CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam,...

21
1 CHAPTER - 10 REFERENCES [1] Li K, Geng D, Shang M, Zhang Y, Lian H and Lin J, “Color -tunable Luminescence and energy transfer properties of Ca 9 Mg(PO 4 ) 6 F 2 :Eu 2+ , Mn 2+ phosphors for UV-LEDs”, J. Phys. Chem. C, Vol. 118, pp. 11026-11034, 2014. [2] Krishnan R, Thirumalai J, Banu I. B. S and Chandramohan R, “Influence of Eu 3+ ions in Na 0.5 La 0.5 MoO 4 : structural and optical investigation”, J Mater Sci: Mater Electron., Vol. 24, pp. 47744781, 2013. [3] Zhang L, Lu Z, Han P, Wang L and Zhang Q, “Synthesi s and photoluminescence of Eu 3+ -activated double perovskite NaGdMg(W, Mo)O 6 - a potential red phosphor for solid state lighting”, J. Mater. Chem. C, Vol. 1, pp. 54-57, 2013. [4] Krishnan R, Thirumalai J, Thomas S and Gowri M, “Luminescence and magnetic behaviour of almond like (Na 0.5 La 0.5 )MoO 4 :RE 3+ (RE = Eu, Tb, Dy) nanostructures”, J. Alloys and Compd., Vol. 604, pp. 20–30, 2014. [5] Krishnan R and Thirumalai J, “Up/down-conversion luminescence properties of (Na 0.5 Gd 0.5 )MoO 4 :Ln 3+ (Ln = Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: Synthesis, morphology, structural and magnetic investigation”, New J. Chem., Vol. 38, pp. 3480-3491, 2014. [6] Krishnan R, Thirumalai J and Kathiravan A, “Luminescence and magnetic properties of novel nanoparticle-sheathed 3D micro-architectures of Fe 0.5 R 0.5 (MoO 4 ) 1.5 :Ln 3+ (R = Gd 3+ , La 3+ ), (Ln = Eu, Tb, Dy) for bi-functional application”, Electron. Mater. Lett., Vol. 11, pp. 24-33, 2015.

Transcript of CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam,...

Page 1: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

1

CHAPTER - 10

REFERENCES

[1] Li K, Geng D, Shang M, Zhang Y, Lian H and Lin J, “Color-tunable

Luminescence and energy transfer properties of Ca9Mg(PO4)6F2:Eu2+, Mn2+

phosphors for UV-LEDs”, J. Phys. Chem. C, Vol. 118, pp. 11026-11034,

2014.

[2] Krishnan R, Thirumalai J, Banu I. B. S and Chandramohan R, “Influence of

Eu3+ ions in Na0.5La0.5MoO4: structural and optical investigation”, J Mater

Sci: Mater Electron., Vol. 24, pp. 4774–4781, 2013.

[3] Zhang L, Lu Z, Han P, Wang L and Zhang Q, “Synthesis and

photoluminescence of Eu3+-activated double perovskite NaGdMg(W, Mo)O6

- a potential red phosphor for solid state lighting”, J. Mater. Chem. C, Vol. 1,

pp. 54-57, 2013.

[4] Krishnan R, Thirumalai J, Thomas S and Gowri M, “Luminescence and

magnetic behaviour of almond like (Na0.5La0.5)MoO4:RE3+ (RE = Eu, Tb, Dy)

nanostructures”, J. Alloys and Compd., Vol. 604, pp. 20–30, 2014.

[5] Krishnan R and Thirumalai J, “Up/down-conversion luminescence

properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln = Eu, Tb, Dy, Yb/Er, Yb/Tm, and

Yb/Ho) microstructures: Synthesis, morphology, structural and magnetic

investigation”, New J. Chem., Vol. 38, pp. 3480-3491, 2014.

[6] Krishnan R, Thirumalai J and Kathiravan A, “Luminescence and magnetic

properties of novel nanoparticle-sheathed 3D micro-architectures of

Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) for bi-functional

application”, Electron. Mater. Lett., Vol. 11, pp. 24-33, 2015.

Page 2: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

2

[7] Wiedemann E, “Ueber Fluorescenz und Phosphorescenz I. Abhandlung”,

Annder Physik. Vol. 34, pp. 446-463, 1888.

[8] Nic M, Jirat J and Kosata B, “IUPAC Compendium of Chemical

Terminology”, Blackwell Scientific Publications, ICT Prague, Prague,

Second edition, 1997.

