Chapter 2 Gear Drive-4

download Chapter 2 Gear Drive-4

of 39

Transcript of Chapter 2 Gear Drive-4

  • 8/10/2019 Chapter 2 Gear Drive-4

    1/39

    (1) Features of helical gear

    Contact line leans at an angle with respect to the axis of gear (Left/Right)

    There are more teeth engaged simultaneously, a greater contact ratio

    Smooth transmission, low noise, high load capacity

    Normal module mn1=mn2

    Normal pressure angle n1=n2

    Helical angle 1=

    2

    (2) Engagement conditions

    1. Introduction

    2.7.3 Design of helical gear

    http://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/%E7%AC%AC%E4%B8%80%E7%AB%A0%20%20%E7%BB%AA%E8%AE%BA/%E6%96%9C%E9%BD%BF%E5%9C%86%E6%9F%B1%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8.exe
  • 8/10/2019 Chapter 2 Gear Drive-4

    2/39

  • 8/10/2019 Chapter 2 Gear Drive-4

    3/39

    Directions of force component

    Ft, Fr

    Axial force Fa

    Identical to the spur gear

    For driving gear, Fa1can be decided by Right/left hand rule.

    Decided by Direction of helical lineand rotational direction.

    Left hand for left hand helical, Right hand for right hand helical.

    If bending direction of fingers matches with the rotational direction,

    tip of thumb points to the direction of Fa1.

    Ft1

    Fr1Fa1

    Driving

    gear

    For driven gear, direction of Fa2is opposite to that of Fa1.

  • 8/10/2019 Chapter 2 Gear Drive-4

    4/39

    Relationship between force components

    n1 n2F F r1 r 2F F a1 a 2F F t1 t 2F F

    Example

    n1

    n2

    1

    2

    Top view

    Right hand

    helical

    Left hand

    helical

    Fa2Fa1

    Ft1

    Ft2

    Fr2

    Fr1

    n2

    n1

    Side view

    Fa1

    Fa2 Ft1Ft2

    Fr2

    Fr1

  • 8/10/2019 Chapter 2 Gear Drive-4

    5/39

    Principles:

    3. Contact strength of helical gear

    Module = Normal module of helical gear mn

    Pressure angle = Normal pressure angle of helical gear n

    Number of teeth = Virtual number of teeth of helical gear zv= z /cos3

    Normal force = Normal force of helical gear Fn

    2

    1

    1cos

    ddv

    3

    11

    cos

    TTv

    cos

    bbv u

    z

    z

    z

    zu

    v

    v

    v

    1

    2

    1

    2

    (1) Considering the strength of an equivalent virtual spur gear

    (2) Contact line has an angle with respect to axis, which is advantageous to

    reduce contact stress. So we introduce a coefficient of helical angle Z.

  • 8/10/2019 Chapter 2 Gear Drive-4

    6/39

    For spur gear

    For helical gear

    1H E H 2

    1

    2 ( 1)KT uZ Z Z

    bd u

    1H E H 2

    1

    2 ( 1)KT uZ Z Z Zbd u

    cosZ Coefficient of

    contact ratio

    Under same condition, H_Helical < H_Spur

    So, Helical gear has a greater load capacity than spur gear.

    Coefficient of local

    area at pitch point

    (Fig. 2-18)

    Coefficient of helical angle

    0.75 ~ 0.88Z

    1

    1

    cos

    nm z

    d

    b

    The greater number of teeth, the less value of Z.

    tt

    b

    HZ

    tancos

    cos22

    Coefficient of elasticity

    (Table 2-15)

  • 8/10/2019 Chapter 2 Gear Drive-4

    7/39

    1H E H HP1 HP22

    1

    2 1min[ , ] (MPa)

    KT uZ Z Z Z

    bd u

    For checking contact strength

    H E 2 13

    1

    HP d

    2 1( ) (mm)Z Z Z Z KT udu

    HP1 HP2min[ , ] d 1b d

    For designing diameter of pitch circle

    See Table 2-14

  • 8/10/2019 Chapter 2 Gear Drive-4

    8/39

    For design of geometries

    H E 2 13

    1

    HP

    Z Z Z Z 2 1( ) (mm)

    d

    KT ud

    u

    Recalculating d1, d2, accurate to the three decimal places

    First computing d1 , then specifying other geometries:

    Number of pinion teeth z1(soft surface, closed gear drive20~40hard

    surface, closed gear drive or open gear drive1725)

