Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene,...

27
Chapter 14 14.1 Allene, H 2 C=C=CH 2 , has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated diene, a nonconjugated diene, and an allene in order of stability. Solution: H 2 C C CH 2 H 2 C C H H 2 C C H CH 2 H 2 C C H C H CH 2 -298KJ/mol -253KJ/mol -236KJ/mol Stability least stable most stable 14.2 Give the structures of both 1,2 and 1,4 adducts resulting from reaction of 1 equivalent of HCl with 1,3-petadiene. Solution:

Transcript of Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene,...

Page 1: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a

conjugated diene, a nonconjugated diene, and an allene in order of stability. Solution:

H2C C CH2

H2C CH

H2C C

HCH2

H2C CH

CH

CH2

-298KJ/mol

-253KJ/mol

-236KJ/mol

Stability

least stable

most stable

14.2 Give the structures of both 1,2 and 1,4 adducts resulting from reaction of 1 equivalent of HCl with 1,3-petadiene. Solution:

Page 2: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

H2C CH

CH

CH CH3

H2C CH

CH

CH CH3 H Cl

H Cl

1st

H3CHC C

HCH CH3

H2C CH

HC CH2 CH3

2nd

H3CHC C

HCH CH3

H2C CH

HC CH2 CH3

H3C CH

CH

CH CH3

H2C CH

CH2 CH3CH

Therefore, the adducts are:

H3CHC C

HCH

CH3

H2C CH

CH

H2C CH3

H2C CH

HC

H2C CH3

Cl

Cl

Cl

1-Chloro-pent-2-ene

4-Chloro-pent-2-ene

3-Chloro-pent-1-ene

14.3 Look at the possible carbocation intermediates produced during addition of HCl to 1,3-pentadiene

(Problem 14.2),and predict which 1,2 adduct predominates. Which 1,4 addition adduct predominates?

Solutions Cl

is the predominate adduct 14.4 Give the structure of both 1,2 and 1,4 adduct resulting from reaction of 1 equivalent of HBr with

the following substance? Solutions: The reaction carries out as follows:

Page 3: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Br

Br

Red stands for Br atom, green stands for hydrogen atoms and black stands for carbon atoms.

is the structure of

CH3

CH3

Br

Page 4: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

is the structure of CH3

CH3Br

14.5 The 1,2 adduct and the 1,4 adduct formed by reaction of HBr with 1,3-butadiene are in equilibrium at 40℃. Propose a mechanism by which the interconversion of products takes place. (See Section 11.6)

Solution:

H2C CH

CH

CH2HBr

H3CHC

Br

CH

CH2 + H2C CH

Br

CH

CH3

1,2 adduct 1,4 adduct

H3CHC

Br

CH

CH2 H3CH+C BrHC

HCH2 +

H2C CH

Br

CH

CH3 +H2C CH

BrCH

CH3 +

14.6 Why do you suppose 1,4 adducts of 1,3-butadiene are generally more stable than 1,2 adducts? Solution: According to Zaitsev’s rule, the intermediate of the 1,4 adduct is more stable than the 1,2 adduct, so 1,4 adducts of 1,3-butadiene are generally more stable than 1,2 adducts. 14.7 Predict the product of the following Diels-Alder reaction:

Page 5: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+ C C

H3C

H

H

C OCH3

O

Solution:

+ C C

H3C

H

H

C OCH3

O

H

C OCH3

O

CH3

H

14.8 Which of the following alkenes would you expect to be good Diels-Alder dienophiles?

(a)H2C CHCCl

O

(b)H2C CHCH2CH2COCH3

O

(c)

(d)

O

(e)

O

Solution: (a),(d) 14.9 Which of the following dienes have an s-cis conformation, and which have an s-trans

conformation? Of the s-trans dienes, which can readily rotate to s-cis?

(a) (b) (c)

Solution: (a) has an s-cis conformation, (b) and (c) have an s-trans conformation, and (c) rotate to s-cis. 14.10 Predict the product of the following Diels-Alder reaction:

Page 6: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+ →?

Solution: The product is:

CH3

HH CO2CH3

CO2CH3

H

14.11 Draw a segment of the polymer that might be prepared from 2-phenyl-1, 3-butadiene.

**

C6H5

n 14.12 Show the mechanism of the acid-catalyzed polymerization of 1, 3-butadiene.

