Chapter 2 AC to DC Converters (Rectifiers)libvolume3.xyz/electrical/btech/semester7/computer...Power...

88
P o w e r E l e c t r o n i c s P o w e r E l e c t r o n i c s Chapter 2 AC to DC Converters (Rectifiers)

Transcript of Chapter 2 AC to DC Converters (Rectifiers)libvolume3.xyz/electrical/btech/semester7/computer...Power...

Power ElectronicsPower Electronics

Chapter 2

AC to DC Converters

(Rectifiers)

Pow

erE

l ect

roni

cs

2

OutlineOutline2.1 Single2.1 Single--phase controlled rectifierphase controlled rectifier

2.2 Three2.2 Three--phase controlled rectifier phase controlled rectifier

2.3 Effect of transformer leakage inductance on 2.3 Effect of transformer leakage inductance on rectifier circuitsrectifier circuits

2.4 Capacitor2.4 Capacitor--filtered uncontrolled rectifierfiltered uncontrolled rectifier

2.5 Harmonics and power factor of rectifier circuits2.5 Harmonics and power factor of rectifier circuits

2.6 High power controlled rectifier2.6 High power controlled rectifier

2.7 Inverter mode operation of rectifier circuit2.7 Inverter mode operation of rectifier circuit

2.8 2.8 ThyristorThyristor--DC motor systemDC motor system

2.9 Realization of phase2.9 Realization of phase--control in rectifier circuitscontrol in rectifier circuits

Pow

erE

l ect

roni

cs

3

2.1 Single2.1 Single--phase controlled phase controlled (controllable) rectifier(controllable) rectifier

2.1.1 Single2.1.1 Single--phase halfphase half--wave controlled rectifierwave controlled rectifier

2.1.2 Single2.1.2 Single--phase bridge fullyphase bridge fully--controlled rectifier controlled rectifier

2.1.3 Single2.1.3 Single--phase fullphase full--wave controlled rectifierwave controlled rectifier

2.1.4 Single2.1.4 Single--phase bridge halfphase bridge half--controlled rectifiercontrolled rectifier

Pow

erE

l ect

roni

cs

4

2.1.1 Single2.1.1 Single--phase halfphase half--wavewavecontrolled rectifiercontrolled rectifier

HalfHalf--wave, singlewave, single--pulsepulseTriggering delay angle, delay angle, firing angleTriggering delay angle, delay angle, firing angle

Resistive loadResistive load

T VT

Ru1 u2

uVTud

id

a)

0 ωt1 π 2π ωt

ωt

ωt

ωt

u2

ug

ud

uVT

α θ

0

b)

c)

d)

e)

0

0

∫+

=+==π

α

ααπ

ωωπ 2

cos145.0)cos1(22)(sin2

21

22

2d UUttdUU (2-1)

Pow

erE

l ect

roni

cs

5

2.1.1 Single2.1.1 Single--phase halfphase half--wave wave controlled rectifiercontrolled rectifier

Inductive (resistorInductive (resistor--inductor) loadinductor) loadu2

0 ωt1 π 2π ωt

ωt

ωt

ωt

ωt

ug

0

ud

0

id

0uVT

0

θ

α

b)

c)

d)

e)

f)

+ +

a) u1

TVT

u2

uVTud

id

Pow

erE

l ect

roni

cs

6

Basic thought process of timeBasic thought process of time--domain domain analysis for power electronic circuitsanalysis for power electronic circuits

The timeThe time--domain behavior of a power electronic domain behavior of a power electronic circuit is actually the combination of consecutive circuit is actually the combination of consecutive transients of the different linear circuits when the transients of the different linear circuits when the power semiconductor devices are in different states.power semiconductor devices are in different states.

a) b)

VT

R

L

VT

R

L

u2u2

tURitiL ωsin2

dd

2dd =+

)sin(2)sin(2 2)(

2d ϕωϕα

αωω −+−−=

−−t

ZUe

ZUi

tL

R

ωt = α ,id= 0

(2-3)

(2-2)

Pow

erE

l ect

roni

cs

7

SingleSingle--phase halfphase half--wave controlled wave controlled rectifier with freewheeling dioderectifier with freewheeling diode

Maximum forward voltage, maximum reverse voltageMaximum forward voltage, maximum reverse voltageDisadvantages:Disadvantages:–– Only single pulse in one line cycleOnly single pulse in one line cycle–– DC component in the transformer currentDC component in the transformer current

Inductive load (L is large enough) Inductive load (L is large enough) VT i

a)

T

u 1 u 2

uVT

L

R

d

ud

VD

i

R

VDR

u2

ud

id

uVT

iVT Id

Id

ωt1 ωt

ωt

ωt

ωt

ωt

ωtO

O

O

O

O

O

π-α π+α

b)

c)

d)

e)

f)

g)

iVDR

ddVT 2II

παπ −

=

d2dVT 2

)(21 ItdII

παπω

ππ

α

−== ∫

(2-5)

(2-6)

(2-7)

(2-8)

Pow

erE

l ect

roni

cs

8

2.1.2 Single2.1.2 Single--phase bridge phase bridge fullyfully--controlled rectifiercontrolled rectifier

For For thyristorthyristor: maximum forward voltage, maximum reverse : maximum forward voltage, maximum reverse voltagevoltageAdvantages: Advantages: –– 2 pulses in one line cycle2 pulses in one line cycle–– No DC component in the transformer currentNo DC component in the transformer current

Resistive loadResistive load

d

R

T

u 1 u2

i2a

bV

T1

VT

3

VT 2

VT

4

ud

i π ωt

ωt

ωt0

0

0

i2

udid

b)

c)

d)

ud(id)

α α

uVT1,4

a)

Pow

erE

l ect

roni

cs

9

2.1.2 Single2.1.2 Single--phase bridge fullyphase bridge fully--controlled rectifiercontrolled rectifier

Resistive loadResistive load

Average output (rectified) voltage Average output (rectified) voltage

((22--9)9)

Average output currentAverage output current

(2(2--10)10)

For For thyristorthyristor

(2(2--11)11)

(2(2--12)12)

For transformerFor transformer

(2(2--13)13)

∫+

=+

==π

α

ααπ

ωωπ 2

cos19.02cos122)(dsin21

22

2d UUttUU

2cos19.0

2cos122 22d

dαα

π+

=+

==R

URU

RUI

2cos145.0

21 2

ddVTα+

==R

UII

παπα

πωω

ππ

α

−+== ∫ 2sin

21

2)(d)sin2(

21 222

VT RUtt

RUI

παπα

πωω

ππ

α

−+=== ∫ 2sin

21)()sin2(1 222

2 RUtdt

RUII

Pow

erE

l ect

roni

cs

10

2.1.2 Single2.1.2 Single--phase bridge phase bridge fullyfully--controlled rectifiercontrolled rectifier

CommutationCommutationThyristorThyristor voltages and currentsvoltages and currentsTransformer currentTransformer current