    Initial helical angle , most commonly in range of 10~ 15

    Computing mn= d1cos/z1Rounded up to a basic value and mn1.5 forpower driving

    Computing center distance a=(d1+ d2)/2=mn(z1+ z2) / (2cos)Rounded up to

    an integer

    Recalculating= cos1 [mn(z

    1+ z

    2) / 2a ]Accurate to second

    add

    2

    21

    cos

    nzm

    dAttention: Satisfying

  • 8/10/2019 Chapter 2 Gear Drive-4

    9/39

  • 8/10/2019 Chapter 2 Gear Drive-4

    10/39

    For checking the bending strength:

    1F1 Fa1 Sa1 FP1

    1 n

    2(MPa)

    KT

    Y Y Y Y bd m

    2

    1 Fa Sa3n 2

    d 1 FP

    2 cos (mm)

    KT Y Y Y Ym

    z

    1F2 Fa2 Sa2 FP2

    1 n

    2(MPa)

    KTY Y Y Y

    bd m

    The greater value

    between pinion and gear

    For designing the normal module:

  • 8/10/2019 Chapter 2 Gear Drive-4

    11/39

  • 8/10/2019 Chapter 2 Gear Drive-4

    12/39

    2.7.4 Design of bevel gear

    Gear drive with vertically intersecting axes

    Teeth on a conical shaped surface

    Uneven distribution of load along the tooth width

    b

    We only investigate bevel gear of straight teeth,

    and axis angle is 90

    .

    1. Features of bevel gear drive

    Significant vibration and noise, only for low speed transmission, v5m/s

    Tooth profile: Straight teeth, helical teeth, curved teeth

    Geometrical factors on large end are standard

    For convenience of computing, we assume

    Normal force Fn, a concentration force on the pitch cone at the midface of teeth.

    Strength of bevel gearStrength of virtual spur gear at the midface of teeth.

    0.5b

    Fn

    Large end

  • 8/10/2019 Chapter 2 Gear Drive-4

    13/39

    2. Geometries of straight bevel gear and its virtual spur gear

    1) Geometries of straight bevel gear

    Module at the larger end m is standard value,Dia. of pitch circle

    2211 ; mzdmzd

    Ratio of teeth number uz2 / z1d2 / d1

    Cone angle of pitch circle

    uu 21 tan;/1tan

    Cone distance2

    1 15.0 udR Coefficient of

    tooth widthRb/R

    Dia. of pitch circle at the midface of teeth

    1Rm1 )5.01( dd

    Module at the midface of teeth mm )5.01( Rm

    dm1

    http://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_2/0808/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/teaching/%E6%9C%BA%E6%A2%B0%E8%AE%BE%E8%AE%A1/2007%E6%9C%BA%E6%A2%B0%E8%AF%BE/%E5%BC%A0%E8%80%81%E5%B8%88%E9%83%A8%E5%88%86%E7%94%B5%E5%AD%90%E6%95%99%E6%A1%88/3%E7%AB%A0%EF%BC%8D%E9%BD%BF%E8%BD%AE%E4%BC%A0%E5%8A%A8%E8%AE%BE%E8%AE%A1/t3%EF%BC%8D21a.jpg
  • 8/10/2019 Chapter 2 Gear Drive-4

    14/39

  • 8/10/2019 Chapter 2 Gear Drive-4

    15/39

  • 8/10/2019 Chapter 2 Gear Drive-4

    16/39

    Ft2=Ft1 Fr2=Fa1 Fa2=Fr1

    n2

    Fr2

    Fa2

    Fr1Ft1

    Fa1

    n1

    Ft2

    Example problem

    1

    2

  • 8/10/2019 Chapter 2 Gear Drive-4

    17/39

    Force checking

    For design

    1H H E HP2 3

    R R 1

    4

    0.85 (1 0.5 )

    KTZ Z

    d u

    2H E 13

    1 2

    HP R R

    4( )

    0.85 (1 0.5 )

    Z Z KTd

    u

    4. Contact fatigue strength of bevel gear

    Considering the equivalent virtual spur gear at the midface of teeth.

    Ignoring the influence of contact ratio.

    Effective face width

    beH0.85b

  • 8/10/2019 Chapter 2 Gear Drive-4

    18/39

    Discussions

    ZE, ZH, HP, identical to the process of spur gear

    Often u 5, limiting the diameter of bigger bevel gear, easier to manufacture

    After specifying d1 , other geometries needs to be decided

    Initialz

    1

    Computing m=d1/z1,

    rounded up to standard value

    Calculating d1= mz1, z2, d2, u , et al2

    1 15.0 udR

    Dont round up R !