H

The progress goes on and product polymers. 14.13 Calculate the energy range of electromagnetic radiation in the UV region of the spectrum

from 200 to 400 nm. Recall the equation. E=NAhc/λ=(1.20*10-4kJ/mol)/λ(m)

Solution: E1=1.20*10-4 /200(nm)=600kJ

Page 7: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

E2=1.20*10-4 /400(nm)=300kJ The energy range of UV is 300~600kJ/mol

14.14 How does the energy you calculated in Problem 14.13 for UV radiation compare with the

values calculated previously for IR and NMR spectroscopy? Solution: The energy range of IR is 4.8~48kJ/mol; NMR required about 8.0*10-5kJ/mol. So the energy for UV is greater than IR and NMR. 14.15 A knowledge of molar absorptivities is particularly important in biochemistry where UV

spectroscopy can provide an extremely sensitive method of analysis. For example, imagine that you wanted to determine the concentration of vitamin A in a sample. If pure vitamin A has λmax=325(ε= 50,000), what is the vitamin A concentration in a sample whose absorbance at 325 nm is A=0.735 in a cell with a path length of 1.00 cm?

Solution: C=A/(ε*l)=1.47×10-5 mol/L 14.16 Which of the following compounds would you expect to show ultraviolet absorption in the 200

to 400 nm range?

(a) 1,4-cyclohexadiene (b) 1,3-cyclohexadiene (c) H2C CH

C N

(d)

CO2H

OCOCH3 (e) O

CH3

(f) NH

Solution: b, c, d, e, f 14.17 Write the structure of all possible adducts of the following diene with 1 equivalent of HCl.

Page 8: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

Solution: All possible adducts as follow:

H

Cl

Cl

H

Cl

H

H

Cl 14.18 Write the product of the Diels-Alder reaction of the following diene with 3-buten-2-one, H2C=CHCOCH3. Make sure you show the full stereochemistry of the reaction product.

Solution:

H H

H O

H3C 14.19 The following diene does not undergo Diels-Alder reactions. Explain. Solution: Because the ends of the diene partner are too far apart and steric strain between the two methyl group prevents the molecule from adopting s-cis geometry.

Page 9: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

CH3

CH3

14.20 Which of the following molecules are conjugated? Circle the conjugated part in each.

(a) not conjugated

(b) H2C conjugated

H2C

(c) H2C C

HC N

conjugated

(d)

C

O

O CH3

conjugated

C

O

O CH3

(e)

C

CH3

CH2

not conjugated

(f)

C

H

CH2

conjugated

C

H

CH2

0

14.21 Give IUPAC names for the following compounds:

(a) CH3CH CCH CHCH3

CH3

Page 10: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

(b) H2C CHCH CHCH CHCH3 (c) CH3CH C CHCH CHCH3

(d)

CH3CH CCH CH2

CH2CH2CH3 Solution: (a) 3-methyl-2,4-hexadiene (b) 1,3,5-heptatriene (c) 2,3,5-heptatriene (d) 3-propyl-1,3-pentadiene 14.22 What product(s) would you expect from 1,3-cyclohexadiene with each of the following? (a) 1 mol Br2 in CH2Cl2 (b) O3 followed by Zn (c) 1 mol HCl in ether (d) 1 mol DCl in ether (e) 3-Buten-2-one(H2C=CHCOCH3) (f) Excess OsO4, followed by NaHSO3 Solution: (a)

+ Br2

CH2Cl2

Br

Br

+

Br

Br

(b)

O3

ZnHC CH

O O

+ CHOCH2CH2CHO

(c)

Page 11: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+ HClEther

Cl

(d)

+ DClEther

Cl

D

+

Cl

D

(e)

+ H2C CHCOCH3C

O

CH3

(f)

OsO4

NaHSO3

OH

HO

HO

OH

14.23 Draw and name the six possible diene isomers of formula C5H8.Which of the six are conjugated

dienes? Solution:

Page 12: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

1,3-Pentadiene

1,4-pentadiene

2-methyl-1,3-butadiene

2,3-pentadiene

2-methyl-1,3-butadiene

1,2-pentadiene

14.24. Treatment of 3,4-dibromohexane with strong base leads to loss of 2 equivalents of HBr and formation of a product with formula C6H10. Three products are possible. Name each of the three, and tell how you would use 13C NMR spectroscopy to help identify them. How would you use UV spectroscopy? Solution:

The three products:

2,4-hexadiene

2,3-hexadiene

3-hexyne

The way to identify:

1. Use of 13C NMR Spectroscopy: 2,4-Hexadiene has 1 sp3 carbon resonance in the 20 to 50 δ range and 2

sp2-carbon resonances in the 100 to 150 δrange.

