Chapter 12. Intelligent Robot Lab DESIGN VIA STATE...

29
Intelligent Robot Lab Pusan National University Intelligent Robot Lab Chapter 12. DESIGN VIA STATE SPACE Intelligent Robot Laboratory

Transcript of Chapter 12. Intelligent Robot Lab DESIGN VIA STATE...

  • Intelligent Robot Lab

    Pusan National UniversityIntelligent Robot Lab

    Chapter 12.DESIGN VIA STATE SPACE

    Intelligent Robot Laboratory

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Introduction

    v Controller Design

    v Controllability

    v Alternative Approaches to Controller Design

    v Observer Design

    v Observability

    v Alternative Approaches to Observer Design

    v Steady-State Error Design via Integral Control

    Table of Contents

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Frequency domain methods§ Create a compensator in cascade or in the feedback path§ Drawbacks

    • Designing the dominant second-order pair of poles• Gain adjustment is not sufficient to place all the closed-loop poles properly.

    v State-space methods

    § State-space methods are used to handle other adjustable parameters.• Properly place all poles of the closed-loop system

    § Drawbacks• Do not allow the specification of closed-loop zero locations• Very sensitive to parameter changes

    Introduction

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Additional parameters control the location of all closed-loop poles

    v An nth-order closed-loop characteristic equation (closed-loop pole locations):

    v n adjustable parameters ( n coefficients ) all of the poles of the closed-loop system can be set to any desired location.§ Coefficient of the highest power of s is unity

    Controller design

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.1)

    ®

    ®

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v An nth-order closed-loop characteristic equation

    v n adjustable parameters (n coefficients)§ Coefficient of the highest power is unity.§ n coefficients whose values determine the system’s closed-loop pole locations.§ n adjustable parameters into the system

    Controller design

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.1)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Topology for pole placement§ State-space representation of a plant

    § Plant with state-feedback

    Controller design

    = + =

    uyx Ax B

    Cx& (12.2a)

    (12.2b)

    = + = (- ) = ( - )

    =

    urr

    y

    + ++

    x Ax BAx B Kx A BK x B

    Cx

    & (12.3a)

    (12.3b)Figure 12.2

    a. State-space representation of plantb. plant with state-variable feedback

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    Controller design

    a. Phase-variable representation for plant b. plant with state-variable feedback

    Figure 12.3

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Pole placement for plants in phase-variable form1. Represent the plant in phase-variable form

    2. Feedback each phase variable to the input of the plant through a

    gain,

    3. Find the characteristic Eq. for the closed-loop system in step 2

    4. Decide upon all closed-loop pole locations and determine an equivalent

    characteristic equations.

    5. Solve for from the characteristic equations form steps 3 and 4.

    Controller design

    ik

    ik

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Phase-variable form - Eq.(12.2)

    § The characteristic equation is:

    Controller design

    0 1 2 1

    0 1 0 0 00 0

    = ; = ;

    1na a a a -

    é ù é ùê ú ê úê ú ê úê ú ê úê ú ê ú- - - - ë ûë û

    A B

    LM M M LM M M M M M

    L

    [ ]1 2 = nc c cC L

    (12.4)

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.5)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Feedback each state variable to u for a closed-loop system:

    § The characteristic equation of the closed-loop system can be written:

    § The desired characteristic equation:

    § From (12.9) and (12.10):

    Controller design

    1 2

    0 1 1 2 2 3 1

    = x = ( )

    0 1 0 00 0 1 0

    =

    ( ) ( ) ( ) ( )

    n

    n n

    uk k k

    a k a k a k a k-

    -

    æ öç ÷ç ÷-ç ÷ç ÷- + - + - + - +è ø

    KK

    A BK

    LLL

    M M M M ML

    (12.8)

    (12.9)

    (12.6)

    (12.7)

    11 1 2 0 1det( ( )) ( ) ( ) ( ) 0

    n nn ns s a k s a k s a k

    --- - = + + + + + + + =I A BK L

    Phase-variable form

    The ’s are the phase variables’ feedback gainsik

    11 1 0 0

    n nns d s d s d

    --+ + + + =L (12.10)

    1

    1 for 0,1, 2, , 1i i ii i i

    d a k i nk d a+

    = + + = -

    = -

    K (12.11)(12.12)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example 12.1: Controller design for phase-variable form§ Design the phase-variable feedback gains

    • To yield 9.5 % overshoot• To yield 0.74 second settling time

    § Closed-loop poles are : § Choose the third closed-loop pole to cancel the closed loop zero: -5.1

    §

    Controller design

    20( 5)( )( 1)( 4)

    sG ss s s

    +=

    + +

    3 2

    20 100( )5 4sG s

    s s s+

    =+ +

    5.4 7.2j- ±

    (a) Phase-variable representation (b) Plant with state-variable feedbackFigure 12.3

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The desired characteristic equation based on the selected poles:

    § The zero term of the closed-loop transfer function is the same as the zero term of the open-loop system: (s+5)