[9] Blasse G and Grabmaier BC, “Luminescent materials”, Springer Verlag

Berlin Heidelberg, first edition, pp. 1-121, 1994.

[10] Parchur A. K, Ningthoujam R. S, Rai S. B, Okram G. S, Singh R. A,

Tyagi M, Gadkari S. C, Tewari R and Vatsa R. K, “Luminescence properties

of Eu3+ doped CaMoO4 nanoparticles”, Dalton Trans., Vol. 40, pp.

7595–7601, 2011.

[11] Cho J. S, Yang K. M and Kang Y. C, “Yolk–shell structured Y2O3:Eu3+

phosphor powders with enhanced photoluminescence properties prepared

by spray pyrolysis”, Cryst. Eng. Comm., Vol. 16, pp. 6170-6174, 2014.

[12] Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Cheng Z and Lin J, “One-

dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes:

electrospinning preparation and luminescent properties”, J. Mater. Chem.,

Vol. 19, pp. 2737–2746, 2009.

[13] Kaczmarek A. M and Deun R. V, “Rare earth tungstate and molybdate

compounds – from 0D to 3D architectures”, Chem. Soc. Rev., Vol. 42, pp.

8835-8848, 2013.

[14] Prener J. S and Williams F. E, “Self‐Activation and self‐coactivation in zinc

sulfide phosphors”, J. Chem. Phys., Vol. 25, pp. 361-362, 1956.

[15] Parchur A. K, Prasad A. I, Ansari A. A, Rai S. B, and Ningthoujam R. S,

“Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing

effect, polar medium dispersible, polymer film and core–shell formation”,

Dalton Trans., Vol. 41, pp. 11032–11045, 2012.

[16] Som S, Mitra P, Kumar V, Kumar V, Terblans J. J, Swart H. C and Sharma

S. K, “The energy transfer phenomena and colour tunability in

Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting

applications”, Dalton Trans., Vol. 43, pp. 9860-9871, 2014.

Page 3: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

3

[17] Pradal N, Chadeyron G, Therias S, Potdevin A, Santilli C. V and Mahiou R,

“Investigation on combustion derived BaMgAl10O17:Eu2+ phosphor powder

and its corresponding PVP/BaMgAl10O17:Eu2+ nanocomposite”, Dalton

Trans., Vol. 43, pp. 1072-1081, 2014.

[18] Ropp R. C, “Luminescence and the solid state”, Elsevier Science

Publishers B.V, New York, 1991.

[19] Pimentel G. C and Spratley R. D, “understanding Chemistry”, Holden-Day

Inc., San Francisco, CA, 1971.

[20] Jadhav A. P, Pawar A. U, Pal U and Kang Y. S, “Red emitting Y2O3:Eu3+

nanophosphors with >80% down-conversion efficiency”, J. Mater. Chem.

C., Vol. 2, pp. 496-500, 2014.

[21] Thirumalai J, Chandramohan R, Divakar R, Mohandas E, Sekar M and

Parameswaran P, “Eu3+ doped gadolinium oxysulfide (Gd2O2S)

nanostructures-synthesis and optical and electronic properties”,

Nanotechnology, Vol. 19, pp. 395703 (7pp), 2008.

[22] Kumara P and Gupta B. K, “New insight into rare-earth doped gadolinium

molybdate nanophosphor assisted broad spectral converters from UV to

NIR for silicon solar cells”, RSC Adv., Vol. 5, pp. 24729-24736, 2015.

[23] Luo Y, Xia Z, Lei B and Liu Y, “Structural and luminescence properties of

Sr2VO4Cl and Sr5(VO4)3Cl: self-activated luminescence and unusual Eu3+

emission”, RSC Adv., Vol. 3, pp. 22206-22212, 2013.

[24] Selvalakshmi T, Sellaiyan S, Uedono A and Bose A. C, “Investigation of

defect related photoluminescence property of multicolour emitting

Gd2O3:Dy3+ phosphor”, RSC Adv., Vol. 4, pp. 34257-34266, 2014.

[25] Cho J and Kim C. H, “Solid-state phase transformation mechanism from

hexagonal GdPO4:Eu3+ nanorods to monoclinic nanoparticles”, RSC Adv.,

Vol. 4, pp. 31385-31392, 2014.

[26] Dutta P. S and Khanna A, “Eu3+ activated molybdate and tungstate based

red phosphors with charge transfer band in blue region”, ECS J. Solid State

Sc., Vol. 2, pp. R3153-R3167, (2013).

