Chapter 12 Saturn - stjohns-chs. · PDF fileChapter 12 Saturn Saturn,(a(huge ... Saturn also...

39
© 2011 Pearson Education, Inc. Chapter 12 Saturn Saturn, a huge ball of lightweight gas surrounded by a spectacular ring system of orbi8ng rocky debris, is a planet far different from Earth. This image combines visible, infrared, and ultraviolet data acquired by cameras aboard the Cassini spacecra@ as it cruised behind Saturn in 2005, revealing both the planet and its intricate rings in exquisite detail. Looking back toward the inner parts of the solar system in this view, we can see not only part of the bright Sun (boGom center), but also a dim and distant speck of reflected light (at the 8 oclock posi8on)—planet Earth floa8ng in space. (JPL)

Transcript of Chapter 12 Saturn - stjohns-chs. · PDF fileChapter 12 Saturn Saturn,(a(huge ... Saturn also...

© 2011 Pearson Education, Inc.

Chapter 12 Saturn

Saturn,  a  huge  ball  of  lightweight  gas  surrounded  by  a  spectacular  ring  system  of  orbi8ng  rocky  debris,  is  a  planet  far  different  from  Earth.  This  image  combines  visible,  infrared,  and  ultraviolet  data  acquired  by  cameras  aboard  the  Cassini  spacecra@  as  it  cruised  behind  Saturn  in  2005,  revealing  both  the  planet  and  its  intricate  rings  in  exquisite  detail.  Looking  back  toward  the  inner  parts  of  the  solar  system  in  this  view,  we  can  see  not  only  part  of  the  bright  Sun  (boGom  center),  but  also  a  dim  and  distant  speck  of  reflected  light  (at  the  8  o’clock  posi8on)—planet  Earth  floa8ng  in  space.  (JPL)  

© 2011 Pearson Education, Inc.

12.1 Orbital and Physical Properties

12.2 Saturn’s Atmosphere

12.3 Saturn’s Interior and Magnetosphere

12.4 Saturn’s Spectacular Ring System

12.5 The Moons of Saturn

Dancing Among Saturn’s Moons

Units of Chapter 12

© 2011 Pearson Education, Inc.

Mass: 5.7 × 1026 kg

Radius: 60,000 km

Density: 700 kg/m3—less than water!

Rotation: Rapid and differential, enough to flatten Saturn considerably

Rings: Very prominent; wide but extremely thin

12.1 Orbital and Physical Properties

© 2011 Pearson Education, Inc.

12.1 Orbital and Physical Properties

View of rings from Earth changes as Saturn orbits the Sun

Figure  12-­‐1.  Ring  Orienta+on  (a)  Over  4me,  Saturn’s  rings  change  their  appearance  to  terrestrial  observers  as  the  4lted  ring  plane  orbits  the  Sun.  At  some  4mes  during  Saturn’s  29.5-­‐year  orbital  period  the  rings  seem  to  disappear  altogether  as  Earth  passes  through  their  plane  and  we  view  them  edge-­‐on.  Numbers  along  Saturn’s  orbit  indicate  the  year.  The  roughly  true-­‐color  images  (inset)  span  a  period  of  several  years  from  the  1995  (boIom)  to  2003  (top),  showing  how  the  rings  change  from  our  perspec4ve,  from  almost  edge-­‐on  to  more  nearly  face-­‐on.  See  also  Figure  12.2  for  a  close  up  image  of  its  4lted  ring  system  rela4ve  to  Earth.  (NASA)  

© 2011 Pearson Education, Inc.

Saturn’s atmosphere also shows zone and band structure,

but coloration is much more subdued than Jupiter’s

Mostly molecular hydrogen, helium, methane, and

ammonia; helium fraction is much less than on Jupiter

12.2 Saturn’s Atmosphere

© 2011 Pearson Education, Inc.

