Chapter 11 Sound radiation Jean-Louis...

63
© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 1 Chapter 11 Sound radiation Jean-Louis Migeot 1. Directivity diagrams 2. Elementary directive sources: monopoles, dipoles, quadrupoles 3. Equivalent source method 4. Multipole expansion 5. Helmholtz integral equation

Transcript of Chapter 11 Sound radiation Jean-Louis...

Page 1: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 1

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 2: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 2

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 3: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 3

Directivity diagram

Page 4: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 4

Emission and reception directivity

Emission Reception

Page 5: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 5

Directivity is actually three-dimensional

Page 6: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 6

Directivity changes when the center is offset

Page 7: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 7

Example: a monopole has a uniform directivity …

90°

60°

30°

330°

300°

270°

240°

210°

180°

150°

120°

Page 8: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 8

… unless the monopole is not located at the radiation center !

90°

60°

30°

330°

300°

270°

240°

210°

180°

150°

120°

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Page 9: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 9

Offset effect

+ - + - + - + - + + - + - + - + - +

Centered Off-center

Page 10: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 10

Directivity changes with frequency …

400 Hz – R = 1 m

600 Hz – R = 1 m

Page 11: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 11

Directivity changes with distance …

400 Hz – R = 1 m 400 Hz – R = 1000 m

Page 12: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 12

Sound radiation

200 Hz

500 Hz 1.000 Hz

Page 13: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 13

Frequency and directivity

1000 Hz 1500 Hz 2000 Hz

2500 Hz 3000 Hz

Page 14: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 14

Qualitative observations

➢ Directivity changes with:

Plane orientation

Radiation center

Frequency

Distance

Source (of course) whose behaviour itself depends on frequency

➢ The multipole expansion theory provides interesting and general results on:

Frequency dependency

Changes with distance (near and far field)

➢ Let’s first look at elementary sources:

Monopoles

Dipoles

Quadrupoles

Page 15: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 15

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 16: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 16

Monopole

➢ Pressure

➢ Radial velocity

➢ Radial impedance

➢ Radial intensity

➢ Power through a sphere of radius R

Page 17: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 17

Monopole

© Dan Russell – Penn State

Page 18: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 18

Monopole

Page 19: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 19

Monopole directivity

Page 20: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 20

Monopole (k=1)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15

Pre

ssu

re [

Pa]

Distance r ([m])

Real Part

Imaginary Part

Amplitude

Page 21: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 21

Monopole (k=2)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15

Pre

ssu

re [

Pa]

Distance r ([m])

Real Part

Imaginary Part

Amplitude

Page 22: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 22

Impedance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15

Re

du

ced

Imp

ed

ance

Distance r ([m])

Real Part

Imaginary Part

Near field (r<5l) Far Field (r>5l)

Page 23: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 23

Plane wave and spherical waves

Page 24: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 24

Dipole

Page 25: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 25

Speed, intensity and power

Page 26: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 26

Dipole

© Dan Russell – Penn State

Page 27: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 27

Dipole directivity

+1 0 -1

Page 28: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 28

Lateral quadrupole

Page 29: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 29

Lateral quadrupole

Page 30: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 30

Lateral quadrupole

© Dan Russell – Penn State

Page 31: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 31

Lateral quadrupole directivity

+1 0 -1

Page 32: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 32

Linear quadrupole

➢ Sources in Q1 and Q2: +A

➢ Source in Q: -2A

Page 33: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 33

Linear quadrupole

© Dan Russell – Penn State

Page 34: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 34

Linear quadrupole directivity

cos2 q

+1 0 -1

Page 35: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 35

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 36: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 36

Any source can be described by a set of point sources

v1

q1

q2

q3

u13

u12

u11v2

v3

Page 37: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 37

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 38: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 38

Multipole expansion

P

Q

Pi

r

ri

Page 39: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 39

Higher order terms increase with frequency …

Page 40: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 40

Elementary or canonical directivity diagrams

Page 41: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 41

Elementary or canonical directivity diagrams: sinpq cosqq

Page 42: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 42

Elementary or canonical directivity diagrams: sin pq cos qq

Page 43: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 43

Far field and near field

Page 44: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 44

Generality of the multipole expansion

➢ Any source (e.g. vibrating surface) may be replaced with an arbitrary accuracy by a set of point sources with frequency dependent amplitude generating, outside a given surface, the same sound field -> any sound field may be analyzed in terms of monopole, dipole, etc … but with M, D, Q, O depending on w

➢ General principles are:

for a vibro-acoustic source, the amplitude of high order terms tends to increase with frequency (vibrations are more complex)

this effect is strengthened by the fact that the terms involved are M, kD, k2Q, k3O, …

directivity thus increases with frequency

in the far field, only the first line in the matrix remains

in the near field all components are important

Page 45: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 45

Chapter 11Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation

Page 46: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 46

Green’s identity

➢ For all u and v sufficiently continuous on S and in V, n being the outward normal to S

Page 47: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 47

Green function

➢ Green function associated with the Helmholtz equation:

➢ This function satisfies the non-homogeneous Helmholtz equation:

and corresponds to the free field generated by a point source at P.