Inductive loadInductive load(L is large enough)(L is large enough)

T a

b R

L

a)

u1 u2

i2

VT 1

VT 3

VT 2

VT 4

ud

id

u2

O ωt

O ωt

O ωt

ud

id

i2

b)

O ωt

O ωt

uVT1,4

O ωt

O ωt

Id

Id

Id

Id

Id

iVT2,3

iVT1,4

∫+

===απ

ααα

πωω

πcos9.0cos22)(dsin21

222d UUttUU (2-15)

Pow

erE

l ect

roni

cs

11

ElectroElectro--motivemotive--force (EMF) loadforce (EMF) load

Discontinuous current iDiscontinuous current idd

With resistorWith resistor

a) b)

R

E

id

ud id

O

Eud

ωt

Id

O ωt

α θ δ

Pow

erE

l ect

roni

cs

12

ElectroElectro--motivemotive--force (EMF) loadforce (EMF) loadWith resistor and inductorWith resistor and inductor

When L is large enough, the output voltage and When L is large enough, the output voltage and current waveforms are the same as ordinary current waveforms are the same as ordinary inductive load.inductive load.When L is at a critical valueWhen L is at a critical value

O

ud

0

E

id

ωt

ωt

π

δα θ =π

dmin

23

dmin

2 1087.222IU

IUL −×==

πω(2-17)

Pow

erE

l ect

roni

cs

13

2.1.3 Single2.1.3 Single--phase fullphase full--wave wave controlled rectifiercontrolled rectifier

Transformer with center tapTransformer with center tapComparison with singleComparison with single--phase bridge fullyphase bridge fully--controlled rectifiercontrolled rectifier

a) b)

u1

T

R

u2u2

i1VT1

VT2 ud

ud

i1

O

O

α ωt

ωt

Pow

erE

l ect

roni

cs

14

2.1.4 Single2.1.4 Single--phase bridge phase bridge halfhalf--controlled rectifiercontrolled rectifier

HalfHalf--controlcontrolComparison with fullyComparison with fully--controlled rectifiercontrolled rectifierAdditional freewheeling diodeAdditional freewheeling diode

Ob)

u2

O

ud

id Id

O

O

O

O

Oi2

Id

Id

Id

Id

Idα

ωt

ωt

ωt

ωt

ωt

ωt

ωt

α

π−α

π−α

iVT1iVD4iVT2iVD3

iVDR

a

b R

Lu2

i2

ud

idVT

1

VT

2

VD

3

VD

4

VD

R

T

Pow

erE

l ect

roni

cs

15

Another singleAnother single--phase bridge phase bridge halfhalf--controlled rectifiercontrolled rectifier

Comparison with previous circuit:Comparison with previous circuit:–– No need for additional freewheeling diodeNo need for additional freewheeling diode–– Isolation is necessary between the drive circuits of the two Isolation is necessary between the drive circuits of the two

thyristorsthyristors

T

u2

VD

3V

D4

VT 1

VT 2

load

Pow

erE

l ect

roni

cs

16

Summary of some important Summary of some important points in analysispoints in analysis

When analyzing a When analyzing a thyristorthyristor circuit, start from a diode circuit with circuit, start from a diode circuit with the same topology. The behavior of the diode circuit is exactlythe same topology. The behavior of the diode circuit is exactlythe same as the the same as the thyristorthyristor circuit when firing angle is 0. circuit when firing angle is 0.

A power electronic circuit can be considered as different lineaA power electronic circuit can be considered as different linear r circuits when the power semiconductor devices are in different circuits when the power semiconductor devices are in different states. The timestates. The time--domain behavior of the power electronic domain behavior of the power electronic circuit is actually the combination of consecutive transients ofcircuit is actually the combination of consecutive transients ofthe different linear circuits. the different linear circuits.

Take different principle when dealing with different loadTake different principle when dealing with different load–– For resistive load: current waveform of a resistor is the same For resistive load: current waveform of a resistor is the same as as

the voltage waveformthe voltage waveform

–– For inductive load with a large inductor: the inductor current For inductive load with a large inductor: the inductor current can can be considered constantbe considered constant

Pow

erE

l ect

roni

cs

17

2.2 Three2.2 Three--phase controlled phase controlled (controllable) rectifier(controllable) rectifier

2.2.1 Three2.2.1 Three--phase halfphase half--wave controlled rectifierwave controlled rectifier

(the basic circuit among three(the basic circuit among three--phase rectifiers)phase rectifiers)

2.2.2 Three2.2.2 Three--phase bridge fullyphase bridge fully--controlled rectifier controlled rectifier

(the most widely used circuit among three(the most widely used circuit among three--phase phase rectifiers)rectifiers)

Pow

erE

l ect

roni

cs

18

2.2.1 Three2.2.1 Three--phase halfphase half--wave wave controlled rectifiercontrolled rectifier

CommonCommon--cathode connectioncathode connectionNatural commutation pointNatural commutation point

Resistive load, Resistive load, α α = 0= 0ºº

T

R

ud

id

VT2

VT1

VT3

u2ua ub uc

O ωt1 ωt2 ωt3

uG

Oud

O

O

uab uac

O

iVT1

uVT1

ωt

ωt

ωt

ωt

ωt

Pow

erE

l ect

roni

cs

19

Resistive load, Resistive load, α α = 30= 30ºº

T

R

ud

id

VT2

VT1

VT3

u2 ua ub uc

O ωt

O ωt

O ωt

O ωt

O ωt

uG

ud

uab uac

ωt1iVT1

uVT1 uac

Pow

erE

l ect

roni

cs

20

Resistive load, Resistive load, α α = 60= 60ºº

T

R

ud

id

VT2

VT1

VT3

ωt

ωt

ωt

ωt

u2 ua ub uc

O

O

O

O

uG

ud

iVT1

Pow

erE

l ect

roni

cs

21

Resistive load, quantitative analysisResistive load, quantitative analysisWhen When αα ≤≤ 3030ºº, load current , load current iidd is continuous.is continuous.

When When α α > > 3030ºº, load current , load current iidd is discontinuous.is discontinuous.

ααπ

ωωπαπ

απ cos17.1cos2

63)(sin2

321

226

5

62d UUttdUU === ∫

+

+

⎥⎦⎤

⎢⎣⎡ ++=⎥⎦

⎤⎢⎣⎡ ++== ∫ +

)6

cos(1675.0)6

cos(12

23)(sin2

321

26

2d απαππ

ωωππ

απ UttdUU

(2(2--18)18)

(2(2--19)19)

Average load current

Thyristor voltagesR

UI dd = (2(2--20)20)

0 30 60 90 120 150

0.4

0.8

1.21.17

32

1

α/(°)

Ud/

U2

1- resistor load 2- inductor load 3- resistor-inductor load

Pow

erE

l ect

roni

cs

22

Inductive load, L is large enoughInductive load, L is large enough

Load current Load current iidd is always continuous. is always continuous.