12.2 Saturn’s Atmosphere This true-color image shows the delicate coloration of the cloud patterns on Saturn

Figure  12-­‐2.  Saturn  This  image,  acquired  in  2005  by  the  Cassini  spacecraM  while  approaching  Saturn,  is  actually  a  mosaic  of  many  images  taken  in  true  color.  Note  the  subtle  colora4on  of  the  planet  and  the  detail  in  its  rings.  Resolu4on  is  40  km.  (NASA)  

© 2011 Pearson Education, Inc.

Similar to Jupiter’s, except pressure is lower

Three cloud layers

Cloud layers are thicker than Jupiter’s; see only top layer

12.2 Saturn’s Atmosphere

Figure  12-­‐3.  Saturn’s  Atmosphere  The  ver4cal  structure  of  Saturn’s  atmosphere  contains  several  cloud  layers,  like  Jupiter,  but  Saturn’s  weaker  gravity  results  in  thicker  clouds  and  a  more  uniform  appearance.  The  colors  shown  are  intended  to  represent  Saturn’s  visible-­‐light  appearance.  

© 2011 Pearson Education, Inc.

12.2 Saturn’s Atmosphere Structure in Saturn’s clouds can be seen more clearly in this false-color image

Figure  12-­‐4.  Saturn’s  Cloud  Structure  More  structure  is  seen  in  Saturn’s  cloud  cover  when  computer  processing  and  ar4ficial  color  are  used  to  enhance  the  contrast  of  the  image,  as  in  these  Voyager  images  of  the  en4re  gas  ball  and  a  smaller,  magnified  piece  of  it.  (NASA)  

© 2011 Pearson Education, Inc.

Wind patterns on Saturn are similar to those on Jupiter, with zonal flow

12.2 Saturn’s Atmosphere

Figure  12-­‐5.  Saturn’s  Zonal  Flow  Winds  on  Saturn  reach  speeds  even  greater  than  those  on  Jupiter.  As  on  Jupiter,  the  visible  bands  appear  to  be  associated  with  varia4ons  in  wind  speed.  

© 2011 Pearson Education, Inc.

Jupiter-style “spots” rare on Saturn; don’t form often and quickly dissipate if they do

12.2 Saturn’s Atmosphere

Figure  12-­‐6.  Saturn  Storms  (a)  Circula4ng  and  evolving  cloud  systems  on  Saturn,  imaged  by  the  Hubble  Space  Telescope  at  approximately  2-­‐hour  intervals.  (b)  This  infrared  image,  displayed  in  false  color  and  created  for  greater  contrast  by  combining  observa4ons  made  at  three  different  wavelengths—1.0  μm  (blue),  1.8  μm  (green),  and  2.1  μm  (red)—enhances  the  belt  structure  and  storms  near  the  equator.  Blue  colora4on  indicates  regions  where  the  atmosphere  is  rela4vely  free  of  haze  (see  Figure  12.3);  green  and  yellow  indicate  increasing  levels  of  haze;  red  and  orange  indicate  high-­‐level  clouds.  Two  small  storm  systems  near  the  equator  appear  whi4sh.  Two  of  Saturn’s  moons  are  also  visible  in  the  image,  as  noted.  (NASA)  

© 2011 Pearson Education, Inc.

12.2 Saturn’s Atmosphere

This image shows what is thought to be a vast thunderstorm on Saturn, as well as the polar vortex at Saturn’s south pole.

Figure  12-­‐7.  Storm  Alley  This  false-­‐color,  near-­‐infrared  image  from  Cassini  shows  what  is  thought  to  be  a  vast  thunderstorm  on  Saturn.  This  storm  generated  bursts  of  radio  waves  resembling  the  sta4c  created  by  lightning  on  Earth.  The  inset  shows  the  polar  vortex  at  Saturn’s  south  pole.  (NASA)  

© 2011 Pearson Education, Inc.

Interior structure similar to Jupiter’s

12.3 Saturn’s Interior and Magnetosphere

© 2011 Pearson Education, Inc.

Saturn also radiates more energy than it gets from the Sun,

but not because of cooling:

•  Helium and hydrogen are not well mixed; helium tends to

condense into droplets and then fall

•  Gravitational field compresses helium and heats it up

12.3 Saturn’s Interior and Magnetosphere

© 2011 Pearson Education, Inc.

