Chapter 22 Avi

download Chapter 22 Avi

of 17

Transcript of Chapter 22 Avi

  • 8/3/2019 Chapter 22 Avi

    1/17

    Chapter 22-

    ISSUES TO ADDRESS...

    Price and availability of materials.

    1

    How do we select materials based on optimalperformance?

    Applications:--shafts under torsion--bars under tension

    --plates under bending--materials for a magnetic coil.

    CHAPTER 22: MATERIALS SELECTIONECONOMIC, ENVIRON., & DESIGN ISSUES

  • 8/3/2019 Chapter 22 Avi

    2/17

    Chapter 22- 2

    Current Prices on the web(a):

    --Short term trends: fluctuations due to supply/demand.--Long term trend: prices will increase as rich deposits

    are depleted.

    Materials require energy to process them:

    --Energy to producematerials (GJ/ton)

    AlPETCu

    steelglasspaper

    237 (17)(b)103 (13)(c)97 (20)(b)20(d)13(e)9(f)

    --Cost of energy used inprocessing materials ($/GJ)(g)

    elect resistancepropanenatural gas

    oil

    25119

    8a http://www.statcan.ca/english/pgdb/economy/primary/prim44.htma http://www.metalprices.comb http://www.automotive.copper.org/recyclability.htmc http://members.aol.com/profchm/escalant.htmld http://www.steel.org.facts/power/energy.htme http://eren.doe.gov/EE/industry_glass.htmlf http://www.aifq.qc.ca/english/industry/energy.html#1g http://www.wren.doe.gov/consumerinfo/rebriefs/cb5.html

    Energy using recycled

    material indicated in green.

    PRICE AND AVAILABILITY

  • 8/3/2019 Chapter 22 Avi

    3/17

    Chapter 22- 3

    Reference material:

    --Rolled A36 plaincarbon steel.

    Relative cost, $,fluctuates lessover time than

    actual cost.

    Based on data in AppendixC, Callister, 6e.AFRE, GFRE, & CFRE = Aramid,Glass, & Carbon fiber reinforcedepoxy composites.

    $$/kg

    ($ /kg)ref material

    RELATIVE COST, $, OF MATERIALS

  • 8/3/2019 Chapter 22 Avi

    4/17

    Chapter 22- 4

    Bar must not lengthen by more than dunder force F; must have initial length L.

    Maximize the Performance Index:

    -- Stiffness relation: -- Mass of bar:

    F

    c2 E

    d

    L(s = Ee) M Lc

    2

    Eliminate the "free" design parameter, c:

    MFL2

    d

    E

    P

    E

    specified by applicationminimize for small M

    (stiff, light tension members)

    STIFF & LIGHT TENSION MEMBERS

  • 8/3/2019 Chapter 22 Avi

    5/17

    Chapter 22- 5

    Bar must carry a force F without failing;must have initial length L.

    Maximize the Performance Index:

    -- Strength relation: -- Mass of bar:

    M Lc2

    Eliminate the "free" design parameter, c:

    specified by applicationminimize for small M

    P s f

    (strong, light tension members)

    M FLN

    sf

    s f

    N

    F

    c2

    STRONG & LIGHT TENSION MEMBERS

  • 8/3/2019 Chapter 22 Avi

    6/17

    Chapter 22- 6

    Bar must carry a moment, Mt ;must have a length L.

    Maximize the Performance Index:

    -- Strength relation: -- Mass of bar:

    Eliminate the "free" design parameter, R:

    specified by application minimize for small M

    (strong, light torsion members)

    f

    N2Mt

    R3

    M R2L

    M 2 NMt 2 /3

    L

    f2 /3

    P f2 /3

    STRONG & LIGHT TORSION MEMBERS

  • 8/3/2019 Chapter 22 Avi

    7/17

    Chapter 22-

    DATA: STRONG & LIGHTTENSION/TORSION MEMBERS

    Increasing Pfor strongtension

    members

    Increasing Pfor strong

    torsion members

    0.1 1 10 30110

    102103

    104

    Density, (Mg/m3)

    Strength, sf(MPa)

    0.1

    Metalalloys

    SteelsCeramicsPMCs

    Polymers|| grain

    grain

    Cermets

    7

    Adapted from Fig. 6.22,Callister 6e. (Fig. 6.22 adaptedfrom M.F. Ashby, MaterialsSelection in MechanicalDesign, Butterworth-

    Heinemann Ltd., 1992.)

  • 8/3/2019 Chapter 22 Avi

    8/17

    Chapter 22-

    0.1 1 10 300.1110

    102103104

    CermetsSteels

    Density, (Mg/m3)

    S

    trength,sf(MPa)

    Increasing Pfor strong

    bending members

    Metalalloys

    CeramicsPMCs

    Polymers|| grain

    grain

    8

    Maximize the Performance Index: P s1/2

    Adapted from Fig. 6.22,Callister 6e. (Fig. 6.22 adaptedfrom M.F. Ashby, MaterialsSelection in MechanicalDesign, Butterworth-Heinemann Ltd., 1992.)

    DATA: STRONG & LIGHTBENDING MEMBERS

  • 8/3/2019 Chapter 22 Avi

    9/17

    Chapter 22- 9

    Other factors:--require sf > 300MPa.--Rule out ceramics and glasses: KIc too small.