ThyristorThyristor voltage and currents, transformer currentvoltage and currents, transformer current

ab

c

T

R

Lu2

ud

eLid

VT1

VT2

VT3

ud

ia

ua ub uc

ib

ic

id

uacuab

uacO ωt

O ωt

O ωt

O ωt

O ωt

O ωtα

uVT1

ααπ

ωωπαπ

απ cos17.1cos2

63)(sin2

321

226

5

62d UUttdUU === ∫

+

+(2(2--18)18)

ddVT2 577.03

1 IIII === (2(2--23)23) dVT

VT(AV) 368.057.1

III ==

2RMFM 45.2 UUU ==

(2(2--24)24)

(2(2--25)25)

Pow

erE

l ect

roni

cs

23

2.2.2 Three2.2.2 Three--phase bridgephase bridgefullyfully--controlled rectifiercontrolled rectifier

CommonCommon--cathode group and commoncathode group and common--anode group of anode group of thyristorsthyristorsNumbering of the 6 Numbering of the 6 thyristorsthyristors indicates the trigger sequence. indicates the trigger sequence.

Circuit diagramCircuit diagram

ba

c

id

ud

VT1

VT3 VT 5

VT4

VT 6 VT 2

d2

d1

T

n

iaload

Pow

erE

l ect

roni

cs

24

Resistive load, Resistive load, α α = 0= 0ººu2ud1

ud2

u2Lud

uab uac

uab uac ubc uba uca ucb uab uac

uab uac ubc uba uca ucb uab uacⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

ua ucub

ωt1O ωt

O ωt

O ωt

O ωt

α = 0°

iVT1

uVT1

Pow

erE

l ect

roni

cs

25

Resistive load, Resistive load, α α = 30= 30ººud1

ud2

α = 30°

ia

O ωt

O ωt

O ωt

O ωt

ud

uab uac

ua ub uc

ωt1

uab uac ubc uba uca ucb uab uacⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

uab uac ubc uba uca ucb uab uacuVT1

Pow

erE

l ect

roni

cs

26

Resistive load, Resistive load, α α = 60= 60ººα = 60°

ud1

ud2

ud

uac uac

uab

uab uac ubc uba uca ucb uab uac

ua

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

ub uc

O ωtωt1

O ωt

O ωt

uVT1

Pow

erE

l ect

roni

cs

27

Resistive load, Resistive load, α α = 90= 90ººud1

ud2

ud

ua ub uc ua ub

ωtO

ωtO

ωtO

ωtO

ωtO

ia

id

uab uac ubc uba uca ucb uab uac ubc uba

iVT1

Pow

erE

l ect

roni

cs

28

Inductive load, Inductive load, α α = 0= 0ºº

ud1

u2

ud2

u2Lud

id

ωtO

ωtO

ωtO

ωtO

uaα = 0° ub uc

ωt1

uab uac ubc uba uca ucb uab uacⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

iVT1

Pow

erE

l ect

roni

cs

29

Inductive load, Inductive load, α α = 30= 30ººud1

α = 30°

ud2

uduab uac ubc uba uca ucb uab uacⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

ωtO

ωtO

ωtO

ωtO

id

ia

ωt1

ua ub uc

Pow

erE

l ect

roni

cs

30

Inductive load, Inductive load, α α = 90= 90ººα = 90°

ud1

ud2uac ubc uba uca ucb uab uacuabⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

ud

uac

uab

uac

ωtO

ωtO

ωtO

ub uc ua

ωt1

uVT1

Pow

erE

l ect

roni

cs

31

Quantitative analysisQuantitative analysisAverage output voltageAverage output voltage

For resistive load, When For resistive load, When a a > > 6060ºº, load current , load current iidd is discontinuous.is discontinuous.

Average output current (load current)Average output current (load current)

Transformer currentTransformer current

ThyristorThyristor voltage and currentvoltage and current–– Same as threeSame as three--phase halfphase half--wave rectifierwave rectifier

EMF load, L is large enoughEMF load, L is large enough–– All the same as inductive load except the calculation of averageAll the same as inductive load except the calculation of average output output

currentcurrent

αωωπαπ

απ cos34.2)(sin6

3

12

32

32d UttdUU == ∫

+

+(2(2--26)26)

⎥⎦⎤

⎢⎣⎡ ++== ∫ +

)3

cos(134.2)(sin632

32d απωω

ππ

απ UttdUU

(2(2--20)20)

(2(2--27)27)

dd2

d2d2 816.0

32

32)(

32

21 IIIII ==⎟

⎠⎞

⎜⎝⎛ ×−+×=

ππππ (2(2--28)28)

REUI −

= dd (2(2--29)29)

RUI d

d =

Pow

erE

l ect

roni

cs

32

2.3 Effect of transformer leakage 2.3 Effect of transformer leakage inductance on rectifier circuits inductance on rectifier circuits

In practical, the transformer leakage inductance has to be In practical, the transformer leakage inductance has to be taken into account. taken into account. Commutation between Commutation between thyristorsthyristors thus can not happen instantly, thus can not happen instantly, but with a commutation process. but with a commutation process.

R

a

b

c

T

Lud

ic

ib

iaLB

LB

LB

ikVT1

VT2

VT3

ud

id

ωtO

ωtO γ

ic ia ib ic ia Id

ua ub ucα

Pow

erE

l ect

roni

cs

33

Commutation process analysisCommutation process analysisCirculating current Circulating current iikk during commutationduring commutation

Commutation angle Commutation angle Output voltage during commutationOutput voltage during commutation

ub-ua = 2·LB·dia/dt

ik: 0 Id

ia = Id-ik : Id 0

ib = ik : 0 Id

2dd

dd bak

Bbk

Baduu

tiLu

tiLuu +

=−=+= (2(2--30)30)

Pow

erE

l ect

roni

cs

34

Reduction of average output voltage due to the Reduction of average output voltage due to the commutation processcommutation process

Calculation of commutation angleCalculation of commutation angle

– Id ,,ΧΧ–– XXB B ,,ΧΧ

– For Α 9090o o , , Α , ΧΧ

Quantitative calculationQuantitative calculation

dB0 B6

5

65 B

65

65 Bbb

65

65 dbd

23d

23)(d

dd

23

)(d)]dd([

23)(d)(

3/21

IXiLttiL

ttiLuutuuU

I

πω

πω

π

ωπ

ωπ

πγα

πα

πγα

πα

πγα

πα

===

−−=−=∆

∫∫

∫∫++

+

++

+

++

+

d

kk

k

(2(2--31)31)

2

dB

62)cos(cos

UIX

=+− γαα (2(2--36)36)

Pow

erE

l ect

roni

cs

35

Summary of the effect on rectifier circuitsSummary of the effect on rectifier circuits