    Often b1

    b2, easier to assemble and coincide the vertex

    mm)5.01(85.0

    43

    2

    RR

    1

    2

    HP

    HE1

    u

    KTZZd

    For design

    Dia. of pitch circle at the large

    end of pinion

  • 8/10/2019 Chapter 2 Gear Drive-4

    19/39

    Spur gear:

    5. Bending fatigue strength of bevel gear

    1

    1F Fa Sa3 2

    d

    2KTY Y Y

    m z

    1F Fa Sa FP2 3 2 2

    1

    4

    (1 0.5 ) 1R R

    KTY Y

    m z u

    1 Fa Sa3

    2 2 2FP1

    4

    (1 0.5 ) 1R R

    KT Y Ym

    z u

    For checking

    For design Virtual number of teeth v /cosz z

    Bigger value

    In the like manner, considering the bending fatigue strength of virtual gear.

    Ignoring the influence of contact ratio, using the geometries of virtual gear,depending on

    A d bl d i d i b l t i l t

  • 8/10/2019 Chapter 2 Gear Drive-4

    20/39

    Example:

    A double gear reducer is driven by an electrical motor.

    Inputting power P17kW.

    Inputting rotational speed n11000r/min.

    Speed ratio of the first stage i4.6

    Unidirectional, slight impact.

    Life expectancy 10 years, 8h per day.

    Try to design the first gear drive.

    1. Requirements

    Medium speed and medium load.

    2. Design plan

    Plan A: Helical gear

    Either soft surface or hard surface is OK.

    Using helical gear for smooth movement.

    Plan B: Helical gear

    45 steel, soft surface

    45 steel, hard surface

    First gear drive

    Second gear drive

  • 8/10/2019 Chapter 2 Gear Drive-4

    21/39

    3. Design process

    1

    Material and heat treatment

    45 45Gear

    45 45Pinion

    H.T. of pinion H & T

    Norm.

    Case hardening

    H.T. of gear

    Table 2-11, middle valueHB of pinion 230HBS 50HRC

    190HBS 50HRCHB of gear

    1170Contactstress

    1limH 580Fig. 2-242limH 550 1170

    Case hardening

    HB of pinion > HB of gear

    Table 2-11

    2Allowable contact stress and bending stress

    Fig. 2-26

    Bending

    stress

    1limF 220 340Fig. 2-30

    Fig. 2-282limF 210 340

    Design contents Design principles Plan A Plan B

  • 8/10/2019 Chapter 2 Gear Drive-4

    22/39

    load cycle 1N )830010(100016060 11 tanN 14.4108

    2N iNN /12

    3.13108300 day per year

    Coefficient of

    contact life

    1NZ

    Fig. 2-271

    2NZ 1

    Coefficient of

    bending life

    1NY

    Fig. 2-321

    1NY 1

    Design content Design principles Plan A Plan B

    Min. safety

    coefficient

    minHS Table 2-14 1

    Table 2-14minFS 1.4

    Allowable

    contact stress

    1HP minH1N1limH1HP / SZ 580 1170

    2HPminH2N2limH2HP / SZ 550 1170

    Allowable

    bending stress

    1FP minF1NST1limF1FP / SYY 314 486

    2FP minF1NST1limF1FP / SYY 300 486

    2STY

    Pitting not

    allowable

    Line 1

  • 8/10/2019 Chapter 2 Gear Drive-4

    23/39

    3Specifying initial parameters

    12Initial helical angle

    Precision grade Table 2-1 Grade 8

    Coe. of face width d Table 2-14 0.9 0.5

    No. of teeth 1z Closed, soft z120~40

    Closed, hard z1

    17~25 26

    Modification

    vA KKKKK 1.898 2.234

    1.25 1.25Where

    K

    K

    Assuming the linear

    speed v9m/s

    2z

    21z2z1iz14.6 119 97

    Load coefficient

    0 0

    AK

    Table 2-7, slight impact

    vK Fig. 2-6, Kv1.02~1.2 1.1 1.1

    Table 2-9, soft1~1.2hard1.1~1.35 1.15 1.25

    Design content Design principles Plan A Plan B

    K Table 2-8 K1.2~1.4 1.2 1.3

    In the range of 10~15

  • 8/10/2019 Chapter 2 Gear Drive-4

    24/39

    4Design and calculation

    Principles

    Coe. of elasticityEZ

    2.45

    0.8Coe. of contact ratio

    HZCoe. of local area

    189.8

    Z

    Table 2-15

    ZZ

    0.75~0.880.989

    HP2

  • 8/10/2019 Chapter 2 Gear Drive-4

    25/39

    Normal module nm

    71.986mm

    222.36mmaCent distance

    162350N.mm

    11o33'21' '

