๐‘ก๐‘ก = 0 โˆ€๐‘ก๐‘ก

โ‡’ โˆ’ 6๐‘๐‘1 โˆ’ 3๐‘๐‘3 = 0 โ‡’ ๐‘๐‘3 = โˆ’6

3๐‘๐‘1

โ‡’ 6๐‘๐‘2 โˆ’ 3๐‘๐‘4 = 0 โ‡’ ๐‘๐‘4 =6

3c2

๐Ÿ๐Ÿ ๐’˜๐’˜ = ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’ ๐Ÿ”๐Ÿ”๐’˜๐’˜ + ๐’„๐’„๐Ÿ๐Ÿ๐’†๐’† ๐Ÿ”๐Ÿ”๐’˜๐’˜ & ๐’š๐’š ๐’˜๐’˜ = โˆ’๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘๐’„๐’„๐Ÿ๐Ÿ๐’†๐’†โˆ’ ๐Ÿ”๐Ÿ”๐’˜๐’˜ +

๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘๐’„๐’„๐Ÿ๐Ÿ๐’†๐’† ๐Ÿ”๐Ÿ”๐’˜๐’˜

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 189

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = ๐‘๐‘1๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + ๐‘๐‘2๐‘’๐‘’ 6๐‘ก๐‘ก ๐‘ฆ๐‘ฆ ๐‘ก๐‘ก = ๐‘๐‘3๐‘’๐‘’โˆ’ 6๐‘ก๐‘ก + ๐‘๐‘4๐‘’๐‘’ 6๐‘ก๐‘ก

Page 190: Chapter 3-Higher Order Differential Equations

E.g. ๐‘ฅ๐‘ฅโ€ฒ โˆ’ 4๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆโ€ฒโ€ฒ = ๐‘ก๐‘ก2 ๐‘ฅ๐‘ฅโ€ฒ + ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆโ€ฒ = 0

Solution: ๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท โˆ’ 4 ๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = ๐‘ก๐‘ก2 ๐ท๐ท๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘ฆ๐‘ฆ = 0 โ‡’ ๐ท๐ท + 1 ๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘ฆ๐‘ฆ = 0 Solving for ๐‘ฆ๐‘ฆ first: 1 โˆ— ๐ท๐ท + 1 โ‡’ ๐ท๐ท โˆ’ 4 ๐ท๐ท + 1 ๐‘ฅ๐‘ฅ + ๐ท๐ท2 ๐ท๐ท + 1 ๐‘ฆ๐‘ฆ = ๐ท๐ท + 1 ๐‘ก๐‘ก2

2 โˆ— ๐ท๐ท โˆ’ 4 โ‡’ ๐ท๐ท + 1 ๐ท๐ท โˆ’ 4 ๐‘ฅ๐‘ฅ + ๐ท๐ท ๐ท๐ท โˆ’ 4 ๐‘ฆ๐‘ฆ = 0

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 190

(๐Ÿ๐Ÿ)

(๐Ÿ๐Ÿ)

๐‘ซ๐‘ซ๐Ÿ๐Ÿ ๐‘ซ๐‘ซ + ๐Ÿ๐Ÿ ๐’š๐’š โˆ’ ๐‘ซ๐‘ซ ๐‘ซ๐‘ซโˆ’ ๐Ÿ’๐Ÿ’ ๐’š๐’š = ๐‘ซ๐‘ซ + ๐Ÿ๐Ÿ ๐’˜๐’˜๐Ÿ๐Ÿ (โˆ’) (โˆ’) (โˆ’)