Page 4: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

4

[27] Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J and Boulon G,

“Structural and spectroscopic characterizations of new Cd1-3xNd2-x □xMoO4

scheelite-type molybdates with vacancies as potential optical materials”, J.

Mater. Chem. C, Vol. 3, pp. 4057-4069, 2015.

[28] Li L, Liu Y, Li R, Leng Z and Gan S, “Tunable luminescence properties of

the novel Tm3+ and Dy3+ codoped LiLa(MoO4)x(WO4)2−x phosphors for white

light-emitting diodes”, RSC Adv., Vol. 5, pp. 7049-7057, 2015.

[29] Krishnan R, Thirumalai J, Shameem Banu I. B and Peter A. J, “Rugby-ball-

shaped (Na0.5La0.5)MoO4:Eu3+ 3D architectures: synthesis, characterization,

and their luminescence behavior”, J Nanostru. Chem., Vol. 3, pp. 14(1-5),

2013.

[30] Fu Z. L, Xia W, Li Q, Cui X and Li W, “Highly uniform NaLa(MoO4)2:Ln3+ (Ln

= Eu, Dy) microspheres: template-free hydrothermal synthesis, growing

mechanism, and luminescent properties”, Cryst. Eng. Comm., Vol. 14, pp.

4618- 4624, 2012.

[31] Liu J, Xu B, Song C, Luo H, Zou X, Han L and Yu X, “Shape-controlled

synthesis of monodispersed nano-/micro- NaY(MoO4)2 (doped with Eu3+)

without capping agents via a hydrothermal process”, Cryst. Eng. Comm.,

Vol. 14, pp. 2936- 2943, 2012.

[32] Zhang J, Wang X, Zhang X, Zhao X, Liu X and Peng L, “Microwave

synthesis of NaLa(MoO4)2 microcrystals and their near-infrared luminescent

properties with lanthanide ion doping (Er3+, Nd3+, Yb3+)”, Inorg. Chem.

Commun., Vol. 14, pp. 1723-1727, 2011.

[33] Li A, Xu D, Lin H, Yang S, Shao Y, Zhang Y and Chen Z, “Facile

morphology-controllable hydrothermal synthesis and color tunable

luminescence properties of NaGd(MoO4)2:Eu3+,Tb3+ microcrystals”, RSC

Adv., Vol. 5, pp. 45693-45702, 2015.

[34] Thirumalai J, Krishnan R, Shameem Banu I. B and Chandramohan R,

“Controlled synthesis, formation mechanism and luminescence properties

of novel 3-dimensioned Gd2(MoO4)3:Eu3+ nanostructures”, J. Mater. Sci.

Mater. Electron., Vol. 24, pp. 253-259, 2013.

Page 5: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

5

[35] Xu L, Yang X, Zhai Z, Gu D, Pang H and Hou W, “Self-assembled 3D

architectures of NaCe(MoO4)2 and their application as absorbents”, Cryst.

Eng. Comm. Vol. 14, pp. 7330-7337, 2012.

[36] Li G, Li L, Li M, Bao W, Song Y, Gan S, Zou H, Xu X, “Hydrothermal

synthesis and luminescent properties of NaLa(MoO4)2:Eu3+,Tb3+

phosphors”, J. Alloys. Compd., Vol. 550, pp.1-8, 2013.

[37] Huang Y, Zhou L, Yang L and Tang Z, “Self-assembled 3D flower-like

NaY(MoO4)2:Eu3+ microarchitectures: hydrothermal synthesis, formation

mechanism and luminescence properties”, Opt. Mater., Vol. 33, pp. 777-

782, 2011.

[38] Huang S, Zhang X, Wang L, Bai L, Xu J, Li C and Yang P, “Controllable

synthesis and tunable luminescence properties of Y2(WO4)3:Ln3+ (Ln = Eu,

Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures”, Dalton Trans., Vol.

41, pp. 5634-5642, 2012.

[39] Bu W, Chen Z, Chen F and Shi J, “Oleic acid/oleylamine cooperative-

controlled crystallization mechanism for monodisperse tetragonal bipyramid

NaLa(MoO4)2 nanocrystals”, J. Phys. Chem. C, Vol. 113, pp. 12176-12185,

2009.

[40] Yi S. S, Bae J. S, Shim K.S, Moon B. K, Seo H. J, Jeong J. H and Kim J.H,

“Morphology and crystalline-phase-dependent luminescence of Li-doped

Gd2O3:Eu3+ thin films grown by pulsed laser deposition”, Appl. Phys. A,

Vol. 80, pp. 727–730 (2005).