Saturn also has a strong magnetic field, but only 5% as strong as Jupiter’s

Creates aurorae

12.3 Saturn’s Interior and Magnetosphere

Figure  12-­‐10.  Aurora  on  Saturn  An  ultraviolet  camera  aboard  the  Hubble  Space  Telescope  recorded  this  image  of  a  remarkably  symmetrical  (orange)  aurora  on  Saturn  during  a  solar  storm  in  1998.  (NASA)  

© 2011 Pearson Education, Inc.

Saturn has an extraordinarily large and complex ring system, which was visible even to the first telescopes

12.4 Saturn’s Spectacular Ring System

© 2011 Pearson Education, Inc.

Overview of the ring system

12.4 Saturn’s Spectacular Ring System

Figure  12-­‐11.  Saturn’s  Rings  Much  fine  structure,  especially  in  the  rings,  appears  in  this  image  of  Saturn  taken  with  the  Cassini  spacecraM  in  2005.  The  main  ring  features  long  known  from  Earth-­‐based  observa4ons—the  A,  B,  and  C  rings,  the  Cassini  Division,  and  the  Encke  gap—are  marked  and  are  shown  here  in  false  color  in  order  to  enhance  contrast.  The  other  rings  listed  in  Table  12.1  are  not  visible  here.  (NASA)  

© 2011 Pearson Education, Inc.

Ring particles range in size from fractions of a millimeter to tens of meters

Composition: Water ice—similar to snowballs

Why rings?

•  Too close to planet for moon to form—tidal forces would tear it apart

12.4 Saturn’s Spectacular Ring System

© 2011 Pearson Education, Inc.

Closest distance that moon could survive is called Roche limit; ring systems are all inside this limit

12.4 Saturn’s Spectacular Ring System

Figure  12-­‐13.  Jovian  Ring  Systems  The  rings  of  Jupiter,  Saturn,  Uranus,  and  Neptune.  All  distances  are  expressed  in  planetary  radii.  The  red  line  represents  the  Roche  limit,  and  all  the  rings  lie  within  (or  very  close  to)  this  limit  of  their  parent  planets.  Note  that  the  red  line  is  just  an  approxima4on—the  details  depend  on  the  internal  structure  of  the  planet,  and  Neptune’s  Adams  ring  is  actually  consistent  with  Roche’s  calcula4ons.  

© 2011 Pearson Education, Inc.

Voyager probes showed Saturn’s rings to be much more complex than originally thought

(Earth is shown on the same scale as the rings)

12.4 Saturn’s Spectacular Ring System

Figure  12-­‐15.  Saturn’s  Rings,  Up  Close  Cassini  took  this  close-­‐up,  true-­‐color  image  of  Saturn’s  dazzling  ring  structure  just  before  plunging  through  the  planet’s  tenuous  outer  rings.  The  ringlets  in  the  B  ring,  spread  over  several  thousand  kilometers,  are  resolved  here  to  about  10  km.  Note  the  large  number  of  4ny  ringlets  visible  in  the  main  rings.  Earth  is  superposed,  to  proper  scale,  for  a  size  comparison.  The  inset  is  an  overhead  view  of  a  por4on  of  the  B  ring,  showing  the  ringlet  structure  in  even  more  detail;  in  fact  the  resolu4on  here  is  an  incredible  4  km.  (NASA)  

© 2011 Pearson Education, Inc.

12.4 Saturn’s Spectacular Ring System

This backlit view shows the fainter F, G, and E rings

Figure  12-­‐15.  Back-­‐Lit  Rings  Cassini  took  this  spectacular  image  of  Saturn’s  rings  as  it  passed  through  Saturn’s  shadow.  Note  how  the  back-­‐lit  main  ring  system  differs  from  the  front-­‐lit  view  shown  earlier  in  Figure  12.11.  The  normally  hard  to  see  F,  G,  and  E  outer  rings  are  clearly  visible  (and  marked)  in  this  contrast-­‐enhanced  image.  The  inset  shows  the  moon  Enceladus  orbi4ng  within  the  E  ring;  its  erup4ons  likely  give  rise  to  the  ring’s  icy  par4cles.  (NASA)  

© 2011 Pearson Education, Inc.