    Controller design

    ( )1 2 3

    0 1 0 00 0 1 0

    (4 ) (5 ) 1

    100 20 0

    rk k k

    y

    æ ö æ öç ÷ ç ÷= +ç ÷ ç ÷ç ÷ ç ÷- - + - +è ø è ø

    =

    x x

    x

    &

    3 23 2 1det( ( )) (5 ) (4 ) 0s s k s k s k- - = + + + + + =I A BK

    3 25.4 7.2, 5.1 s 15.9 136.08 413.1 0j s s- ± - ® + + + =

    1

    2

    3

    413.1132.0810.9

    kkk

    ===

    ( )

    3 2

    0 1 0 00 0 1 0

    413.1 136.08 15.9 1

    100 20 020( 5)( )

    15.9 136.08 413.1

    r

    ysT s

    s s s

    æ ö æ öç ÷ ç ÷= +ç ÷ ç ÷ç ÷ ç ÷- - -è ø è ø

    =

    +=

    + + +

    x x

    x

    &

    Figure 12.5 Simulation of closed-loop system

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § To control the pole location of the closed-loop system u can control each state variable.

    § If an input to a system can be found that takes every state variable from a desired initial stateto a desired final state the system is said to be controllable; otherwise, the system is uncontrollable.

    § Pole placement only for controllable systems

    Controllability

    ®

    ®

    ®

    Figure 12.6(a)Controllable (b)Uncontrollable

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Controllability by inspection

    Controllability

    1

    2

    3

    1 1 1

    2 2 2

    3 3 3

    0 0 10 1 10 0 1

    aa r

    ax a x ux a x ux a x u

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø= - += - += - +

    x x&

    &&&

    4

    5

    6

    1 4 1

    2 5 2

    3 6 3

    0 0 00 1 10 0 1

    aa r

    ax a xx a x ux a x u

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø= -= - += - +

    x x&

    &&&

    (12.21)

    (12.22)

    (12.23)

    (12.24)

    Figure 12.6(a)Controllable (b)Uncontrollable

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Controllability matrix

    § An n-the-order plant whose state equation is

    is completely controllable if the matrix

    is of rank n (full rank), where is called the controllability matrix.

    Controllability

    MC

    = +x Ax Bu&

    é ù= ë û2 n-1

    MC B AB A B A BL

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example 12.2: Controllability via controllability matrix§ From the signal-flow diagram, determine its controllability.

    Controllability

    1 1 0 0 0 1 0 1

    0 0 2 1

    u

    u

    = +

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø

    x Ax B

    x

    det( ) 1= -MC

    Figure 12.7( )2

    0 1 2 1 1 4

    1 2 1

    =

    -æ öç ÷= -ç ÷ç ÷-è ø

    mC B AB A B

    The determinant is not zerononsingular has a full rank matrix.the system is controllable.the poles of the system can be placed using state-variable feedback design.

    ®®®

    MC

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v The first method§ Controller design by matching coefficients§ This technique, in general, leads to difficult calculations of the feedback gains,

    especially for higher-order systems not represented with phase variable form.

    v Example : 12.3

    §

    § Design state feedback for the plant in cascade formYielding 15% overshoot & 0.5 sec settling time

    Alternative approaches to controller design

    ( ) 10( ) ( 1)( 2)

    Y sG s s s

    =+ +

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § State equations from Figure 12.8(b)

    § where the characteristic equation is

    § We obtain the desired characteristic equation

    § Equating the middle coefficients of Eqs. (12.32) and (12.33),

    Alternative approaches to controller design

    [ ]1 2

    2 1 0( 1) 1

    10 0

    rk k

    y

    -é ù é ù= +ê ú ê ú- - + ë ûë û=

    x x

    x

    &

    Figure 12.8(a)Signal-flow graph in cascade form(b)System with state feedback added

    22 2 1( 3) (2 2) 0s k s k k+ + + + + =

    2 16 239.5 0s s+ + =

    1 2211.5 , 13k k= =

    (12.31a)

    (12.31b)

    (12.32)

    (12.33)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v The second method§ The second method consists of transforming the system to phase variable

    form, designing the feedback gains, and transforming the designed system back to original state variable representation.

    § Assume a plant not represented in a phase-variable form,

    § Assume that the system can be transformed into phase-variable (x) representation:

    Alternative approaches to controller design

    +y==

    z Az BuCz

    & 2 1 n-é ù® = ë ûMzC B AB A B A BL

    1 1+ uy

    - -==

    x P APx P BCPx

    & = ®z Px

    (12.35)

    (12.37a)

    (12.37b)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Controllability matrix is

    § Substituting Eq. (12.35) into (12.38) and solving for P, we obtain

    § Thus, the transformation matrix, P, can be found from the two controllability matrices.

