Chapter 17 Fluid-structure interaction in an acoustic...

27
© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 1 Chapter 17 Fluid-structure interaction in an acoustic context Jean-Louis Migeot 1. One-dimensional model 2. General 3D approach 3. Review of applications

Transcript of Chapter 17 Fluid-structure interaction in an acoustic...

Page 1: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 1

Chapter 17Fluid-structure interaction in an acoustic contextJean-Louis Migeot

1. One-dimensional model

2. General 3D approach

3. Review of applications

Page 2: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 2

Chapter 17Fluid-structure interaction in an acoustic contextJean-Louis Migeot

1. One-dimensional model

2. General 3D approach

3. Review of applications

Page 3: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 3

Objectives

➢ In the « Radiation » section we have seen that vibrations induce noise

➢ In this section we will see how the pressure associated with a sound field acts on a structure and changes its dynamic behvaiour.

➢ Key idea: The presence of a surrounding fluid adds:

mass

stiffness

damping

to a vibrating structure.

➢ The concepts will be highlighted on very simple examples then generalized using a finite element formalism.

Page 4: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 4

Fluid-structure interaction

Vibrating structure

Pressure distribution in acoustic fluid

Pressure wavesexcites thestructure

Vibrations inducesound waves in

the fluid

Page 5: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 5

SDOF + open tube

k

d

mF

(r,c)

x

x=0

➢ Dynamic equations of the piston:

➢ Purely propagating plane wave (no reflection)

➢ Acoustic and piston velocity matching gives acoustic loading p

➢ Modified dynamic equation:

Sound radiation appears as additional damping for the mass-spring system

➢ Power dissipated in equivalent damper matches radiated acoustic power

Page 6: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 6

SDOF + closed tube

k

c

mF

(r,c)

x

x=0 x=l

➢ Pressure in the closed tube excited by a mass with velocity iwU:

➢ Pressure acting on the mass = additional load

➢ Modified dynamic equations

➢ The resonant sound field in the closed cavity now appears as an added stiffness (when positive) or mass (when negative)

Page 7: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 71.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 100 200 300 400 500 600

Coupled response

Uncoupled response

Coupled vs. uncoupled response (strong coupling, no damping)

Added mass shift

Structure modes show in the acoustic response … and are followed by or follow an anti-resonance.

Page 8: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 8-4.E+06

0.E+00

4.E+06

0 100 200 300 400 500 600

Impédance acoustique

Impédance mécanique

Impédance totale

Acoustic impedance

Mechanical impedance

Total impedance

Added mass shift

Structure modes show in the acoustic response … and are followed by or follow an anti-resonance.

Coupled vs. uncoupled response: impedance

Page 9: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 9

SDOF + Tube – General case

k

c

mF

(r,c)

x

x=0 x=l

Page 10: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 10

Chapter 17Fluid-structure interaction in an acoustic contextJean-Louis Migeot

1. One-dimensional model

2. General 3D approach

3. Review of applications

Page 11: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 11

Where does coupling come from ?

Uncoupled equations

Acoustic pressure loads the structure

Vibrations generate noise

Page 12: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 12

Pressure loading

Page 13: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 13

Vibrations

Page 14: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 14

Coupled equations

Strong coupling

Weak coupling

Page 15: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 15

Modal approaches

Structure:

Structure and fluid:

Page 16: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 16

Chapter 17Fluid-structure interaction in an acoustic contextJean-Louis Migeot

1. One-dimensional model

2. General 3D approach

3. Review of applications

Page 17: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 17

Weak coupling (1)

Vibrating structure

Pressure distribution in acoustic fluid

Vibrations inducesound waves in

the fluid

➢ The structure is rigid

➢ The fluid is light

➢ The pressure field acting on the structure does not influence its vibrations

Page 18: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 18

Example

P.T. model dimensions

1m20

Noise directivity

Page 19: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 19

Weak coupling (2)

Vibrating structure

Pressure distribution in acoustic fluid

Pressure wavesexcites thestructure

➢ The pressure field radiated by the vibrating structure is small compared to the incident pressure field

➢ The structure is excited by the “blocked pressure”

➢ Application:sound transmission through an aircraft fuselage, diffuse field excitation on payload

Page 20: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 20

Weak coupling example

Page 21: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 21

Strong or full coupling

Vibrating structure

Pressure distribution in acoustic fluid

Pressure wavesexcites thestructure

Vibrations inducesound waves in

the fluid

➢ Light structure and/or Heavy fluid:

both effects must be considered together

Page 22: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 22

Strong coupling - Heavy fluid

Page 23: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 23

Strong coupling - Light structure

Page 24: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 24

Strong coupling - Transmission

Silencer Hybrid Analysis

Structure shell – Modal coordinates

Interior Finite Fluid – Physical coordinates

External Finite/Infinite Fluid – Physical coordinates

Vibro-Acoustic response Structure modes

Page 25: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 25

E

Exhaust noise

E

IS

Shell noise

Tailpipe noise

Weak coupling:

Modal radiation matrix FE:

Page 26: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 26

Conclusions

➢ A structure and the inner or outer acoustic fluid interact because:

vibrations generate sounds

sounds generate vibrations

➢ The effect of the fluid on the structure may be described in terms of:

added mass

added damping

➢ Coupling is always two-ways but in many cases one-way coupling is a fair approximation

Page 27: Chapter 17 Fluid-structure interaction in an acoustic ...homepages.ulb.ac.be/~aderaema/vibrations/17-FS_Coupling.pdf · In this section we will see how the pressure associated with

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 27

Chapter 17Fluid-structure interaction in an acoustic contextJean-Louis Migeot

1. One-dimensional model

2. General 3D approach

3. Review of applications