Page 13: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

2,3-hexadiene has 3 sp3-carbon resonances in the 20 to 50 δ range and 3 sp2-carbon resonances in the 100 to 150 δ range.

3-hexyne has 2 sp3-carbon resonances in the 20 to 50 δ range and one signal between 65-85 ppm assigned to SP hybridized carbon.

2. Use of UV spectroscopy:

2,3-hexadiene has a shorter λmax than 2,4-hexadiene and 3-hexyne hasn’t absorption.

14.25 Electrophilic addition of Br2 to isoprene (2-methy-1.3-butadiene) yields the following product

mixture:

Br2 CH2Br

Br

BrH2CBr

BrH2CCH2Br

3% 21% 76% Of the 1,2 and 1,4-additon products, explain why 3,4-dibromo-3-methyl-1-butene (21%)

predominates over 3,4-dibromo-2-methyl-1-butene (3%). Solution:

12

34

For the methyl group is an electron pushing group. So the density of electron on C1

and C2 are bigger the electron density on C3 and C4. So, as an electrophile, the Br2 is more likely to add to C1 and C2. 14.26 Propose a structure for a conjugated diene that gives the same product from both 1,2 and 1,4

addition of HBr. Solution:

can be the conjugated diene the give the same product.

14.27 Draw the possible products resulting from addition of 1 equivalent of HCl to

1-phenyl-1,3-butadiene. Which would you expect to predominate, and why? CH CH CH CH2

1-Phenyl-1,3-butadiene Solution:

Page 14: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

Cl

Cl

Cl

Cl

10.28 2,3-Di-tert-butyl-1,3-butadiene does not undergo Diels-Alder reactions. Explain.

C

C

CH2

CH2

(H3C)3C

(H3C)3C 2,3-Di-tert-butyl-1,3-butadiene

Solution: Because of the bulk of the tert-butyl, the C-C bond has the s-trans relationship.

This structure forbids the Diels-Alder reactions. 14.29 Diene polymers contain occasional vinyl branches along the chain. How do you think these

branches might arise?

H2C CH

CH

CH2 CH2CH CHCH2CH2CH

CH

CH2

CH2CH CHCH2

A vinyl branch Solution: The presence of a vinyl branch is because of the occurring of 1,2-addition.

Page 15: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

14.30 Tires whose sidewalls are made of natural rubber tend to crack and weather rapidly in areas around cities where high levels of ozone and other industrial pollutants are found. Explain.

Solution: Because natural rubber is the polymer of isoprene containing carbon double bonds, which can be oxidized by ozone, causing the polymer to be decomposed, as a result tires tend to crack and weather rapidly in areas where high levels of ozone are found. 14.31 Would you expect allene, H2C C CH2, to show a UV absorption in the 200 to 400 nm

range? Explain. Solution: No I wouldn’t expect it. Because the molecular is not conjugated π electron system. 14.32: Which of the following compounds would you expect to have a π π* UV absorption in the 200 to 400 nm range?

(a)

CH2

(b)

N

(c)

(H3C)2C C O

PyridineA ketene

Solution: (b) 14.33 Predict the products of the following Diels-Alder reactions:

(a)+

CHO

CHO

(b)

O

O

O

O

O

O

(c)

+

+

O

O

O

O

Page 16: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

14.34 Show the structure, including stereochemistry, of the product from the following Diels-Alder Reaction

+

C

C

O

O

OCH

H CO

3

3

H

H

COOCH3

H

COOCH3

14.35 How can you account for the fact that cis-1, 3-pentadiene is much less reactive than trans-1,

3-pentadiene in the Diels-Alder reaction? Solution: When cis-1,3-pentadiene rotates to the s-cis conformation, a steric interaction occurs between

the methyl group protons and a hydrogen on C1. Since it’s more difficulty for cis-1,3-pentadiene to assume the s-cis conformation, it is less reactive in D-A reaction.