    Maximize the Performance Index: P f2 /3

    Numerical Data:

    Lightest: Carbon fiber reinf. epoxy

    (CFRE) member.

    materialCFRE (vf=0.65)GFRE (vf=0.65)Al alloy (2024-T6)

    Ti alloy (Ti-6Al-4V)4340 steel (oil

    quench & temper)

    (Mg/m3)1.52.02.8

    4.47.8

    P (MPa)2/3m3/Mg)735216

    1511

    Data from Table 6.6, Callister 6e.

    f (MPa)11401060300

    525780

    DETAILED STUDY I: STRONG, LIGHTTORSION MEMBERS

  • 8/3/2019 Chapter 22 Avi

    10/17

    Chapter 22- 10

    Minimize Cost: Cost Index ~ M$~ $/P (since M ~ 1/P)

    Numerical Data:

    Lowest cost: 4340 steel (oil quench & temper)

    materialCFRE (vf=0.65)

    GFRE (vf=0.65)Al alloy (2024-T6)Ti alloy (Ti-6Al-4V)4340 steel (oil

    quench & temper)

    $80

    40151105

    P (MPa)2/3m3/Mg)73

    52161511

    ($/P)x100112

    769374846

    Need to consider machining, joining costs also.

    Data from Table 6.7, Callister 6e.

    DETAILED STUDY I: STRONG, LOWCOST TORSION MEMBERS

  • 8/3/2019 Chapter 22 Avi

    11/17

    Chapter 22- 11

    Background(2): High magnetic fields permit study of:--electron energy levels,--conditions for superconductivity--conversion of insulators into conductors.

    Largest Example:

    --short pulse of 800,000 gauss(Earth's magnetic field: ~ 0.5 Gauss)

    Technical Challenges:--Intense resistive heating

    can melt the coil.

    --Lorentz stress can exceedthe material strength.

    Goal: Select an optimal coil material.(1) Based on discussions with Greg Boebinger, Dwight Rickel, and James Sims, National HighMagnetic Field Lab (NHMFL), Los Alamos National Labs, NM (April, 2002).(2) See G. Boebinger, Al Passner, and Joze Bevk, "Building World Record Magnets", Scientific

    American, pp. 58-66, June 1995, for more information.

    Pulsedmagneticcapable of600,000 gaussfield during

    20ms period.

    Fracturedmagnetcoil.(Photos

    taken at NHMFL,Los AlamosNational Labs,NM (Apr. 2002)by P.M. Anderson)

    DETAILED STUDY II: OPTIMALMAGNET COIL MATERIAL

  • 8/3/2019 Chapter 22 Avi

    12/17

    Chapter 22- 12

    Applied magnetic field, H:

    H = N I/L

    Lorentz "hoop" stress: Resistive heating:(adiabatic)

    s IoHR

    A(

    sf

    N)

    temp increaseduring current

    pulse of Dt

    DT I2e

    A2cv

    Dt ( DTmax )

    Magneticfieldpointsout ofplane.

    elect. resistivity

    specific heat

    Force

    length IoH

    LORENTZ STRESS & HEATING

  • 8/3/2019 Chapter 22 Avi

    13/17

    Chapter 22- 13

    Mass of coil:

    M = dAL

    Eliminate "free" design parameters A, I from thestress & heating equations (previous slide):

    Applied magnetic field:

    H = N I/L

    H2

    M

    1

    2R2LoN

    sf

    d

    --Stress requirement

    specified by application

    Performance Index P1:maximize for large H2/M

    H Dt

    M

    DTmax

    2 RL

    1

    d

    cve

    specified by application

    Performance Index P2:maximize for large Ht1/2/M

    --Heating requirement

    MAGNET COIL: PERFORMANCE INDEX

  • 8/3/2019 Chapter 22 Avi

    14/17

    Chapter 22- 14

    Relative cost of coil:

    $ = $M

    Eliminate M from the stress & heating equations:

    Applied magnetic field:

    H = N I/L

    --Stress requirement

    specified by application

    Cost Index C1:maximize forlarge H2/$

    specified by application

    Cost Index C2:maximize forlarge Ht1/2/$

    --Heating requirement

    H Dt

    $

    DTmax

    2 RL

    1

    d$

    cve

    H2

    $

    1

    2R2LoN

    sf

    d$

    MAGNET COIL: COST INDEX

  • 8/3/2019 Chapter 22 Avi

    15/17

    Chapter 22- 15

    Data from Appendices B and C, Callister 6e:

    Material1020 steel (an)1100 Al (an)7075 Al (T6)11000 Cu (an)17200 Be-Cu (st)71500 Cu-Ni (hr)PtAg (an)Ni 200units

    sf395

    90572220475

    380145170462MPa

    d7.852.712.808.898.25

    8.9421.510.58.89g/cm3

    $0.8

    12.313.4

    7.951.4

    12.91.8e4271

    31.4--

    cv486904960385420

    380132235456J/kg-K

    e1.600.290.520.170.57

    3.751.060.150.95

    W-m3

    P15033

    2042558

    4371652

    sf/d

    P22

    2115

    53

    119

  • 8/3/2019 Chapter 22 Avi

    16/17

    Chapter 22- 16

    Material costs fluctuate but rise over the long

    term as:--rich deposits are depleted,--energy costs increase.

    Recycled materials reduce energy use significantly. Materials are selected based on:

    --performance or cost indices. Examples:

    --design of minimum mass, maximum strength of: shafts under torsion, bars under tension,

    plates under bending,--selection of materials to optimize more than one

    property: material for a magnet coil. analysis does not include cost of operating the magnet.

    SUMMARY

  • 8/3/2019 Chapter 22 Avi

    17/17

    Chapter 22-

    Reading:

    Core Problems:

    Self-help Problems:

    0

    ANNOUNCEMENTS