Page 191: Chapter 3-Higher Order Differential Equations

โ‡’ ๐ท๐ท2 ๐ท๐ท + 1 ๐‘ฆ๐‘ฆ โˆ’ ๐ท๐ท ๐ท๐ท โˆ’ 4 ๐‘ฆ๐‘ฆ = ๐ท๐ท + 1 ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท3 + ๐ท๐ท2 โˆ’ ๐ท๐ท2 + 4๐ท๐ท ๐‘ฆ๐‘ฆ = ๐ท๐ท๐‘ก๐‘ก2 + ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท3 + 4๐ท๐ท ๐‘ฆ๐‘ฆ = 2๐‘ก๐‘ก + ๐‘ก๐‘ก2

โ†’๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก3 + 4

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก = 2๐‘ก๐‘ก + ๐‘ก๐‘ก2

โ‡’ ๐ท๐ท3 + 4๐ท๐ท ๐‘ฆ๐‘ฆ = 2๐‘ก๐‘ก + ๐‘ก๐‘ก2 Aux. Equation: ๐‘š๐‘š3 + 4๐‘š๐‘š = 0 โ‡’ ๐‘š๐‘š ๐‘š๐‘š2 + 4 = 0 โ‡’ ๐‘š๐‘š1 = 0;๐‘š๐‘š2 = 2๐‘—๐‘—;๐‘š๐‘š3 = โˆ’2๐‘—๐‘—

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1๐‘’๐‘’0๐‘ก๐‘ก + ๐‘๐‘2 cos2๐‘ก๐‘ก + ๐‘๐‘3 sin 2๐‘ก๐‘ก

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1 + ๐‘๐‘2 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2๐‘ก๐‘ก + ๐‘๐‘3 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2๐‘ก๐‘ก

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 191

Here, ๐ท๐ท๐‘ก๐‘ก2 = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก

๐‘ก๐‘ก2 = 2๐‘ก๐‘ก

Page 192: Chapter 3-Higher Order Differential Equations

Particular Solution ๐’š๐’š: use undetermined coefficient โ‡’ ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ก๐‘ก3 + ๐ต๐ต๐‘ก๐‘ก2 + ๐ถ๐ถ๐‘ก๐‘ก โ‡’ ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒ = 3๐ด๐ด๐‘ก๐‘ก2 + 2๐ต๐ต๐‘ก๐‘ก + ๐ถ๐ถ; ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒ = 6๐ด๐ด๐‘ก๐‘ก + 2๐ต๐ต; ๐‘ฆ๐‘ฆ๐‘๐‘โ€ฒโ€ฒโ€ฒ = 6๐ด๐ด โ‡’ 6๐ด๐ด + 4 3๐ด๐ด๐‘ก๐‘ก2 + 2๐ต๐ต๐‘ก๐‘ก + ๐ถ๐ถ = ๐‘ก๐‘ก2 + 2๐‘ก๐‘ก โ‡’ 6๐ด๐ด + 12๐ด๐ด๐‘ก๐‘ก2 + 8๐ต๐ต๐‘ก๐‘ก + 4๐ถ๐ถ = ๐‘ก๐‘ก2 + 2๐‘ก๐‘ก โ‡’ 12๐ด๐ด๐‘ก๐‘ก2 + 8๐ต๐ต๐‘ก๐‘ก + 6๐ด๐ด + 4๐ถ๐ถ = ๐‘ก๐‘ก2 + 2๐‘ก๐‘ก

โ‡’ 12๐ด๐ด = 1 โ†’ ๐ด๐ด =1

12

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 192

๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก3

+ 4๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐‘ก๐‘ก2 + 2๐‘ก๐‘ก ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1 + ๐‘๐‘2 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2๐‘ก๐‘ก + ๐‘๐‘3 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2๐‘ก๐‘ก

Note: ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ก๐‘ก3 + ๐ต๐ต๐‘ก๐‘ก2 + ๐ถ๐ถ๐‘ก๐‘ก Here, +๐ท๐ท is not considered since ๐‘ฆ๐‘ฆ๐‘๐‘ already has a constant term