CH3

H

H

H

H

H

H

H

H

H

H

H3C

cis-1,3-pentadiene trans-1,3-pentadiene

14.36 Would you expect a conjugated diyne such as 1, 3-butadiyne to undergo Diels-Alder reaction

with a dienophile? Explain. Solution: it is hard to take place this reaction. First, the diyne is linear structure, the two ends are too far

apart just like trans-1, 3-butadiene. Second, suppose it can react, the product will be

, they are so reactive that they are hardly exist.

14.37 Reaction of isoprene (2-mehtyl-1,3-butadiene ) with ethyl propenoate gives a mixture of two

Diels-Alder adducts. Show the structures of each, and explain why a mixture is formed.

Page 17: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+

COOCH2CH3

COOCH2CH3

COOCH2CH3

For isoprene both the 1,4 carbons are partial negative, and for ethyl propenoate the terminal carbon connected with double bond are partial positive. So we get two products.

14.38 Rank the following dienophile in order of their expected reactivity in the Diels-Alder reaction. Explain.

H2C CH

CH3

H2C CH

CHO

C C

C

C

C

C

N

N

N

N

1

2

3

4

Reactivity 1>2>4>3.The Diels-Alder cycloaddition reaction occurs most rapidly and in highest yield if the dienophile has an electron withdrawing substituent group. So the dienophile with the stronger electron withdrawing will be more reactive.

14.39 Cyclopentadiene is very reactive in Diels-Alder cycloaddition reactions, but 1,3-cyclohexadiene is less reactive and 1,3-cycloheptadiene is nearly inert. Explain. (Molecular models are helpful)

Solution: The structures of the three cyclodiene are showed as follow:

Page 18: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

In the reaction process, the dienophile need to overcome the repulsion of steric strain, as we know that the more methylene groups the cyclodiene has, the more steric strain it contains. So the reactivity of cyclodiene is in the given order. 14.40 How would you use Dies-Alder cycloaddition reactions to prepare the following product? Show

the starting diene and dienophile in each case.

(a).

O

O

O (b).

H

CN

(c).

O

O (d). CO2CH3 Solution:

(a).

O

O

O (b).

CN

(c).

O

O (d).

CO2CH3

14.41 Aldrin, a chlorinated insecticide now banned for use in the United States, can be made by

Diels-Alder reaction of hexachloro-1, 3-cyclopentadiene with norbornadiene. What is the structure of aldrin?

Norbornadiene

Page 19: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

Solution:

Cl

Cl

Cl

Cl

Cl

Cl

+

Cl

Cl

ClCl

Cl

Cl

aldrinnorbornadienehexachloro-1, 3-cyclopentadiene

14.42 Norbornadiene (Problem 14.41) can be prepared by reaction of chloroethylene with

cyclopentadiene, followed by treatment of the product with sodium ethoxide. Write out the overall scheme, and identify the two kinds of reactions.

Solution:

Cl

H

H

H

+

Cl

H

H

H

Cl

H

H

H sodium ethoxide

Na+

-O

Cl

H

H

H+ + OH + NaCl

(1)

(2)

The Diels-Alder cycloaddition reaction

The E2 reaction

14.43 We’ve seen that the Diels-Alder cycloaddition reaction is a one-step, pericyclic process that occurs through a cyclic transition state. Propose a mechanism for the following reaction:

H2C CH2+Heat

Solution:

Page 20: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+ H2C CH2

14.44 Propose a mechanism to explain the following reaction (see Problem 14.43):

O

O

C

C

CO2CH3

CO2CH3

α-Pyrone

+Heat

CO2CH3

CO2CH3

+ CO2

Solution:

O

O

C

C

CO2CH3

CO2CH3

+

CO2CH3

CO2CH3

+ CO2C

C

CO2CH3

CO2CH3

+ CO2

14.45 The triene shown below reacts with two equivalents of maleic anhydride to yield C17H16O6 as

product. Predict a structure for the product.