    26

    12cos986.71cos

    1

    1n

    z

    dm

    Accurate helical

    angle

    Torque 1T1000

    17109550109550

    3

    1

    13

    1

    n

    PT

    Dia. of Pitch circle

    Design content Design principles Plan A

    2.71mm

    Rounded up to 3

    12cos2

    )11926(3

    cos2

    )( 21n

    zzma

    Rounded up to

    222

    2222

    )11926(3cos

    2

    )(cos 121n1

    a

    zzm

    3

    2

    16.4

    16.4

    9.0

    162350898.12

    550

    989.08.045.28.189

    d

  • 8/10/2019 Chapter 2 Gear Drive-4

    26/39

    Face width

    v

    b272mm

    Checking bending

    strength

    79.61mm

    1vz 27.65

    60000100061.79

    100060

    11

    ndv

    Virtual teeth

    number

    Accurate dia. of

    pitch circles1d "'zm 213311cos/263cos/

    o

    1n

    4.17m/sOK!

    3v cos

    zz

    364.39mm2d "'213311cos/1193 o

    Satisfyingd1d2/2a

    65.7161.799.01d2 db

    b178mmmm)10~5(21 bb

    Line speed

    2vz 126.54

    1FaY 2.6Coe. of tooth

    profile 2FaY 2.2

    Design content Design principles Plan A

    Fig. 2-20

    FPSaFa

    1n

    1

    F

    2YYYY

    dbm

    KT

    Rounded upb

  • 8/10/2019 Chapter 2 Gear Drive-4

    27/39

    Coe. of contact ratio

    Y 0.89

    Checking bending

    stress

    1.61

    92.0~85.0Y

    Coe. of stress

    modification

    Sa1Y

    1.82Sa2Y

    85.0~65.0Y

    Coe. of helical angle

    The endclosed, soft face

    89.075.061.16.2

    61.79372

    162350898.12

    Design contents Design principles Plan A

    Fig. 2-21

    Y 0.75

    Bigger, bigger Y

    F1Bending

    strength OK!MPa100 MPa3141HP

    61.16.2

    82.12.2100

    Sa1Fa1

    Sa2Fa21F

    YY

    YY

    F2Bending

    strength OK!

    MPa3002HPMPa96

  • 8/10/2019 Chapter 2 Gear Drive-4

    28/39

    22.44

    Design by

    bending

    strength

    Virtual number

    of teeth

    mmcos2

    3

    FP

    SaFa

    d

    2

    1

    2

    1

    n

    YY

    z

    YYKTm

    v1z o33

    1v1 12cos/21cos/ zz

    103.65v2z o33

    2v2 12cos/97cos/ zz

    1FaY 2.76Coe. of tooth

    form 2FaY 2.22Fig. 2-20

    1.55Coe. of stress

    modification

    Sa1Y

    1.79Sa2YFig. 2-21

    Design contents Design principles Plan B

    Coe. of contact

    ratio

    Y 0.8992.0~85.0Y

    85.0~65.0Y

    Coe. of helical

    angle

    Y 0.8The more teeth,

    the less value

    Closed, hard

    surface

  • 8/10/2019 Chapter 2 Gear Drive-4

    29/39

    Comparingbending strength

    0088.0

    486

    55.176.2

    FP1

    Sa1Fa1

    YY

    0082.0486

    79.122.2

    FP2

    Sa2Fa2

    YY

    P

    G

    Considering

    pinion

    Normal modulus

    nm 3

    FP

    SaFa

    d

    2

    1

    2

    1

    cos2

    YY

    z

    YYKT

    32

    o2

    0088.05.021

    89.08.012cos162350234.22

    mm70.2

    165.87mmaCenter distance

    12cos2

    )9721(75.2

    cos2

    )( 21n

    zzma

    Rounded to 166

    Design contents Design principles Plan B

    Rounded up, mn2.75mm

  • 8/10/2019 Chapter 2 Gear Drive-4

    30/39

    12o12'6' 'Accurate helical

    angle1662

    )9721(75.2cos

    2

    )(cos 121n1

    a

    zzm

    59.08mmAccurate pitch

    diameter1d "'zm 61212cos/2175.2cos/

    o

    1n

    272.92mm2d "'61212cos/9775.2 o

    Face width

    v

    b230mm

    60000

    100008.59

    100060

    11

    ndv

    3.09m/s

    OK!