Page 193: Chapter 3-Higher Order Differential Equations

โ‡’ 8๐ต๐ต = 2 โ†’ ๐ต๐ต =14

โ‡’ 6๐ด๐ด + 4๐ถ๐ถ = 0 โ‡’ 4๐ถ๐ถ = โˆ’6๐ด๐ด = โˆ’61

12

โ‡’ ๐ถ๐ถ = โˆ’18

Hence,

๐‘ฆ๐‘ฆ๐‘๐‘ =1

12 ๐‘ก๐‘ก3 +

14 ๐‘ก๐‘ก

2 โˆ’18 ๐‘ก๐‘ก

๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘ฆ๐‘ฆ๐‘๐‘

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’„๐’„๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ๐’˜๐’˜ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’˜๐’˜

๐Ÿ‘๐Ÿ‘ +๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ ๐’˜๐’˜

๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– ๐’˜๐’˜

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 193

๐‘‘๐‘‘3๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก3

+ 4๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐‘ก๐‘ก2 + 2๐‘ก๐‘ก ๐‘ฆ๐‘ฆ๐‘๐‘ = ๐‘๐‘1 + ๐‘๐‘2 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2๐‘ก๐‘ก + ๐‘๐‘3 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2๐‘ก๐‘ก

๐‘ฆ๐‘ฆ๐‘๐‘ = ๐ด๐ด๐‘ก๐‘ก3 + ๐ต๐ต๐‘ก๐‘ก2 + ๐ถ๐ถ๐‘ก๐‘ก

๐ด๐ด =1

12

Page 194: Chapter 3-Higher Order Differential Equations

We have: (1) โ‰ก ๐ท๐ท๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท โˆ’ 4 ๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = ๐‘ก๐‘ก2 2 โ‰ก ๐ท๐ท๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘ฆ๐‘ฆ = 0 โ‡’ ๐ท๐ท + 1 ๐‘ฅ๐‘ฅ + ๐ท๐ท๐‘ฆ๐‘ฆ = 0

Solving for ๐‘ฅ๐‘ฅ now: 1 โ‡’ ๐ท๐ท โˆ’ 4 ๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = ๐‘ก๐‘ก2

2 โˆ— ๐ท๐ท โ‡’ ๐ท๐ท ๐ท๐ท + 1 ๐‘ฅ๐‘ฅ + ๐ท๐ท2๐‘ฆ๐‘ฆ = 0

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 194

๐‘ซ๐‘ซโˆ’ ๐Ÿ’๐Ÿ’ โˆ’ ๐‘ซ๐‘ซ ๐‘ซ๐‘ซ + ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ = ๐’˜๐’˜๐Ÿ๐Ÿ (โˆ’) (โˆ’) (โˆ’)

Page 195: Chapter 3-Higher Order Differential Equations

โ‡’ ๐ท๐ท โˆ’ 4 โˆ’ ๐ท๐ท ๐ท๐ท + 1 ๐‘ฅ๐‘ฅ = ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท โˆ’ 4 โˆ’ ๐ท๐ท2 โˆ’ ๐ท๐ท ๐‘ฅ๐‘ฅ = ๐‘ก๐‘ก2 โ‡’ โˆ’ 4 + ๐ท๐ท2 = ๐‘ก๐‘ก2 โ‡’ ๐ท๐ท2 + 4 ๐‘ฅ๐‘ฅ = โˆ’๐‘ก๐‘ก2 Aux. Equation: ๐‘š๐‘š2 + 4 = 0 โ‡’ ๐‘š๐‘š1 = 2๐‘—๐‘—;๐‘š๐‘š2 = โˆ’2๐‘—๐‘—