[41] Park S. W, Moon B. K, Choi B. C, Jeong J. H, Bae J. S and Kim K. H, “Red

photoluminescence of pulsed laser deposited Eu:NaY(MoO4)2 thin film

phosphors on sapphire substrates”, Curr. Appl. Phys., Vol. 12, pp. S150-

S155, 2012.

[42] Le M. T, Kovanda M, Myslik V, Vrnata M, Driessche I. V and Hoste S,

“Pulsed laser deposition and dip-coating techniques in the fabrication of

bismuth molybdate gas sensors”, Thin Solid Films, Vol. 497, pp. 21, 2006.

[43] Kumar N, Misra P, Kotnala R. K, Gaur A, Rawat R, Choudhary R. J and

Katiyar R.S, “Polycrystalline Sr2FeMoO6 thin films on Si substrate by pulsed

Page 6: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

6

laser deposition for magnetoresistive applications”, Mat. Lett., Vol. 118, pp.

200–203, 2014.

[44] Yanagihara M, Yusop M. Z, Tanemura M, Ono S, Nagami T, Fukuda K,

Suyama T, Yokota Y, Yanagida T and Yoshikawa A, “Vacuum ultraviolet

field emission lamp utilizing KMgF3 thin film phosphor”, APL Mater., Vol. 2,

pp. 046110-6, 2014.

[45] Kuz’micheva G. M, Rybakov V. Zharikov B, E. V, Lis D. A and Subbotin K.

A, “Unusual structural properties of (Na0.5La0.5)MoO4:Er,Ce crystals”, Inorg.

Mater., Vol. 42, pp. 303-309, 2006.

[46] Suvorova E. I, Kuz’micheve G. M, Morozkin A. V, Zharikov E. V, Lis D. A

and Subbotin K. A, “Microstructure of (Na0.5La0.5)MoO4 crystals coactivated

with cerium and erbium ions”, Inorg. Mater., Vol. 43, pp. 287-291, 2007.

[47] Azaraff LV, “Elements of X-ray Crystallography”, McGraw-Hill, Second

Edition, USA, 1968.

[48] Bragg W. L, “The diffraction of short electromagnetic waves by a crystal”,

Proc. Camb. Phil. Soc., Vol. 17, pp. 43-57, 1913.

[49] Hammond C, “The Basics of Crystallography and Diffraction”, Oxford

University Press, Third edition, New York, 2009.

[50] Ropp RC, “Solid State Chemistry Techniques”, Elsevier Sicence B.V.,

Amsterdam, First Edition, The Netherlands, 2003.

[51] Willard HH, Merrit LL, Dean JA and Settle FA, “Instrumental Methods of

Analysis”, CBS Pub. & Distributors, Sixth Edition, New Delhi, 1986.

[52] Moulder JF, Stickle WF, Sobol PE and Bomben KD, “Handbook of X-Ray

Photoelectron Spectroscopy”, edited by Chastain J, Perkin-Elmer

Corporation, Eden Prairie, Minnesota, USA, 1992.

[53] Seah M. P and Dench W. A, ““Quantitative electron spectroscopy of

surfaces: a standard data base for electron inelastic mean free paths in

solids”, Surf. Interface Anal., Vol. 1, pp. 2-11, 1979.

[54] Scofield J. H, “Hartree-Slater subshell photoionization cross-sections at

1254 and 1487 eV”, J. Electron, Spectrosc. Relat. Phenom., Vol. 8, 129-

137, 1976.

Page 7: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

7

[55] Reilman R. F, Msezane A and Manson S.T, “Relative intensities in

photoelectron spectroscopy of atoms and molecules”, J. Electron.

Spectrosc. Relat. Phenom., Vol. 8, pp. 389-394, 1976.

[56] Spence JCH, “Experimental High-resolution Electron Microscopy”, Oxford

University Press, Secon Edition, New York, 1980.

[57] Smet P. F, Parmentier A. B and Poelman D, “Selecting conversion

phosphors for white light-emitting diodes”, J. Electrochem. Soc., Vol. 158,

pp. R37-R54, 2011.

[58] Xia Z, Zhuang J, Meijerink A and Jing X, “Host composition dependent

tunable multicolor emission in the single-phase Ba2(Ln1−zTbz)(BO3)2Cl:Eu

phosphors”, Dalton Trans., Vol. 42, pp. 6327-6336, 2013.