ConclusionsConclusions–– Commutation process actually provides additional working states Commutation process actually provides additional working states

of the circuit. of the circuit. –– di/dtdi/dt of the of the thyristorthyristor current is reduced.current is reduced.–– The average output voltage is reduced. The average output voltage is reduced. –– Positive Positive du/dtdu/dt–– Notching in the AC side voltageNotching in the AC side voltage

dU∆d

B IXπ d

B2I

Xπ d

B

23

IXπ d

B3I

dB

2I

mXπ

)cos(cos γαα +−2

Bd

2UXI

2

Bd

22

UXI

2

dB

62

UIX

2

dB

62

UIX

mU

XIπsin2 2

Bd

Single-phase full

wave

Single-phase bridge

Three-phase half-

wave

Three-phase bridge

m-pulse recfifier

Circuits

Pow

erE

l ect

roni

cs

36

2.4 Capacitor2.4 Capacitor--filtered uncontrolledfiltered uncontrolled(uncontrollable) rectifier(uncontrollable) rectifier

Emphasis of previous sectionsEmphasis of previous sections–– Controlled rectifier, inductive loadControlled rectifier, inductive load

Uncontrolled rectifier: diodes instead of Uncontrolled rectifier: diodes instead of thyristorsthyristorsWide applications of capacitorWide applications of capacitor--filtered uncontrolled filtered uncontrolled rectifierrectifier–– ACAC--DCDC--AC frequency converterAC frequency converter–– Uninterruptible power supplyUninterruptible power supply–– Switching power supplySwitching power supply

2.4.1 Capacitor2.4.1 Capacitor--filtered singlefiltered single--phase uncontrolledphase uncontrolledrectifierrectifier

2.4.2 Capacitor2.4.2 Capacitor--filtered threefiltered three--phase uncontrolled phase uncontrolled rectifierrectifier

Pow

erE

l ect

roni

cs

37

2.4.1 Capacitor2.4.1 Capacitor--filtered singlefiltered single--phase phase uncontrolled rectifieruncontrolled rectifier

SingleSingle--phase bridge, phase bridge, RCRC loadload

a)

+RCu1 u2

i2VD1 VD3

VD2 VD4

id

iC iR

ud

b)

0

i

ud

θ

δ

π 2π ωt

i,ud

Pow

erE

l ect

roni

cs

38

2.4.1 Capacitor2.4.1 Capacitor--filtered singlefiltered single--phase phase uncontrolled rectifieruncontrolled rectifier

SingleSingle--phase bridge, phase bridge, RLCRLC loadload

a) b)

-

+R

C

L+

u1 u2

i2

ud

uL

id

iC iR

VD2 VD4

VD1 VD3

u2 ud

i2

0δ θ π ωt

i2,u2,ud

Pow

erE

l ect

roni

cs

39

2.4.2 Capacitor2.4.2 Capacitor--filtered threefiltered three--phase phase uncontrolled rectifieruncontrolled rectifier

ThreeThree--phase bridge, phase bridge, RCRC loadload

a)

+a

b

c

T ia

RCud

id

iC iR

VD4 VD6

VD1 VD3 VD5

VD2

b)

O

ia

ud

id

uduab uac

0δ θ ωtππ3

ωt

Pow

erE

l ect

roni

cs

40

2.4.2 Capacitor2.4.2 Capacitor--filtered threefiltered three--phase phase uncontrolled rectifieruncontrolled rectifier

ThreeThree--phase bridge, phase bridge, RCRC loadloadWaveform when Waveform when ωωRCRC≤≤1.7321.732

ωt ωt

ωtωt

ia

id

ia

id

O

O

O

O

a)ωRC= b)ωRC<3 3

Pow

erE

l ect

roni

cs

41

2.4.2 Capacitor2.4.2 Capacitor--filtered threefiltered three--phase phase uncontrolled rectifieruncontrolled rectifier

ThreeThree--phase bridge, phase bridge, RLCRLC loadload

a)

b)

c)

+ab

c

T ia

RCud

idiC iR

VD4VD6

VD1VD3VD5

VD2

ia

ia

O

O ω t

ω t

Pow

erE

l ect

roni

cs

42

2.5 Harmonics and power factor of 2.5 Harmonics and power factor of rectifier circuitsrectifier circuits

Originating of harmonics and power factor issues in Originating of harmonics and power factor issues in rectifier circuitsrectifier circuits–– Harmonics: working in switching statesHarmonics: working in switching states——nonlinearnonlinear–– Power factor: firing delay angle causes phase delayPower factor: firing delay angle causes phase delay

Harmful effects of harmonics and low power factorHarmful effects of harmonics and low power factorStandards to limit harmonics and power factorStandards to limit harmonics and power factor

2.5.1 Basic concepts of harmonics and reactive power2.5.1 Basic concepts of harmonics and reactive power2.5.2 AC side harmonics and power factor of 2.5.2 AC side harmonics and power factor of

controlled rectifiers with inductive loadcontrolled rectifiers with inductive load2.5.3 AC side harmonics and power factor of 2.5.3 AC side harmonics and power factor of

capacitorcapacitor--filtered uncontrolled rectifiersfiltered uncontrolled rectifiers2.5.4 Harmonic analysis of output voltage and current2.5.4 Harmonic analysis of output voltage and current

Pow

erE

l ect

roni

cs

43

For pure sinusoidal waveformFor pure sinusoidal waveform

For periodic nonFor periodic non--sinusoidal waveform sinusoidal waveform

oror

wherewhere

Fundamental componentFundamental component

Harmonic components (harmonics)Harmonic components (harmonics)

2.5.1 Basic concepts of harmonics 2.5.1 Basic concepts of harmonics and reactive powerand reactive power

∑∞

=

++=1

)sincos()(n

nno tnbtnaatu ωωω

(2(2--54)54)( ) 2 sin( )uu t U tω ϕ= +

(2(2--55)55)

∑∞

=

++=1

)sin()(n

nno tncatu ϕωω (2(2--56)56)

22nnn bac +=

)/arctan( nnn ba=ϕ

ϕsinnn ca =

ϕcosnn cb =

Pow

erE

l ect

roni

cs

44

HarmonicsHarmonics--related specificationsrelated specificationsTake current harmonics as examplesTake current harmonics as examples

Content of Content of nnth harmonicsth harmonics

IInn is the effective (RMS) value of is the effective (RMS) value of nnth harmonics.th harmonics.II11 is the effective (RMS) value of fundamental componentis the effective (RMS) value of fundamental component..

Total harmonic distortionTotal harmonic distortion

IIhh is the total effective (RMS) value of all the harmonic componenis the total effective (RMS) value of all the harmonic components.ts.