+ O

O

O

2 C17H16O6

Solution:

+ O

O

O

2

O

OO

O

O

O 14.46 The following ultraviolet absorption maxima have measured: Λmax(nm) 1,3-Butadiene 217 2-Methyl-1,3-butadiene 220 1,3-pentadiene 223 2,3-Dimethyl-1,3-butadiene 226 2,4-Hexadiene 227 2,4-Dimethyl-1,3-pentadiene 232 2,5-Dimethyl-2,4-hexadiene 240

What conclusion can you draw about the effect of alkyl substitution on UV absorption maxima?

Page 21: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

Approximately what effect does each added alkyl group have? Solution: 1)When alkyl substitution is added to dienes, the UV absorption wavelength maxima will be

longer. 2)The alkyl group added to the edge of the dienes make the wavelength maxima increase

more than the alkyl group added to the middle of the dienes. The more alkyl group added to dienes, the longer the wave length maxima will be. 14.47 1,3,5-Hexatriene has λmax=258nm. In light of your answer to Problem 14.46, approximately

where would you expect 2, 3-dimethyl-1, 3, 5-hexatriene to absorb? Explain. Solution: According to the figures of Problem 14.46: 1,3-Butadiene hasλmax=217nm, while

2,3-Dimethyl-1,3-butadiene hasλmax=226nm, so I would expect 2, 3-dimethyl-1,3,5-hexatriene to absorb atλmax=267nm.

14.48 ß-Ocimene is a pleasant-smelling hydrocarbon found in the leaves of certain herbs. It has the

molecular formula C10H16 and exhibits a UV absorption maximum at 232 nm. On hydrogenation with a palladium catalyst, 2,6-dimethyl-octane is obtained. Ozonolysis of ß-Ocimene, followed by treatment with zinc and acetic acid, produces four fragments: acetone, formaldehyde, pyruvaldehyde, and malonaldehyde:

H3C C CH3

O

HC HO

H3C C CH

O OH C

H2C CH

O O

Acetone Formaldehyde Pyruvaldehyde Malonaldehyde (a) How many double bonds does ß-Ocimene have? (b) Is ß-Ocimene conjugated or nonconjugated? (c) Propose a structure for ß-Ocimene. (d) Formulate the reactions, showing starting material and products. Solution: (a) ß-Ocimene has three double bonds. (b) ß-Ocimene is conjugated.

(c)

H3C C

CH3

CH

H2C C

HCH

C CH2

CH3

(d)

H3C C

CH3

CH

H2C C

HCH

C CH2 + 3H2 H3CHC

CH3

H2C

H2C

H2C

H2C

HC CH3

palladium

catalyst

CH3 CH3

H3C C

CH3

CH

H2C C

HCH

C CH2

CH3

2.Zn/H3O+ H3C C CH3

O

HC HO

H3C C CH

O O

H CH2C CH

O O

+++1.O3

14.49 Myrcene, C10H16, is found in oil of bay leaves and is isomeric with B-ocimene (see Problem 14.48). It show an ultraviolet absorption at 226 nm and can be catalytically hydrogenated to yield 2,6-dimethyloctane. On ozonolysis followed by zinc/acetic acid treatment, myrcene yields

Page 22: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

formaldehyde, acetone, and 2-oxopentanedial: O O

O

2-oxopentanedial

Propose a structure for myrcene, and formulate the reaction, showing starting material and products.

Solution: mycrcene

O O

O

OO

OO

O

O

O

O

O

O

O

O

O

O

O

OO

O

two same steps

O

O

O

O

O

O

O

O O

+ +

O O

Zn/H2O

14.50 Addition of HCl to 1-methyloxycyclohexene yields 1-chloro-1-methoxycyclohexane as the sole product. Why is none of the other regioisomer formed?

O OCl

HCl

Solution: Because the interaction intermediate

O

is more stable than the other one:

O

, so there is only one product

OCl

, and no other regioisomer formed.

Page 23: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

14.51 Hydrocarbon A, C10H14, has a UV absorption at λmax = 236 nm and gives hydrocarbon B, C10H18,

on catalytic hydrogenation. Ozonolysis of A followed by zinc/acetic acid treatment yields the following diketo dialdehyde:

HC CH2CH2CH2

O

C

O

C

O

CH2CH2CH2 CH

O

(a) Propose two possible structures for A.

Solution: One is and the other is .

(b) Hydrocarbon A reacts with maleic anhydride to yield a Diels-Alder adduct. Which of your structures for A is correct?