[59] Yang C. C, Tsai H. Y and Huang K. C, “Yellow-ring measurement of white

led in various lighting environments”, Opt. Rev., Vol. 20, pp. 232-235, 2013.

[60] Lin C. C and Liu R. S, “Advances in phosphors for light-emitting diodes”, J.

Phys. Chem. Lett., Vol. 11, pp. 1268-1277, 2011.

[61] Li Y. Q, van Steen J. E. J, van Krevel J. W. H, Botty G, Delsing A. C. A,

Disalvo F. J, de With G and Hintzen H. T, “Luminescence properties of red-

emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors”, J.

Alloys Compd., Vol. 417, pp. 273-279, 2006.

[62] Aboulaich A, Michalska M, Schneider R, Potdevin A, Deschamps J,

Deloncle R, Chadeyron G and Mahiou R, “Ce-doped YAG nanophosphor

and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-

emitting diode with high color rendering index”, Appl. Mater. Interfaces,

Vol. 6, pp. 252−258, 2014.

[63] Tomaszewicz E, Kaczmarek S. M and Fuks H, “New cadmium and rare-

earth metal molybdates with scheelite-type structure”, Mater. Chem. Phy.,

Vol. 122, pp. 595-601, 2010.

[64] Thongtem T, Kungwankunakorn S, Kuntalue B, Phuruangrat A and

Thongtern S, “Luminescence and absorbance of highly crystalline CaMoO4,

SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation

Page 8: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

8

method at room temperature”, J. Alloys Compd., Vol. 506, pp. 475-481,

2010.

[65] Ding Y, Yu S. H, Liu C and Zang Z. A, “3D architectures of iron molybdate:

phase selective synthesis, growth mechanism, and magnetic properties”,

Chem. Eur. J., Vol. 13, pp. 746-753, 2007.

[66] Lee G. H and Kang S, “Solid-solution red phosphors for white LEDs”, J.

Lumin., Vol. 131, pp. 2582-2588, 2011.

[67] Klug HP and Alexander LE, “X-ray Diffraction Procedures for Polycrystalline

and Amorphous Materials”, Wiley-Interscience, Second Edition, NewYork,

1974.

[68] Su Y, Li L and Li G, “Synthesis and optimum luminescence of CaWO4-

based red phosphors with codoping of Eu3+ and Na+”, Chem. Mater.,

Vol. 20, pp. 6060-6067, 2008.

[69] Xie A, Yang W and Zhang M, “Red emitting tungsto-molybdate phosphor

for near-ultraviolet light-emitting diodes-based solid-state lighting”, Sci.

China Phys. Mech. Astron., Vol. 55, pp. 1229-1234, 2012.

[70] Kuzmicheva G. M, Eremin A. V, Rybakov V. B, Subbotin K. A and Zharikov

E. V, “Structural features of phases (Na0.5R0.5)MO4 and (Na0.5R0.5)MO4:R′

(R = Gd, La; R′ = Er, Tm, Yb; M = W, Mo) of the scheelite family”, Russ. J.

Inorg. Chem., Vol. 54, pp. 854-863, 2009.

[71] Ronda CR, “Luminescence: From Theory to Applications”, Wiley-VCH

Verlag GmbH & Co. KGaA, Weinheim, 2008.

[72] Hu Y, Zhuang W, Ye H, Zhang S, Fang Y and Huang X, “Preparation and

luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white

LED”, J. Lumin., Vol. 111, pp. 139-145, 2005.

[73] Yang X, Zhou Y, Yu X, Demir H. V and Sun X. W, “Bifunctional highly

fluorescent hollow porous microspheres made of BaMoO4:Pr3+ nanocrystals

via a template-free synthesis”, J. Mater. Chem., Vol. 21, pp. 9009–9013,

2011.

[74] Wang H, Yi Z, Rao L, Liu H and Zeng S, “High quality multi-functional

NaErF4 nanocrystals: structure-controlled synthesis, phase-induced multi-

Page 9: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

9

color emissions and tunable magnetic properties”, J. Mater. Chem. C., Vol.,

1, pp. 5520- 5526, 2013.

[75] Wang E, Lam J. W. Y, Hu R, Zhang C, Zhao Y. S and Tang B. Z, “Twisted

intramolecular charge transfer, aggregation-induced emission,

supramolecular self-assembly and the optical waveguide of barbituric acid-

functionalized tetraphenylethene”, J. Mater. Chem. C., Vol. 2, pp. 1801-

1807, 2014.