%1001

×=IIHRI n

n

%1001

×=IITHD h

i

(2(2--57)57)

(2(2--58)58)

Pow

erE

l ect

roni

cs

45

Definition of power and power factorDefinition of power and power factorFor sinusoidal circuitsFor sinusoidal circuits

Active powerActive power

Reactive power Reactive power

Q=U IQ=U I sinsinϕϕ

Apparent powerApparent power

S=UIS=UI

Power factorPower factor

λ λ ==coscos ϕϕ

∫ ==π

ϕωπ

2

0cos)(

21 UItuidP

222 QPS +=

SP

(2(2--59)59)

(2(2--60)60)

(2(2--61)61)

(2(2--63)63)

(2(2--62)62)

(2(2--64)64)

Pow

erE

l ect

roni

cs

46

Definition of power and power factorDefinition of power and power factor

For nonFor non--sinusoidal circuitssinusoidal circuitsActive powerActive power

P=U IP=U I11 coscosϕϕ1 1

Power factorPower factor

Distortion factor (fundamentalDistortion factor (fundamental--component factor)component factor)

ν ν ==II1 1 / I/ I

Displacement factor (power factor of fundamental component)Displacement factor (power factor of fundamental component)

λλ11 = cos= cosϕϕ11

Definition of reactive power is still in dispute. Definition of reactive power is still in dispute.

11111 coscoscos ϕνϕϕλ ====II

UIUI

SP

(2(2--65)65)

(2(2--66)66)

Review of the reactive power conceptReview of the reactive power conceptThe reactive power The reactive power Q Q does not lead to net transmission of does not lead to net transmission of energy between the source and load. When energy between the source and load. When Q Q ≠≠ 0, the 0, the rmsrmscurrent and apparent power are greater than the minimum current and apparent power are greater than the minimum amount necessary to transmit the average power P.amount necessary to transmit the average power P.Inductor: current lags voltage by 90Inductor: current lags voltage by 90°°, hence displacement , hence displacement factor is zero. The alternate storing and releasing of energy ifactor is zero. The alternate storing and releasing of energy in n an inductor leads to current flow and nonzero apparent power, an inductor leads to current flow and nonzero apparent power, but but P P = = 0. Just as resistors consume real (average) power P, 0. Just as resistors consume real (average) power P, inductors can be viewed as consumers of reactive power Q.inductors can be viewed as consumers of reactive power Q.Capacitor: current leads voltage by 90Capacitor: current leads voltage by 90°°, hence displacement , hence displacement factor is zero. Capacitors supply reactive power Q. They are factor is zero. Capacitors supply reactive power Q. They are often placed in the utility power distribution system near often placed in the utility power distribution system near inductive loads. If inductive loads. If Q Q supplied by capacitor is equal to supplied by capacitor is equal to Q Q consumed by inductor, then the net current (flowing from the consumed by inductor, then the net current (flowing from the source into the capacitorsource into the capacitor--inductiveinductive--load combination) is in load combination) is in phase with the voltage, leading to unity power factor and phase with the voltage, leading to unity power factor and minimum minimum rmsrms current magnitude.current magnitude.

Pow

erE

l ect

roni

cs

47

Pow

erE

l ect

roni

cs

48

2.5.2 AC side harmonics and power factor of 2.5.2 AC side harmonics and power factor of controlled rectifiers with inductive loadcontrolled rectifiers with inductive load

SingleSingle--phase bridge fullyphase bridge fully--controlled rectifiercontrolled rectifieru2

O ω t

O ω t

O ω t

ud

id

i2

b)

O ω t

O ω t

uVT1,4

O ω t

O ω t

Id

Id

Id

Id

Id

iVT2,3

iVT1,4

T a

b R

L

a)

u1 u2

i2

VT 1

VT 3

VT 2

VT 4

ud

id

Pow

erE

l ect

roni

cs

49

AC side current harmonics of singleAC side current harmonics of single--phase bridge phase bridge fullyfully--controlled rectifier with inductive loadcontrolled rectifier with inductive load

ConclusionsConclusions–– Only odd order harmonics existOnly odd order harmonics exist

–– IInn ∝∝ 1/1/nn

–– IInn / I/ I11 = 1/= 1/nn

where

∑∑==

==

+++=

,5,3,1,5,3,1d

d2

sin2sin14

)5sin513sin

31(sin4

nn

ntnItn

nI

tttIi

ωωπ

ωωωπ

n=1,3,5,…πn

II nd22

=

(2(2--72)72)

(2(2--73)73)

Pow

erE

l ect

roni

cs

50

Power factor of singlePower factor of single--phase bridge fullyphase bridge fully--controlled rectifier with inductive loadcontrolled rectifier with inductive load

Distortion factorDistortion factor

Displacement factorDisplacement factor

Power factorPower factor

νπ

= = ≈II1 2 2 0 9.

αϕλ coscos 11 ==

ααπ

ϕνλλ cos9.0cos22cos 11

1 ≈===II

(2(2--75)75)

(2(2--76)76)

(2(2--77)77)

Pow

erE

l ect

roni

cs

51

ThreeThree--phase bridge fullyphase bridge fully--controlled rectifiercontrolled rectifierud1

α = 30°

ud2

uduab uac ubc uba uca ucb uab uacⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

ωtO

ωtO

ωtO

ωtO

id

ia

ωt1

ua ub uc

Pow

erE

l ect

roni

cs

52

AC side current harmonics of threeAC side current harmonics of three--phase bridge phase bridge fullyfully--controlled rectifier with inductive loadcontrolled rectifier with inductive load

ConclusionsConclusions–– Only 6Only 6kk±±1 order harmonics exist (1 order harmonics exist (kk is positive integer)is positive integer)

–– IInn ∝∝ 1/1/nn

–– IInn / I/ I11 = 1/= 1/nn

∑∑=

±==

±=

−+=−+=

−++−−=

3,2,116

1

3,2,116

dd

da

sin2)1(sin2sin1)1(32sin32

]13sin13111sin

1117sin

715sin

51[sin32

kkn

nk

kkn

k tnItItnn

ItI

tttttIi

ωωωπ

ωπ

ωωωωωπ

(2(2--79)79)

16

6 , 6 1, 1,2,3,n

I I

I I n k kn

π

π

⎧=⎪⎪

⎨⎪ = = ± =⎪⎩

d

d   

where

(2(2--80)80)

Pow

erE

l ect

roni

cs

53

Power factor of threePower factor of three--phase bridge fullyphase bridge fully--controlled controlled rectifier with inductive loadrectifier with inductive load

Distortion factorDistortion factor

Displacement factorDisplacement factor

Power factorPower factor

955.031 ≈==π

νII

αϕλ coscos 11 ==

ααπ

ϕνλλ cos955.0cos3cos 11

1 ≈===II

(2(2--81)81)

(2(2--82)82)

(2(2--83)83)

Pow

erE

l ect

roni

cs

54

2.5.3 AC side harmonics and power factor of 2.5.3 AC side harmonics and power factor of capacitorcapacitor--filtered uncontrolled rectifiersfiltered uncontrolled rectifiers

Situation is a little complicated than rectifiers with inductiveSituation is a little complicated than rectifiers with inductiveload. load.

Some conclusions that are easy to remember:Some conclusions that are easy to remember:–– Only odd order harmonics exist in singleOnly odd order harmonics exist in single--phase circuit, and only phase circuit, and only

66kk±±1 (1 (kk is positive integer) order harmonics exist in threeis positive integer) order harmonics exist in three--phase phase circuit. circuit.