    Alternative approaches to controller design

    1 1 1 1 2 1 1 1 1

    1 1 1 1 1 1 1

    1 1 1 1

    1 2 1

    ( )( ) ( ) ( ) ( ) ( )

    ( )( ) ( )( )( ) ( )

    ( )( ) ( )( )

    n

    n

    - - - - - - - -

    - - - - - - -

    - - - -

    - -

    é ù= ë ûé= ë

    ùûé ù= ë û

    MxC P B P AP P B P AP P B P AP P B

    P B P AP P B P AP P AP P B P AP

    P AP P AP P AP P B

    P B AB A B A B

    L

    L

    L

    L

    (12.38)

    1-= Mz MxP C C (12.39)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Input,

    § Using,

    § Comparing Eq.(12.41) with(12.3), the state variable feedback gain, Kz, for the original system is

    Alternative approaches to controller design

    xK xu r= - + (12.38)

    1x P z-=

    (12.41a)

    1 1 1

    1 1 1 ( )rr

    y

    - - -

    - - -

    = - +

    = -=

    X

    X

    x P APx P BK x P BP AP P BK x + P B

    CPx

    &(12.40a)

    (12.40b)

    1 1( )r ry

    - -= - + = - +=

    X Xz Az BK P z B A BK P z BCz

    &(12.41b)

    1-=Z XK K P (12.42)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example: 12.4 Controller design by transformation

    §

    § Design a state-variable feedback controllerYielding 20.8% overshoot & 4 sec settling time

    Alternative approaches to controller design

    ( 4)( )( 1)( 2)( 5)

    sG ss s s

    +=

    + + +

    Figure 12.9 Signal-flow graph for plant of Example 12.4

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The state equations,

    § Since the determinant of is -1, the system is controllable.§ Convert the system to phase variables

    Alternative approaches to controller design

    [ ]

    5 1 0 00 2 1 00 0 1 1

    4 1 0

    u u

    y

    -é ù é ùê ú ê ú= + = - +ê ú ê úê ú ê ú-ë û ë û

    = =

    Z Z

    Z

    z A z B z

    C z z

    &(12.44)

    2

    0 0 10 1 31 1 1

    é ùê úé ù= = -ë û ê úê ú-ë û

    Mz Z Z Z Z ZC B A B A B (12.45)

    MzC

    3 2det( ) 8 17 10 0s s s s- = + + + =ZI A (12.46)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using the coefficients of Eq. (12.46)

    § Controllability matrix is,

    Alternative approaches to controller design

    [ ]

    0 1 0 00 0 1 010 17 8 1

    4 1 0

    u u

    y

    é ù é ùê ú ê ú= + = +ê ú ê úê ú ê ú- - -ë û ë û

    =

    X Xx A x B x

    x

    & (12.47a)

    2

    0 0 10 1 81 8 47

    é ùê úé ù= = -ë û ê úê ú-ë û

    Mz X X X X XC B A B A B (12.48)

    (12.47b)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using Eq. (12.39)

    § Design the controller using the phase-variable representation and the use P to

    transfer the design back to the original representation.

    20.8% overshoot and a settling time of 4 seconds a factor of characteristic

    equation of the designed closed-loop system:

    § And choose the third closed-loop pole at s = - 4 to cancel the closed-loop zero

    Alternative approaches to controller design

    (12.49)1

    1 0 05 1 0

    10 7 1

    -

    é ùê ú= = ê úê úë û

    Mz MxP C C

    ®

    2( 2 5)s s+ +

    2 3 2 ( ) ( 4)( 2 5) 6 13 20 0D s s s s s s s® = + + + = + + + = (12.50)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The state equations for the phase-variable form with state-variable feedback:

    § The characteristic equation for Eq. (12.51) is,

    § Comparing Eq. (12.50) with (12.52),

    Alternative approaches to controller design

    [ ]1 2 3

    0 1 0( ) 0 0 1

    (10 ) (17 ) (8 )

    4 1 0x x x

    k k k

    y

    é ùê ú= + = ê úê ú- + - + - +ë û

    =

    X X Xx A B K x x

    x

    & (12.51a)

    3 23 2 1det( ( )) (8 ) (17 ) (10 ) 0x x xs s k s k s k- - = + + + + + + =X X XI A B K (12.52)

    (12.51b)

    [ ] [ ]1 2 3 10 4 2x x xk k k= = - -XK (12.53)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using Eqs. (12.42) and (12.49),

    Alternative approaches to controller design

    [ ]1 20 10 2-= = - -Z XK K P (12.54)

    Figure 12.10 Designed system with state-variable feedback for Example 12.4

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Verify the design

    § The closed-loop transfer function:

    Alternative approaches to controller design

    [ ]

    5 1 0 0( ) 0 2 1 0

    20 10 1 1

    1 1 0

    r r

    y

    -é ù é ùê ú ê ú= - + = - +ê ú ê úê ú ê ú-ë û ë û

    = = -

    Z Z Z Z

    Z

    z A B K z B z

    C z z

    & (12.55a)

    3 2 2

    ( 4) 1( )6 13 20 2 5

    sT ss s s s s

    += =

    + + + + +

    1( )( ) ( )( )

    Y sT s sU s

    -= = - +C I A B D (3.73)

    (12.56)

    (12.55b)

    Converting from State Spaceto a Transfer function

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    TTHHAANNKK UUYYOO