Solution: The left one is correct. (c) Formulate the reactions showing starting material and products.

Solution:

H2

catalyst

HC CH2CH2CH2

O

C

O

C

O

CH2CH2CH2 CH

OO3

Zn/H3O

+ O

O

O

O

O

O 14.52 Adiponitrile, a starting material used in the manufacture of nylon, can be prepared in three steps

from 1,3-butadiene. How would you carry out this synthesis?

H2C CH

HC CH2

3 STEPSCCH2CH2CH2CH2CN N

Solution:

Br21,4 addition

Br

Br

H2Br

Br

NaCN

CH3CN

CN

CN

Page 24: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

14-53 Ergosterol, (C28H44O), λmax=282nm and molar absorption ε=11,900.What is the concentration of

it in a solution whose absorbance A=0.065 with a sample l=1.oocm. Solution: ε=A/C×l so C=A/ε×l=5.462.

14.54 Cyclopentadiene polymerizes slowly at room temperature to yield a polymer that has no double bonds. On heating, the polymer breaks down to regenerate cyclopentadiene. Propose a structure for the product.

Solution:

n

14.55 Dimethyl butynediocte undergoes a Diels-Alder reaction with (2E, 4E)-hexadiene. Show the structure and stereochemistry of the product.

H3C O C

O

C C C

O

O CH3 Dimethyl butynedioate

Solution: The product of Dimethyl butynedioate undergoes a Diels-Alder reaction with (2E, 4E)-hexadiene.

C

C

O

O

O

O

CH3

CH3

14.56 Dimethyl butynedioate also undergoes a Diels-Alder reaction with (2E,4Z)-hexadiene, but the

stereochemistry of the product is different from that of the (2E,4E) isomer. Explain. Solution: The reaction with (2E,4Z)-hexadiene can be written as follows:

Page 25: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

+

OO

O O

O

O

O

O and with the (2E,4E) isomer can be written as follows:

+

OO

O O

O

O

O

O Because their s-Cis conformations are different, the products are different. 14.57 How would you carry out the following synthesis (more than one step is required)? What

stereochemical relationship between the CO2CH3 group attached to the cyclohexane ring and

the CHO groups would your synthesis produce? Solution:

CH2

HCC

O

O

CH3

+

CO2CH3

BnzeneHeat

endo

1.O3

2.Zn2+/H3O+

CHO

CHO

CO2CH3

flip

CHO

OHC

H3CO2C

Obviously the group CO2CH3 and the red CHO are cis, however , CO2CH3 and green CHO are

trans. 14.58 The double bond of an enamine (alkene+amine) is much more nucleophilic than a typical alkene

double bond. Assuming that the nitrogen atom in an enamine is sp2-hybridized, draw an orbital picture of an enamine, and explain why the double bond is electron-rich.

Page 26: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

CC

N

R

RAn enamine

Solution:

NR

R the carbon atom and nitrogen atom are all sp2-hybridized, so the p

orbitals will form a π34 conjugated system, the electrons are delocalized, it will surely lower the

system’s energy and make the electron cloud between the carbon-carbon more rich, so it looks as if the double bond of an enamine (alkene+amine) is much more nucleophilic than a typical alkene double bond. 14.59 Benzene has an ultraviolet absorption at λmax = 204nm, and para-toluidine hasλmax = 235nm. How

do you account for this difference?

Benzene H3C NH2

para-toluidine Solution:

H3C NH2 H3C NH2 H3C NH2

H3C NH2

Because CH3― and NH2― are electro-donating groups, and The NH2― group enlarges the conjugation system, so it’s ultraviolet absorption becomes lager than benzene. 14.60 Phenol, a weak acid with pKa=10.0, has a UV absorption at λmax=210nm in the ethanol solution.

When dilute NaOH is added, the absorption increases toλmax=235nm. Explain.

Page 27: Chapter 14comsizo.com.br/resolucoes/OrganicChemistryChapter14.pdf · Chapter 14 14.1 Allene, H2C=C=CH2, has a heat of hydrogenation of -298KJ/mol (-71.3 kcal/mol). Rank a conjugated

OH

Phenol Solution:

When NaOH is added, it reacts with phenol to yield phenol anion

O

. And the conjugation of O-C in

phenol anion is stronger than it in phenol, so theλmax becomes a little longer.