–– Magnitude of harmonics decreases as harmonic order increases. Magnitude of harmonics decreases as harmonic order increases.

–– Harmonics increases and power factor decreases as capacitor Harmonics increases and power factor decreases as capacitor increases. increases.

–– Harmonics decreases and power factor increases as inductor Harmonics decreases and power factor increases as inductor increases. increases.

Pow

erE

l ect

roni

cs

55

2.5.4 Harmonic analysis of output voltage 2.5.4 Harmonic analysis of output voltage and currentand current

wherewhere

Output voltage of Output voltage of mm--pulsepulserectifier when α = 0º

ud

ωtOπm

πm

2πm

U22

⎥⎦

⎤⎢⎣

⎡−

−=

+=

∑∞

=

=

tnn

kU

tnbUu

mkn

mknn

ωπ

ω

cos1

cos21

cos

2d0

d0d0

mmUU ππ

sin2 2d0 =

d02 1cos2 Un

kbn −−=

π

(2(2--85)85)

(2(2--86)86)

(2(2--87)87)

Pow

erE

l ect

roni

cs

56

Ripple factor in the output voltageRipple factor in the output voltageOutput voltage ripple factorOutput voltage ripple factor

where Uwhere URR is the total RMS value of all the harmonicis the total RMS value of all the harmoniccomponents in the output voltagecomponents in the output voltage

and U is the total RMS value of the output voltageand U is the total RMS value of the output voltage

Ripple factors for rectifiers with different number of pulses Ripple factors for rectifiers with different number of pulses

d0

R

UU

u =γ

2d0

22R UUUU

mknn −== ∑

=

(2(2--88)88)

(2(2--89)89)

m 2 3 6 12 ∞

γu(%) 48.2 18.27 4.18 0.994 0

Pow

erE

l ect

roni

cs

57

Harmonics in the output currentHarmonics in the output current

where where

)cos(dd nmkn

n tndIi ϕω −+= ∑∞

=

REUI −

= d0d

22 )( LnRb

zbd n

n

nn

ω+==

RLn

nωϕ arctan=

(2(2--92)92)

(2(2--93)93)

(2(2--94)94)

(2(2--95)95)

Pow

erE

l ect

roni

cs

58

Conclusions for Conclusions for α α = 0= 0ºº

Only Only mkmk ((kk is positive integer) order harmonics exist is positive integer) order harmonics exist in the output voltage and current of min the output voltage and current of m--pulse rectifierspulse rectifiers

Magnitude of harmonics decreases as harmonic Magnitude of harmonics decreases as harmonic order increases when order increases when mm is constant. is constant.

The order number of the lowest harmonics increases The order number of the lowest harmonics increases as as m m increases. The corresponding magnitude of the increases. The corresponding magnitude of the lowest harmonics decreases accordingly.lowest harmonics decreases accordingly.

Pow

erE

l ect

roni

cs

59

For For α α ≠≠ 00ºº

Quantitative harmonic Quantitative harmonic analysis of output voltage analysis of output voltage and current is very and current is very complicated for complicated for α α ≠≠ 00ºº. .

As an example, As an example, for 3for 3--phase bridge phase bridge fullyfully--controlled rectifiercontrolled rectifier

0 30 120 150 18060

0.1

0.2

0.3

90

n=6

n=12

n=18

α/(°)U

2L

c n

2∑

=

++=kn

nnd tncUu6

)cos( θωd

(2(2--96)96)

Pow

erE

l ect

roni

cs

60

2.6 High power controlled rectifier2.6 High power controlled rectifier

2.6.1 Double2.6.1 Double--star controlled rectifierstar controlled rectifier

2.6.2 Connection of multiple rectifiers2.6.2 Connection of multiple rectifiers

Pow

erE

l ect

roni

cs

61

2.6.1 Double2.6.1 Double--star controlled rectifierstar controlled rectifier

Difference from 6Difference from 6--phase halfphase half--wave rectifierwave rectifier

CircuitCircuit Waveforms When Waveforms When αα = = 00ºº

T

a b c

L

R

niP LP

ud

id

VT 2

VT 6

VT 4

VT 1

VT 3

VT 5

c'a' b'

n1n2

ud1ua ub uc

ia

ud2

ia'

uc' ua

' ub' uc

'

O ωt

O ωt

O ωt

O ωt

Id12

Id16

Id12

Id16

Pow

erE

l ect

roni

cs

62

Effect of Effect of interphaseinterphase reactor reactor (inductor, transformer)(inductor, transformer)

n

L

R

+- +-

ud1

LP

ub'

ud2 ud

n2 n1

iP

ua

VT1 VT6

uP12

d1d2p uuu −=

)(21

21

21

d2d1pd1pd2d uuUuuuu +=+=−=

(2(2--97)97)

(2(2--98)98)

up

ud1,ud2

O

O

60

360

ωt1 ωt

ωtb)

a)

ua ub ucuc' ua

'ub' ub

'

Pow

erE

l ect

roni

cs

63

Quantitative analysis when Quantitative analysis when α α = 0= 0ºº

]9cos4016cos

3523cos

411[

263 2

d1 ⋅⋅⋅−+−+= tttUu ωωωπ

2

2

3 6 1 2 1[1 cos3( 60 ) cos6( 60 ) cos9( 60 ) ]2 4 35 40

3 6 1 2 1[1 cos3 cos6 cos9 ]2 4 35 40

Uu t t t

U t t t

ω ω ωπ

ω ω ωπ

= + − ° − − ° + − ° − ⋅⋅⋅

= − − − − ⋅⋅⋅

d2

]9cos2013cos

21[

263 2

p ⋅⋅⋅−−−= ttUu ωωπ

]6cos3521[

263 2

d ⋅⋅⋅−−= tUu ωπ

(2(2--99)99)

(2(2--100)100)

(2(2--101)101)

(2(2--102)102)

Pow

erE

l ect

roni

cs

64

Waveforms Waveforms when when α α > 0> 0ºº

。90=α

。60=α

。30=αud

ud

ud

ωtO

ωtO

ωtO

ua ub ucuc' ua

' ub'

ub ucuc' ua

' ub'

ub ucuc' ua

' ub'

αcos17.1 2UUd =

Pow

erE

l ect

roni

cs

65

Comparison with 3Comparison with 3--phase halfphase half--wavewaverectifier and 3rectifier and 3--phase bridge rectifierphase bridge rectifier

Voltage output capabilityVoltage output capability–– Same as 3Same as 3--phase halfphase half--wave rectifierwave rectifier

–– Half of 3Half of 3--phase bridge rectifierphase bridge rectifier

Current output capabilityCurrent output capability–– Twice of 3Twice of 3--phase halfphase half--wave rectifierwave rectifier