-20

-15

-10

-5

0

5

10

15

20

0

1.0

15 P

Q

Page 48: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 48

Helmholtz integral equation

P

P

P

P

Page 49: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 49

Interior case (P V, P S)

➢ Let’s choose u=p and v=G and let’s apply Green’s identity to V-Vs:

➢ but:

➢ so that:

( ) ( ) ( )p G G p dV p G G p dS p G G p dSii ii

V V

n n

S

n n s s

− = − + −−

( ) ( ) ( )( )

( ) ( ) ( )

p G G p dV p G k G G p k G dV

G P Q P Q dV Q

ii ii

V V

ii ii

V V

V V

s s

s

− = + − +

= =

− −

2 2

0, ,

( ) ( )p G G p dS p G G p dSn n

S

n n s

− + − = 0

S

V

PVs s

nS

ns

Page 50: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 50

Integral on s (P V, P S)

( ) ( )

( )( )

( )

lim lim

lim sin

lim sin

lim sin

s

s

q q

q q

q q

→ →

− −

− = − −

= −

= − − + −

=

=

0 0

0

2

00

2

000

2

000

2

4 4

1

41

1

4

p G G p dS p G G p dS

pe e

p d d

p ik p e d d

p e d d

p P

n n

ik ik

ik

ik

( )

400

2

q q

sin d d

p P

=

( ) ( )p P p G G p dSn n

S

+ − = 0

( ) ( )p P p G i Gv dSn n

S

+ + = w 0

Page 51: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 51

P S

( ) ( ) ( )1

4q q

s

sin .d d p P c P p P =

( )c p p G G p dSP P n n

S

+ − = 0

S

V

s

nS

ns

PVs

Page 52: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 52

P V, P S

S

V

P

nS

( ) ( )p G G p dS p G G p dSn n

S

n n s

− + − = 0=0

Page 53: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 53

➢ Same procedure but integral on S must be handled ...

➢ … but it vanishes provided Sommerfeld conditions apply

( ) ( ) ( )p G G p dS p G G p dS p G G p dSn n

S

n n n n s

− + − + − =

0

Exterior case

S V

PVs snS

ns

n

( )

( )

( )( )

( )( )

lim

lim

lim sin

lim sin

q q

q q

= − −

= − − + −

= + +

p G G p dS

p G G p dS

p ik p e d d

ikp p p e d d

n n

ik

ik

1

41

1

4

00

2

00

2

Page 54: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 54

Helmholtz integral equation

Pressure at any point P in V

Pressure distribution

on S

Gradientof Green

function on S

Normal vibrationacceleration

distribution on S

Greenfunction

on S

Page 55: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 55

Limits of the direct approach

➢ S must be closed:

no thin plate

no stiffener

no hole

etc ...

➢ Fluid must be homogeneous

➢ The indirect method generalises the direct method and suppresses these limitations

Page 56: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 56

Indirect Helmholtz integral equation

Page 57: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 57

Why are loudspeakers baffled (1) ?

P

P’

Sp

Sb

Q

z

n

uz

Rigid piston

Low frequency Monopole !

Page 58: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 58

Baffled piston: axial pressure distribution

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2

Pressure amplitude (Pa)

Z-coordinate (m)

EXACT 4000 Hz

EXACT 8000 Hz

ACTRAN Infinite 4000 Hz

ACTRAN Finite 4000 Hz

ACTRAN Infinite 8000 Hz

ACTRAN Finite 8000 Hz

➢ Radius: 0.10 m

➢ Unit acceleration: 1 m/s2

Page 59: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 59

Baffled piston: directivity at 1m

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 10 20 30 40 50 60 70 80 90

Pressure amplitude (Pa)

Theta angle (degree)

Exact 4000 HzACTRAN 4000 Hz

Exact 8000 HzACTRAN 8000 Hz

Page 60: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 60

Why are loudspeakers baffled (2) ?

P

z

Low frequency

Dipole !

Page 61: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 61

Why are loudspeaker baffled ?

Page 62: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 62

Key Takeaways

➢ Radiation is the generation of sound in free field by a vibrating structure

➢ Multipole expansion is a powerful technique for understanding a describing radiated sound fields:

it presents the sound field as the linear combination of a set of standard elementary directivity patterns

it shows how directivity evolves with distance (near field / far field) and with frequency (increased directionality)

➢ Helmholtz integral equation is another important tool for studying and understanding sound radiation

➢ Diffraction may be framed as a modified sound radiation problem

Page 63: Chapter 11 Sound radiation Jean-Louis Migeothomepages.ulb.ac.be/~aderaema/vibrations/11-Radiation.pdf© Jean-Louis Migeot –MSC Software –Free Field Technologies –Université

© Jean-Louis Migeot – MSC Software – Free Field Technologies – Université Libre de Bruxelles – Conservatoire Royal de Musique de Liège – IJK Numerics 63

Lecture 9Sound radiationJean-Louis Migeot

1. Directivity diagrams

2. Elementary directive sources: monopoles, dipoles, quadrupoles

3. Equivalent source method

4. Multipole expansion

5. Helmholtz integral equation