๐‘ฅ๐‘ฅ๐‘๐‘ = ๐‘๐‘4 cos2๐‘ก๐‘ก + ๐‘๐‘5 sin2๐‘ก๐‘ก

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 195

Page 196: Chapter 3-Higher Order Differential Equations

Particular Solution ๐Ÿ๐Ÿ: use undetermined coefficient ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘ ๐‘œ๐‘œ๐‘š๐‘š๐‘’๐‘’ ๐‘ฅ๐‘ฅ๐‘๐‘ = ๐ด๐ด๐‘ก๐‘ก2 + ๐ต๐ต๐‘ก๐‘ก + ๐ถ๐ถ (Table 3.4.1) โ‡’ ๐‘ฅ๐‘ฅ๐‘๐‘โ€ฒ = 2๐ด๐ด๐‘ก๐‘ก + ๐ต๐ต; ๐‘ฅ๐‘ฅ๐‘๐‘โ€ฒโ€ฒ = 2๐ด๐ด

๐ท๐ท2๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ = โˆ’๐‘ก๐‘ก2 โ†’๐‘‘๐‘‘2๐‘ฅ๐‘ฅ๐‘๐‘๐‘‘๐‘‘๐‘ก๐‘ก2 + 4๐‘ฅ๐‘ฅ๐‘๐‘ = โˆ’๐‘ก๐‘ก2

โ‡’ 2๐ด๐ด + 4 ๐ด๐ด๐‘ก๐‘ก2 + ๐ต๐ต๐‘ก๐‘ก + ๐ถ๐ถ = โˆ’๐‘ก๐‘ก2 โ‡’ 2๐ด๐ด + 4๐ด๐ด๐‘ก๐‘ก2 + 4๐ต๐ต๐‘ก๐‘ก + 4๐ถ๐ถ = โˆ’๐‘ก๐‘ก2 4๐ด๐ด๐‘ก๐‘ก2 + 4๐ต๐ต๐‘ก๐‘ก + 2๐ด๐ด + 4๐ถ๐ถ = โˆ’๐‘ก๐‘ก2

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 196

๐ท๐ท2 + 4 ๐‘ฅ๐‘ฅ = โˆ’๐‘ก๐‘ก2 ๐‘ฅ๐‘ฅ๐‘๐‘ = ๐‘๐‘4 cos2๐‘ก๐‘ก + ๐‘๐‘5 sin 2๐‘ก๐‘ก

Page 197: Chapter 3-Higher Order Differential Equations

4๐ด๐ด๐‘ก๐‘ก2 + 4๐ต๐ต๐‘ก๐‘ก + 2๐ด๐ด + 4๐ถ๐ถ = โˆ’๐‘ก๐‘ก2

4๐ด๐ด = โˆ’1 โ‡’ ๐ด๐ด = โˆ’14

4๐ต๐ต = 0 โ‡’ ๐ต๐ต = 0

2๐ด๐ด + 4๐ถ๐ถ = 0 โ‡’ ๐ถ๐ถ = โˆ’12๐ด๐ด = โˆ’

12

โˆ’14

=18โ‡’ ๐ถ๐ถ =

18

๐‘ฅ๐‘ฅ๐‘๐‘ = โˆ’14๐‘ก๐‘ก2 +

18

๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘๐‘ + ๐‘ฅ๐‘ฅ๐‘๐‘

โ‡’ ๐Ÿ๐Ÿ = ๐’„๐’„๐Ÿ’๐Ÿ’ ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’„๐’„๐Ÿ“๐Ÿ“ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’˜๐’˜๐Ÿ๐Ÿ +

๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 197

๐ท๐ท2 + 4 ๐‘ฅ๐‘ฅ = โˆ’๐‘ก๐‘ก2 ๐‘ฅ๐‘ฅ๐‘๐‘ = ๐‘๐‘4 cos2๐‘ก๐‘ก + ๐‘๐‘5 sin 2๐‘ก๐‘ก

Page 198: Chapter 3-Higher Order Differential Equations

๐‘ฅ๐‘ฅ = ๐‘๐‘4 cos2๐‘ก๐‘ก + ๐‘๐‘5 sin 2๐‘ก๐‘ก โˆ’14๐‘ก๐‘ก2 +

18

๐‘ฆ๐‘ฆ = ๐‘๐‘1 + ๐‘๐‘2 cos2๐‘ก๐‘ก + ๐‘๐‘3 sin2๐‘ก๐‘ก +1

12๐‘ก๐‘ก3 +

14๐‘ก๐‘ก2 โˆ’