–– Twice of 3Twice of 3--phase bridge rectifierphase bridge rectifier

ApplicationsApplications

Low voltage and high current situationsLow voltage and high current situations

2.6.2 Connection of multiple rectifiers2.6.2 Connection of multiple rectifiersE

l ect

roni

csP

ower

Connection Connection of multiple of multiple rectifiersrectifiers

To increase the To increase the output capacityoutput capacity

To improve the AC side current waveform To improve the AC side current waveform and DC side voltage waveformand DC side voltage waveform

Larger output voltage: Larger output voltage: series connectionseries connection

Larger output current: Larger output current: parallel connectionparallel connection

Pow

erE

l ect

roni

cs

67

PhasePhase--shift connection of multiple rectifiersshift connection of multiple rectifiersParallel connectionParallel connection

1212--pulse rectifier realized by pulse rectifier realized by paralleled 3paralleled 3--phase bridge rectifiersphase bridge rectifiers

M

LTVT

1 2

c1

b1

a1

c2

b2

a2

LP

Pow

erE

l ect

roni

cs

68

PhasePhase--shift connection of multiple rectifiersshift connection of multiple rectifiers

1212--pulse rectifier realized by pulse rectifier realized by series 3series 3--phase bridge rectifiersphase bridge rectifiers

Series connectionSeries connection

0a)

b)

c)

d)

ia1

Id

180° 360°ia2

iab2'

iA

Idiab2

ωt

ωt

ωt

ωt

0

0

0

Id23

33 Id

33 Id

Id32 3

(1+ )Id32 3

(1+ )Id33

Id13

C▲

L

RB

A

1

*▲

*

*

0

30°lagging

3

iAc1

b1

a1

1

c2

b2

a2

iab2 ua2b2

ua1b1

ia1 id

ud

I

II

I

II

Pow

erE

l ect

roni

cs

69

VoltageVoltage–– Average output voltageAverage output voltage

Parallel connection: Parallel connection:

Series connection:Series connection:–– Output voltage harmonicsOutput voltage harmonics

Only 12Only 12mm harmonics existharmonics exist

Input (AC side) current harmonicsInput (AC side) current harmonics–– Only 12kOnly 12k±±1 harmonics exist1 harmonics exist

Connection of more 3Connection of more 3--phase bridge rectifiersphase bridge rectifiers–– Three: 18Three: 18--pulse rectifier (20pulse rectifier (20ºº phase differencephase difference))–– Four: 24Four: 24--pulse rectifier (15pulse rectifier (15ºº phase differencephase difference))

Quantitative analysis of 12Quantitative analysis of 12--pulse rectifierpulse rectifier

22.34 cosU U α=d

24.68 cosU U α=d

Pow

erE

l ect

roni

cs

70

Sequential control of multiple Sequential control of multiple seriesseries--connected rectifiersconnected rectifiers

Circuit and waveforms of seriesCircuit and waveforms of series--connectedconnectedthree singlethree single--phase bridge rectifiersphase bridge rectifiers

L

i

a)

u2

u2

u2

Id

VT 11

VT 13

VT 14

VT 12

VT 21

VT 23

VT 24

VT 22

VT 31

VT 33

VT 34

VT 32

ud b)

c)

i Id

2Id

ud

O α π+α

load

Pow

erE

l ect

roni

cs

71

2.7 Inverter mode operation 2.7 Inverter mode operation of rectifiersof rectifiers

Review of DC generatorReview of DC generator--motor systemmotor system

−=

REEI MG

d∑

−=

REEI GM

d should be avoided

Pow

erE

l ect

roni

cs

72

Inverter mode operation of rectifiersInverter mode operation of rectifiersRectifier and inverter mode operation of singleRectifier and inverter mode operation of single--phasephasefullfull--wave converterwave converter

−=

REUI Gd

d∑

−=

RUE

IdM

d

a) b)

R

+

-

EnergyM

1

0

2

u10

u20

udid

LVT1

VT2

u10ud u20 u10α

O

O ωt

ωt

Id

id

Ud>EM

EMM

R

+

-

1

0

2

udid

LVT1

VT2

u10udu20 u10

O

O ωt

ωt

Id

id

Ud<EM

α

EM

iVT1

iVT2

iVT1

iVT2

iVT1iVT2

iVT2

id=iVT +iVT1 2id=iVT +iVT1 2

iVT1iVT2

iVT1

Energy

Pow

erE

l ect

roni

cs

73

Necessary conditions for the inverter Necessary conditions for the inverter mode operation of controlled rectifiersmode operation of controlled rectifiers

There must be DC EMF in the load and the direction There must be DC EMF in the load and the direction of the DC EMF must be enabling current flow in of the DC EMF must be enabling current flow in thyristors. (In other word thyristors. (In other word EEMM must be negative if must be negative if taking the ordinary output voltage direction as taking the ordinary output voltage direction as positive.)positive.)

α α > > 9090ºº so that the output voltage so that the output voltage UUdd is also negative. is also negative.

dM UE >

Pow

erE

l ect

roni

cs

74

Inverter mode operation Inverter mode operation of 3of 3--phase bridge rectifierphase bridge rectifier

Inversion angle (extinction angle) Inversion angle (extinction angle) ββαα + + ββ =180=180ºº

uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc

ua ub uc ua ub uc ua ub uc ua ubu2

ud

ωtO

ωtO

β = π4β = π

3 β = π6

β = π4β = π

3 β = π6

ωt1 ωt3ωt2

Pow

erE

l ect

roni

cs

75

Inversion failure and minimum Inversion failure and minimum inversion angleinversion angle

Possible reasons of Possible reasons of inversion failuresinversion failures–– Malfunction of Malfunction of

triggering circuittriggering circuit–– Failure in Failure in thyristorsthyristors–– Sudden dropout of AC Sudden dropout of AC

source voltagesource voltage–– Insufficient margin for Insufficient margin for

commutation of commutation of thyristorsthyristors

Minimum inversion Minimum inversion angle (extinction angle)angle (extinction angle)ββminmin==δ δ ++γγ++θθ′′ ((22--109109))

La

b

c

+

-Mud

id

EM

LB

LB

LB

VT1

VT2

VT3

o

ud

O

O

id

ωt

ωt

ua ub uc ua ub

p

βγ β <γα

γβ

β >γ

iVT1iVT2

iVT3

iVT1iVT2

iVT3iVT1

iVT3

Pow

erE

l ect

roni

cs

76

2.8 2.8 ThyristorThyristor--DC motor systemDC motor system

2.8.1 Rectifier mode of operation2.8.1 Rectifier mode of operation

2.8.2 Inverter mode of operation2.8.2 Inverter mode of operation

2.8.3 Reversible DC motor drive system2.8.3 Reversible DC motor drive system

(four(four--quadrant operation)quadrant operation)

Pow

erE

l ect

roni

cs

77

2.8.1 Rectifier mode of operation2.8.1 Rectifier mode of operation

Waveforms of 3Waveforms of 3--phase halfphase half--wave wave rectifier with DC motor loadrectifier with DC motor load

ud

O

id

ωt

ua ub uc

α

ud

O

ia ib icic

ωt

EUd

idR

(2(2--112)112)