    54.2908.595.01d2 db

    b

    1

    35mmmm)10~5(21bb

    Linear speed

    b

    Checking

    contact stress MPa

    12

    HP21

    1

    HEH

    u

    u

    bd

    KTZZZZ

    Coe. of elasticity EZ

    2.45HZ

    Coe. of local area

    189.8Table 2-15 MPa

    Fig. 2-18

    Design contents Design principles Plan B

  • 8/10/2019 Chapter 2 Gear Drive-4

    31/39

    0.82Coe. of contact ratio

    Z

    Z

    Helical gear Z0.75~0.88

    0.989HP2HP11170MPa 1170MPa

    u Speed reducer ui 4.6

    "'Z 61212coscos

    Coe. of helical angle

    Allowable contact stressHP

    Ratio of teeth

    Design contents Design principles Plan B

    Checking contact

    stress

    u

    u

    bd

    KTZZZZ

    122

    1

    1HE

    H

    6.4

    6.5

    08.5930

    162350234.22989.082.045.28.189

    2

    MPa1170MPa1089 HP

    Conclusion: contact strength is OK!

    The end( closed, hard surface)

  • 8/10/2019 Chapter 2 Gear Drive-4

    32/39

    Comparison of two design plan

    45 45Material

    Heat treatment Case

    Hard.

    P: H&T

    G:Norm.

    Helical angle

    No. of teeth26 21

    79.61 59.08Pitch diameter

    mm

    1d

    2d364.39 272.92

    3 2.75Modulusmm

    Face width

    mm

    78 35

    Center distancemm 222 166

    Design contents Plan A Plan B

    12o12'6' '11o33'21' '

    1z

    2z

    119 97

    nm

    1b

    2b 72 30

    a

    Analysis:

    Plan A: soft surface, easy

    to manufacture, low cost.But structure size larger.

    Plan B: hard surface,

    complicated tomanufacture, high cost.

    But smaller structure size,

    light weight, high

    strength.

    Plan A for common use

    Plan B: for great load

    and compact size

    2 8 Other Considerations of Gear Drive Design

  • 8/10/2019 Chapter 2 Gear Drive-4

    33/39

    1. Efficiency of gear drive

    2.8 Other Considerations of Gear Drive Design

    Power loss of gear drive

    Friction loss

    Oil resistance loss

    Bearing friction loss

    Efficiency of closed gear drive = 123

    1Efficiency in mesh, decided by precision grade;

    2Churning loss;

    3Bearing efficiency.

    Average efficiency of closed cylinder gear drive, 0.96-0.99;

    Average efficiency of closed bevel gear drive, 0.94-0.98;

    Most

    significant

    2 Lubrication of gear drive

  • 8/10/2019 Chapter 2 Gear Drive-4

    34/39

    2. Lubrication of gear drive

    Teeth in mesh Relative sliding Friction and wearing

    Functions of lubrication:

    Cooling

    Anti-corrosion

    Vibration absorbingNoise reduction

    Types of

    lubrication

    12 15m/sv

    15m/sv

    Churning

    Injection

    Oil sump

    3 Structure design

  • 8/10/2019 Chapter 2 Gear Drive-4

    35/39

    By strength design:

    Such as center distance,

    module, helical angle

    To specify pattern and size of spoke and hub

    To specify geometrical parameters

    By structure design

    (decided by dia. of addendum circle)(1) Gear shaft

    The distance from dedendum to root of gear e

    Cylinder geare

  • 8/10/2019 Chapter 2 Gear Drive-4

    36/39

    (2) Solid gear

    Dia. of addendum circle da200mm

    Forged

    gear blank

  • 8/10/2019 Chapter 2 Gear Drive-4

    37/39

    (3) Web

    Dia. of addendum circle da200~500mm

    Forged

    gear blank

  • 8/10/2019 Chapter 2 Gear Drive-4

    38/39

    4. Spoke

    Dia. of addendum circle da500mm

    cast iron or cast steel

  • 8/10/2019 Chapter 2 Gear Drive-4

    39/39

    Homework-9

    Specify the helical direction of Gear 1 and Gear 2. Mark the directions of each force components.

    Tips: Both Gear 2 and Gear 3 exert axial forces on Shaft II. We can

    ff t th ft if th h li l di ti