Voyager also found radial “spikes” that formed and then dissipated; this probably happens frequently

12.4 Saturn’s Spectacular Ring System

Figure  12-­‐17.  Spokes  in  the  Rings  Saturn’s  B  ring  showed  a  series  of  dark  temporary  “spokes”  as  Voyager  2  flew  by  at  a  distance  of  about  4  million  km.  The  spokes  are  caused  by  small  par4cles  suspended  just  above  the  ring  plane.  Cassini,  too,  has  seen  spokes,  although  (so  far)  they  have  not  been  as  prominent  as  those  seen  by  Voyager  25  years  earlier.  (NASA)  

© 2011 Pearson Education, Inc.

•  Other edges and divisions in rings are also

the result of resonance

•  “Shepherd” moon defines outer edge of A

ring through gravitational interactions

12.4 Saturn’s Spectacular Ring System

© 2011 Pearson Education, Inc.

Strangest ring is outermost, F ring; it appears to have braids and kinks

12.4 Saturn’s Spectacular Ring System

Figure  12-­‐18.  Shepherd  Moon  (a)  Saturn’s  narrow  F  ring  appears  to  contain  kinks  and  braids,  making  it  unlike  any  of  Saturn’s  other  rings.  Its  thinness  can  be  explained  by  the  effects  of  two  shepherd  satellites  that  orbit  near  the  ring—one  a  few  hundred  kilometers  inside,  the  other  a  similar  distance  outside.  (b)  One  of  the  potato-­‐shaped  shepherd  satellites  (Prometheus  here  roughly  100  km  across)  can  be  seen  in  this  enlarged  view.  (NASA)  

© 2011 Pearson Education, Inc.

Details of formation are unknown:

•  Probably too active to have lasted since birth of solar system

•  Not all rings may be the same age

•  Either must be continually replenished, or are the result of a catastrophic event

12.4 Saturn’s Spectacular Ring System

© 2011 Pearson Education, Inc.

Saturn’s many moons appear to be made of water ice

In addition to the small moons, Saturn has

•  Six medium-sized moons (Mimas, Enceladus, Tethys, Dione, Rhea, and Iapetus)

•  One large moon (Titan), almost as large as Jupiter’s Ganymede

12.5 The Moons of Saturn

© 2011 Pearson Education, Inc.

Titan has been known for many years to have an atmosphere thicker and denser than Earth’s; mostly nitrogen and argon

Makes surface impossible to see; the upper picture at right was taken from only 4000 km away

12.5 The Moons of Saturn

Figure  12-­‐18.  Titan  (a)  Larger  than  the  planet  Mercury  and  roughly  half  the  size  of  Earth,  Titan,  Saturn’s  largest  moon,  was  photographed  in  visible  light  from  only  4000  km  away  as  Voyager  1  passed  by  in  1980.  Only  Titan’s  upper  cloud  deck  can  be  seen  here.  The  inset  shows  a  contrast-­‐enhanced  true-­‐color,  image  of  the  haze  layers  in  Titan’s  upper  atmosphere,  taken  by  the  Cassini  spacecraM  in  2005.  (b)  In  the  infrared,  as  captured  with  the  adap4ve-­‐op4cs  system  on  the  Canada–France–Hawaii  telescope  on  Mauna  Kea,  some  large-­‐scale  surface  features  can  be  seen.  The  bright  regions  are  thought  to  be  highlands,  possibly  covered  with  frozen  methane.  The  brightest  area  is  nearly  4000  km  across—about  the  size  of  Australia.  (NASA;  CFHT)  

© 2011 Pearson Education, Inc.