π23 B

MBXRRR ++=∑

UIREU dMd ∆++= ∑

Waveforms and equationsWaveforms and equations

(for 3(for 3--phase halfphase half--wave)wave)

wherewhere

Pow

erE

l ect

roni

cs

78

SpeedSpeed--torque (mechanic) characteristic torque (mechanic) characteristic when load current is continuouswhen load current is continuous

For 3For 3--phase halfphase half--wavewavenCE eM = (2(2--113)113)

αcos17.1 2UUd =

UIRUE dM ∆−−= ∑αcos17.1 2

e

d

e CUIR

CUn ∆+

−=∑αcos17.1 2

For 3For 3--phase bridgephase bridge

22.34 cosd

e e

U Rn IC C

α ∑= −

(2(2--114)114)

(2(2--115)115)

(2(2--116)116)

O

n

a1<a2<a3

a3

a2

a1

Id

(RB+RM+ )IdCe

3XB2π

For 3For 3--phase halfphase half--wavewave

Pow

erE

l ect

roni

cs

79

SpeedSpeed--torque (mechanic) characteristic torque (mechanic) characteristic when load current is discontinuouswhen load current is discontinuous

EMF at no load (taking 3EMF at no load (taking 3--phase phase halfhalf--wave as example)wave as example)

For For αα ≤≤ 6060ºº

For For αα > > 6060ºº

discontinuoutsmode continuous mode

EE0

E0'

O

Idmin

Id

(0.585U2)

( U2)2

)60cos(2 20 −= αUE

20 2UE =

For 3For 3--phase halfphase half--wavewave

Pow

erE

l ect

roni

cs

80

SpeedSpeed--torque (mechanic) characteristic torque (mechanic) characteristic when load current is discontinuouswhen load current is discontinuous

For different For different αα

The point of EMF at no The point of EMF at no load is raised up.load is raised up.

The droop rate becomes The droop rate becomes steer. (softer than the steer. (softer than the continuous mode)continuous mode)

O

a3

a2

a1

Id

boundary

discontinuousmode

continuous mode

a5

a4

E0

E

For 3-phase half-wave(α1< α2 < α3 ≤ 60º, α5 > α4 > 60º)

Pow

erE

l ect

roni

cs

81

2.8.2 Inverter mode of operation2.8.2 Inverter mode of operationEquationsEquations

–– are just the same as in the are just the same as in the rectifier mode of operation rectifier mode of operation except that except that UUdd, , EEMM and and nnbecome negative. E.g., in become negative. E.g., in 33--phase halfphase half--wavewave

–– Or in another formOr in another form

(2(2--114)114)

e

d

e CUIR

CUn ∆+

−=∑αcos17.1 2

(2(2--115)115)

(2(2--122)122)

(2(2--123)123)eC

n −= 1∑+ RIU dd βcos0

0 cos( ∑+−= RIUE ddM β

rectifiermode

n

α3

α2

α1

Id

α4

β2

β3

β4

β1

α =β = π2

α in

crea

sing

β in

crea

sing

invertermode

Speed-torque characteristic of a DC motor fed by a thyristorrectifier circuit

21.17 cosM dE U R I Uα ∑= − − ∆

)

Pow

erE

l ect

roni

cs

82

2.8.3 Reversible DC motor drive system2.8.3 Reversible DC motor drive system(4(4--quadrant operation)quadrant operation)

L

converter 1 converter 2

EMM

abc

Back-to-back connection of two 3-phase bridge circuits

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

ACsource

converter2

converter2converter2

converter 1 converter2

+T-T

reverse motoring

converter 2 inverting

forward braking(regenerating)

+n

IdId

Udα

M EM

Id

M EMMEM

Id

MEM

-n

Udβ

Udα Udβ

O

ACsource

ACsource

ACsource

Energy

Energy

Energy

Energy

converter 1

converter1

converter1

converter 1 rectifying

forward motoring

converter 2 rectifying converter 1 inverting

reverse braking(regenerating)

Pow

erE

l ect

roni

cs

83

44--quadrant speedquadrant speed--torque characteristic torque characteristic of Reversible DC motor drive systemof Reversible DC motor drive system

converter 1converter 2 n

α 3

α 2

α 1

Id

α 4

β 2

β 3

β 4

β 1

α =β = π2

α '=β '= π2

β '3

β '2

β '1

β '4

α '2

α '3

α '4

α '1α 1=β '1; α '1=β 1α 2=β '2; α '2=β 2

α in

crea

sing

incr

easi

ng'

α in

crea

sing

β in

crea

sing

Pow

erE

l ect

roni

cs

84

Power ElectronicsPower Electronics

Supplement:Gate Triggering Control Circuit

for Thyristor Rectifiers

Pow

erE

l ect

roni

cs

85

2.9 Gate triggering control circuit for 2.9 Gate triggering control circuit for thyristorthyristor rectifiersrectifiersObjectObject

How to timely generate triggering pulses with How to timely generate triggering pulses with adjustable phase delay angleadjustable phase delay angle

ConstitutionConstitutionSynchronous circuitSynchronous circuitSawSaw--tooth ramp generating and phase shiftingtooth ramp generating and phase shiftingPulse generatingPulse generating

Integrated gate triggering control circuits are very Integrated gate triggering control circuits are very widely used in practice.widely used in practice.

Pow

erE

l ect

roni

cs

86

A typical gate triggering control circuitA typical gate triggering control circuit

220V 36V

+

BTP

+15V

AVS

+15V

-15V -15VX YDisable

RQ

uts

VD1 VD2

C1 R2

R4TS V2 R5

R8

R6

R7

R3

R9

R10

R11 R12

R13

R14

R16

R15

R18

R17

RP1

uco

up

C2

C3

C3

C5

C6C7

R1

RP2

V1

I1cV3

V4

V6

V5

V7

V8

VD4

VD10 VD5

VD6

VD7

VD9

VD8

VD15

VD11~VD14

Pow

erE

l ect

roni

cs

87

Waveforms of the typical Waveforms of the typical gate triggering control circuitgate triggering control circuit

Pow

erE

l ect

roni

cs

87

Pow

erE

l ect

roni

cs

88

How to get synchronous voltage for the gate How to get synchronous voltage for the gate triggering control circuit of each thyristortriggering control circuit of each thyristor

For the typical circuit on page 20, the synchronous voltage of tFor the typical circuit on page 20, the synchronous voltage of the gate he gate triggering control circuit for each triggering control circuit for each thyristorthyristor should be lagging 180should be lagging 180ºº to the to the corresponding phase voltage corresponding phase voltage ofyyofyythat that thyristorthyristor..

D,y 11D,y 5-11

TR TS

uA uB uC

ua ub uc - usa- usb

- usc- usa

- usb- usc

Uc

Usc -Usa

Ub

Usb

-Usc

-Usb

Ua

Usa

UAB