18๐‘ก๐‘ก

Re-substituting ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ in ๐Ÿ๐Ÿโ€ฒ + ๐Ÿ๐Ÿ + ๐’š๐’šโ€ฒ = ๐ŸŽ๐ŸŽ

โ‡’ โˆ’2๐‘๐‘4 cos2๐‘ก๐‘ก + 2๐‘๐‘5 cos2๐‘ก๐‘ก โˆ’12๐‘ก๐‘ก + ๐‘๐‘4 cos2๐‘ก๐‘ก + ๐‘๐‘5 sin 2๐‘ก๐‘ก โˆ’

14๐‘ก๐‘ก2 +

18

+ โˆ’2๐‘๐‘2 cos2๐‘ก๐‘ก + 2๐‘๐‘3 cos2๐‘ก๐‘ก +14๐‘ก๐‘ก3 +

12๐‘ก๐‘ก โˆ’

18

= 0

โ‡’ sin 2๐‘ก๐‘ก โˆ’2 ๐‘๐‘4 + ๐‘๐‘5 โˆ’ 2๐‘๐‘2 + cos2๐‘ก๐‘ก 2๐‘๐‘5 + ๐‘๐‘4 + 2๐‘๐‘3 = 0 โ‡’ โˆ’2 ๐‘๐‘4 + ๐‘๐‘5 โˆ’ 2๐‘๐‘2 = 0 & 2๐‘๐‘5 + ๐‘๐‘4 + 2๐‘๐‘3 = 0

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 198

Page 199: Chapter 3-Higher Order Differential Equations

โ‡’ ๐‘๐‘5 โˆ’ 2๐‘๐‘4 = 2๐‘๐‘2 โ‡’ 2๐‘๐‘5 + ๐‘๐‘4 = โˆ’2๐‘๐‘3

โ‡’ ๐‘๐‘4 = โˆ’ 15

4๐‘๐‘2 + 2๐‘๐‘3

โ‡’ ๐‘๐‘5 =15 2๐‘๐‘2 โˆ’ 4๐‘๐‘3

โ‡’ ๐Ÿ๐Ÿ = โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐’„๐’„๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’„๐’„๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐’„๐’„๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’„๐’„๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐’˜๐’˜๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–

โ‡’ ๐’š๐’š = ๐’„๐’„๐Ÿ๐Ÿ + ๐’„๐’„๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ๐œ๐œ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’„๐’„๐Ÿ‘๐Ÿ‘ ๐œ๐œ๐ฌ๐ฌ๐ฅ๐ฅ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’˜๐’˜๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐’˜๐’˜๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–๐’˜๐’˜

Solving Systems of Linear Equations

9/30/2014 Dr. Eli Saber 199

๐‘ฅ๐‘ฅ = ๐‘๐‘4 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2๐‘ก๐‘ก + ๐‘๐‘5 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2๐‘ก๐‘ก โˆ’14๐‘ก๐‘ก2 +

18

๐‘ฆ๐‘ฆ = ๐‘๐‘1 + ๐‘๐‘2 ๐‘๐‘๐‘“๐‘“๐‘ ๐‘  2๐‘ก๐‘ก + ๐‘๐‘3 ๐‘ ๐‘ ๐‘ ๐‘ ๐‘›๐‘› 2๐‘ก๐‘ก +1

12๐‘ก๐‘ก3 +

14๐‘ก๐‘ก2 โˆ’

18๐‘ก๐‘ก

Page 200: Chapter 3-Higher Order Differential Equations

9/30/2014 Dr. Eli Saber 200

End of Chapter 3