Trace chemicals in Titan’s atmosphere make it chemically complex

12.5 The Moons of Saturn

Figure  12-­‐19.  Titan’s  Atmosphere  The  structure  of  Titan’s  atmosphere,  as  deduced  from  Voyager  1  observa4ons.  The  solid  blue  line  represents  temperature  at  different  al4tudes.  The  inset  shows  the  haze  layers  in  Titan’s  upper  atmosphere,  depicted  in  false-­‐color  green  above  Titan’s  orange  surface  in  this  Voyager  1  image.  (NASA)  

© 2011 Pearson Education, Inc.

12.5 The Moons of Saturn

Some surface features on Titan are visible in this Cassini infrared image

Figure  12-­‐20.  Titan  Revealed  Cassini’s  infrared  telescopes  revealed  this  infrared,  false-­‐color  view  of  Titan’s  surface  in  late  2004.  The  circular  area  near  the  center  may  be  an  old  impact  basin  and  the  dark  linear  feature  to  its  northwest  perhaps  mountain  ranges  caused  by  ancient  tectonic  ac4vity.  The  inset  shows  a  surface  feature  thought  to  be  an  icy  volcano,  further  sugges4ng  some  geological  ac4vity  on  this  icy  moon’s  surface.  Resolu4on  of  the  larger  image  is  25  km;  that  of  the  inset  is  10  4mes  beIer.  (NASA/ESA)  

© 2011 Pearson Education, Inc.

12.5 The Moons of Saturn The Huygens spacecraft has landed on Titan and returned images directly from the surface

Figure  12-­‐21.  The  View  from  Huygens  (a)  Ar4st’s  concep4on  of  the  Huygens  lander  parachu4ng  through  Titan’s  thick  atmosphere.  (b)  This  photograph  of  the  surface  was  taken  from  an  al4tude  of  8  km  as  the  probe  descended.  It  shows  a  network  of  channels  reminiscent  of  streams  or  rivers  draining  from  the  light-­‐shaded  upliMed  terrain  (at  center)  into  a  darker,  low-­‐lying  region  (at  boIom).  Resolu4on  is  about  20  m.  (c)  Huygens’s  view  of  its  landing  site,  in  approximately  true  color.  The  foreground  rocklike  objects  are  only  a  few  cen4meters  across.  (D.  Ducros;  NASA/ESA)  

© 2011 Pearson Education, Inc.

12.5 The Moons of Saturn Based on measurements made by Cassini and Huygens, this is the current best guess as to what the interior of Titan looks like

Figure  12-­‐23.  Titan’s  Interior  Based  on  measurements  of  Titan’s  gravita4onal  field  during  numerous  flybys,  Titan’s  interior  appears  to  be  largely  a  rocky-­‐silicate  mix.  Most  intriguing  is  the  subsurface  layer  of  liquid  water,  similar  to  that  hypothesized  on  Jupiter’s  Europa  and  Ganymede.  (NASA/ESA)  

© 2011 Pearson Education, Inc.

Discovery 12-1: Dancing Among Saturn’s

Moons The Cassini spacecraft uses multiple “gravitational slingshots” to make multiple close passes around Saturn’s moons. Precise orbits are decided on the fly.

© 2011 Pearson Education, Inc.

12.5 The Moons of Saturn This image shows Saturn’s mid-sized moons

Figure  12-­‐24.  Saturn’s  Mid-­‐Sized  Moons  Saturn’s  six  medium-­‐sized  satellites,  to  scale,  as  seen  by  the  Cassini  spacecraM.  All  are  heavily  cratered  and  all  are  shown  here  in  natural  color.  Iapetus  has  a  ridge  around  its  middle  and  shows  a  clear  contrast  between  its  light-­‐colored  (icy)  surface  (at  top  in  this  image)  and  its  dark  cratered  hemisphere  (at  boIom).  The  light-­‐colored  wisps  on  Rhea  are  thought  to  be  water  and  ice  released  from  the  moon’s  interior  during  some  long-­‐ago  period  of  ac4vity.  Dione  and  Tethys  show  possible  evidence  of  ancient  geological  ac4vity.  Enceladus  appears  to  be  volcanically  ac4ve,  presumably  because  of  Saturn’s  4dal  influence.  Mimas’s  main  surface  feature  is  the  large  crater  Herschel,  plainly  visible  at  the  center  in  this  image.  For  scale,  part  of  Earth’s  Moon  is  shown  at  leM.  See  also  the  full-­‐page  chapter  opening  photo  for  a  closeup  look  at  the  fascina4ng  moon,  Enceladus.  (NASA)  

© 2011 Pearson Education, Inc.

