Chapter 13 Linear Amplifiers BJT-1-1

download Chapter 13 Linear Amplifiers BJT-1-1

of 31

Transcript of Chapter 13 Linear Amplifiers BJT-1-1

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    1/31

    A :

    A

    A / C

    A (C )

    , .

    , :

    ,

    , .

    .

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    2/31

    (.) A

    A B

    , ,

    B ( )

    , ,

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    3/31

    The BJT is biased in the active region by dc voltage

    source VBE. Q-point is set at (IC, VCE) = (1.5 mA, 5 V)

    withIB = 15 A (F = 100)

    Total base-emitter voltage is: vBE= VBE+ vbe

    Collector-emitter voltage is: vCE= 10 iCRC This

    is the load line equation.

    Assuming:

    VBE=0.7 V,IB=15A

    (peak) = 8 mV Causes 5A change in vBE

    varies between [0.70.008 and 0.7 + 0.008] = [0.692 and 0.708]iB varies between [15A 5A and 15A + 5A] = [10A and 20A]

    iC= iB iC varies between [1 mA and 2mA]

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    4/31

    If changes in operating currents and voltages

    are small enough, then iCand vCEwaveforms

    are undistorted replicas of the input signal.

    A small voltage change at the base causes a

    large voltage change at collector.

    is 180o out of phase of

    Assuming:

    VBE=0.7 V,IB=15A

    (peak) = 8 mV Causes 5A change in vBE

    varies between [0.70.008 and 0.7 + 0.008] = [0.692 and 0.708]iB varies between [15A 5A and 15A + 5A] = [10A and 20A]

    iC= iB iC varies between [1 mA and 2mA]

    vCE varies between [3.4 V and 6.7V] (peak) =

    = 1.65V

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    5/31

    Av =Vce

    Vbe=

    1.65180o

    0.0080o= 206180o = 206

    180

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    6/31

    C

    .

    1 2

    .

    3

    ,

    (

    )

    .

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    7/31

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    8/31

    A

    , , , 3 .

    C

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    9/31

    ==

    ==

    k100k22

    k300k100

    3

    21

    RRL

    R

    RRR

    C

    B

    Capacitors are replaced by short circuits

    C

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    10/31

    :

    rd=1

    gd

    :

    dDDi

    dDD

    iI

    vVv

    +=

    +=

    :

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    11/31

    = 0

    . A ,

    :

    gd = IS

    VT and rd =

    VT

    IS

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    12/31

    iD =IS exp vDVT

    1

    ID+id=IS exp

    VD+vdVT

    1

    ID+i

    d=I

    Sexp

    VDVT

    1

    +ISexp

    vD

    VT

    vd

    VT

    +12

    vd

    VT

    2

    +16

    vd

    VT

    3

    +...

    SubtractingID from both sides of the equation,

    id= (I

    D+I

    S)

    vd

    VT

    +12

    vd

    VT

    2

    +16

    vd

    VT

    3

    +...

    For idto be a linear function of signal voltage vd, vd

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    13/31

    ( )

    The bipolar transistor is assumed to be operating in the Forward-Active Region:

    Using a two-porty-parameter network:

    The port variables can represent either time-varying part of total voltages and

    currents or small changes in them away from Q-point values.

    ic = gmvbe + govce

    ib = gvbe + grvce

    iC IS exp vBE

    VT

    1+

    vCE

    VA

    and iB

    iC

    F VCE VBE( )

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    14/31

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    15/31

    &

    o= g

    mr= F

    1IC

    1

    F

    F

    iC

    Qpo int

    IM is the collector current at which is maximum.

    o >Ffor iC

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    16/31

    B

    Transconductance:

    Input resistance:

    Output resistance:

    gm=IC

    VT

    40IC

    r=oVT

    IC=ogm or

    o=

    gmr

    ro=VA+

    VCEIC

    VAIC

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    17/31

    ,

    B B

    .

    vbe = ibr

    gmvbe =gmibr =oib

    ic =oib +vce

    rooib

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    18/31

    For linearity, ic should be proportional to vbe with vbe

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    19/31

    .

    A .

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    20/31

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    21/31

    DefineRiB as the input resistance looking into

    the base of the transistor:

    The input resistance presented to vi is:

    The signal source voltage gain is:

    (o +1)RE

    RiB

    =v

    b

    ib= r

    Rin=R

    I+R

    B R

    iB=R

    I+R

    B r

    Av

    CE=v

    o

    vi

    =v

    o

    vb

    vb

    vi

    =Avt

    CE R

    B r

    RI+RB r

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    22/31

    AvCE=Avt

    CE RB r

    RI +RB r

    AvtCE Avt

    CE= gmRL RL = ro RC R3

    Typically: ro >>RC and R3 >>RC AvCE gmRC = 40ICRC

    ICRCrepresents the voltage dropped across collector resistor RC

    A typical design point is ICRC =VCC

    3

    AvCE 40

    VCC

    3

    =13.3VCC

    To help account for all the approximations and have a number that is easy to

    remember, our "rule-of-thumb" estimate for the voltage gain becomes

    AvCE

    10VCC

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    23/31

    C ,

    = 100, = 75 , (0.245 A, 3.39 )

    ,

    =. . .

    gm = 40IC = 40 0.245mA( ) = 9.80 mS r =ogm =

    100

    9.8mS=10.2 k

    ro =VA +VCE

    IC=

    75V+3.39V

    0.245mA= 320 k RB =R1 R2 =160k 300k=104 k

    RL = ro RC RL = 320k 22k 100k=17.1 k RB r =104k 10.2k= 9.29 k

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    24/31

    (.)

    Av = gmRLRB r

    RI +RB r

    = 9.8mS 17.1k( )

    9.29k

    1k+ 9.29k

    = 168 0.903( ) = 151

    Rin =RI +RB r =10.3 k

    vbe = viRB r

    RI +RB r

    vbe 0.005V vi 5mV

    10.3k

    9.29k

    = 5.54 mV

    Check the rule-of-thumb estimate: AvCE

    10 12( ) = 120 (ballpark estimate)What is the maximum amplitude of the output signal: vo 5.54mV 151( ) = 0.837 V

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    25/31

    (.)

    5, 10 .

    ,

    .

    .

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    26/31

    ,

    = 65, = 50

    A , = 0.7 , .

    Analysis: To find the Q-point, the

    dc equivalent circuit is constructed.

    IB=3.71 A

    IC=65I

    B=241 A

    IE=66I

    B=245 A

    105IB+VBE+(F+1)IB(1.6104)=5

    5104ICV

    CE(1.6104)I

    E(5)=0

    VCE

    =3.67 V

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    27/31

    .

    Rin=R

    Br=6.31 k

    Rout =RC ro = 9.57 k

    AvCE=

    vo

    v i= gm Rout R3( )

    Rin

    RI +Rin

    = 84.0

    Gain Estimate: AvCE

    10 VCC+VEE( ) = 100

    6.74 k

    ()

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    28/31

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    29/31

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    30/31

    .

    (a) Total power dissipated in the C-B and E-B

    junctions is:

    PD = VCEIC+ VBEIB where VCE = VCB + VBE

    Total power supplied is:

    PS = VCCIC + VEEIE

  • 8/12/2019 Chapter 13 Linear Amplifiers BJT-1-1

    31/31

    vCE =VCE Vm sin t where Vm is the

    output signal. Active region operationrequires vCE vBE So: Vm VCE VBE

    Also: vRc t( ) =ICRCVm sint 0

    Vm

    min ICRC, VCE

    VBE( )