•  Mimas, Enceladus, Tethys, Dione, and Rhea all orbit between 3 and 9 planetary radii from Saturn, and all are tidally locked—this means they have “leading” and “trailing” surfaces

•  Iapetus orbits 59 radii away and is also tidally locked

12.5 The Moons of Saturn

© 2011 Pearson Education, Inc.

12.5 The Moons of Saturn

Surface of Enceladus seems oddly youthful

Figure  12-­‐25.  Enceladus  In  this  puzzling  image  taken  by  the  Cassini  spacecraM,  Saturn’s  4ny  ice-­‐covered  moon  Enceladus  (only  500  km  in  diameter)  shows  evidence  of  a  youthful  terrain  in  the  south  where  craters  are  mostly  absent.  The  long  blue  streaks  (about  1  km  wide)  are  likely  fractures  in  the  ice  through  which  gas  escapes  to  form  a  thin  but  real  atmosphere.  (JPL)  

© 2011 Pearson Education, Inc.

Masses of small moons not well known

Two of them share a single orbit

12.5 The Moons of Saturn

Figure  12-­‐27.  Orbit-­‐Sharing  Satellites  The  peculiar  mo4on  of  Saturn’s  co-­‐orbital  satellites  Janus  and  Epimetheus,  which  play  a  neverending  game  of  tag  as  they  move  around  the  planet  in  their  orbits.  The  labeled  points  represent  the  loca4ons  of  the  two  moons  at  a  few  successive  4mes.  From  A  to  C,  moon  2  gains  on  moon  1.  However,  before  it  can  overtake  it,  the  two  moons  swap  orbits,  and  moon  1  starts  to  pull  ahead  of  moon  2  again,  through  points  D  and  E.  The  whole  process  then  repeats,  apparently  forever.  

© 2011 Pearson Education, Inc.

Two more moons are at the Lagrangian points of Tethys

12.5 The Moons of Saturn

Figure  12-­‐28.  Synchronous  Orbits  The  orbits  of  the  moons  Telesto  and  Calypso  are  4ed  to  the  mo4on  of  the  moon  Tethys.  The  combined  gravita4onal  pulls  of  Saturn  and  Tethys  keep  the  small  moons  exactly  60°  ahead  and  behind  the  larger  moon  at  all  4mes,  so  all  three  moons  share  an  orbit  and  never  change  their  rela4ve  posi4ons.  

© 2011 Pearson Education, Inc.

•  Saturn, like Jupiter, rotates differentially and is significantly flattened

•  Saturn’s weather patterns are in some ways similar to Jupiter’s, but there are far fewer storms

•  Saturn generates its own heat through the compression of “helium raindrops”

•  Saturn has a large magnetic field and extensive magnetosphere

Summary of Chapter 12

© 2011 Pearson Education, Inc.

•  Saturn’s most prominent feature is its rings, which are in its equatorial plane

•  The rings have considerable gross and fine structure, with segments and gaps; their particles are icy and grain- to boulder-sized

•  Interactions with medium and small moons determine the ring structure

•  The rings are entirely within the Roche limit, where larger bodies would be torn apart by tidal forces

Summary of Chapter 12 (cont.)

© 2011 Pearson Education, Inc.

•  Titan is the second-largest moon in the solar system

•  Titan has an extremely thick atmosphere, and little is known about its surface or interior

•  Medium-sized moons are rock and water ice; their terrains vary

•  These moons are tidally locked to Saturn

•  Several of the small moons share orbits, either with each other or with larger moons

Summary of Chapter 12 (cont.)