[76] Zhang Q, Wang X and Zhu Y, “Multicolor upconverted luminescence-

encoded superparticles via controlling self-assembly based on hydrophobic

lanthanide-doped NaYF4 nanocrystals”, J. Mater. Chem., Vol. 21, pp.

12132-12138, 2011.

[77] Yu X, Shan Y, Li G and Chen K, “Synthesis and characterization of

bifunctional magnetic–optical Fe3O4@SiO2@Y2O3:Yb3+,Er3+ near-infrared-

to-visible up-conversion nanoparticles”, J. Mater. Chem., Vol. 21,

pp. 8104- 8109, 2011.

[78] Zhang L, Cao X. F, Ma Y. L, Chen X. T and Xue Z. L, “Pancake-like

Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis,

magnetic and photocatalytic properties”, New J. Chem., Vol. 34, pp. 2027-

2033, 2010.

[79] Sun Y, Hu J, Wang N, Zou R, Wu J, Song Y, Chen H, Chen H and Chen Z,

“Controllable hydrothermal synthesis, growth mechanism, and properties of

ZnO three-dimensional structures”, New J. Chem., Vol. 34, pp. 732-737,

2010.

[80] Nguyen T-D, Dinh C-T, Nguyen D-T and Do T-O, “A novel approach for

monodisperse samarium orthovanadate nanocrystals: controlled synthesis

and characterization”, J. Phys. Chem. C., Vol. 113, pp. 18584-18595, 2009.

[81] Aboulaich A, Deschamps J, Deloncle R, Potdevin A, Devouard B,

Chadeyron G and Mahiou R, “Rapid synthesis of Ce3+-doped YAG

nanoparticles by a solvothermal method using metal carbonates as

precursors”, New J. Chem., Vol. 36, pp. 2493-2500, 2012.

Page 10: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

10

[82] Zheng K, Liu Y, Liu Z, Chen Z and Qin W, “Color control and white up-

conversion luminescence of LaOF:Ln3+ (Ln = Yb, Er, Tm) nanocrystals

prepared by the sol–gel Pechini method”, Dalton Trans., Vol. 42, pp. 5159-

5166, 2013.

[83] Chen Q, Qin L, Feng Z, Ge R, Zhao X and Xu H, “Up-conversion

luminescence of KGd(MoO4)2:Er3+,Yb3+ powder prepared by Pechini

method”, J. Rare Earths., Vol. 29, pp. 843-848, 2011.

[84] Ding M, Lu C, Cao L, Huang W, Ni Y and Xu Z, “Molten salt synthesis of

tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor

up-conversion luminescence”, Cryst. Eng. Comm., Vol. 15, 6015-6021,

2013.

[85] Ergen O, Ruebusch D. J, Fang H, Rathore A. A, Kapadia R, Fan Z, Takei

K, Jamshidi A, Wu M and Javey A, “Shape-controlled synthesis of single-

crystalline nanopillar arrays by template-assisted vapor-liquid-solid

process”, J. Am. Chem. Soc., Vol. 132, pp. 13972- 13974, 2010.

[86] Guo L, Wang Y, Zou Z, Wang B, Guo X, Han L and Zeng W, “Facile

synthesis and enhancement up-conversion luminescence of ErF3

nano/microstructures via Li+ doping”, J. Mater. Chem. C., Vol. 2, pp. 2765-

2772, 2014.

[87] Liu X, Zhang J, Wang L, Yang T, Guo X, Wu S and Wang S, “3D

hierarchically porous ZnO structures and their functionalization by Au

nanoparticles for gas sensors”, J. Mater. Chem., Vol. 21, pp. 349-356,

2011.

[88] Cavalcante L. S, Almeida M. A. P, Avansi W, Tranquilin R. L, Longo E,

Batista N. C, Mastelaro V. R and Li M. S, “Cluster Coordination and

Photoluminescence Properties of α-Ag2WO4 Microcrystals”, Inorg. Chem.,

Vol. 51, pp. 10675−10687, 2012.

[89] Cavalcante L. S, Longo V. M, Sczancoski J. C, Almeida M. A. P, Batista A.

A, Varela J. A, Orlandi M. O, Longo E and Li M. S, “Electronic structure,

growth mechanism and photoluminescence of CaWO4 crystals”, Cryst.

Eng. Comm., Vol. 14, pp. 853-868, 2012.

Page 11: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

11

[90] Cavalcante L. S, Sczancoski J. C, Tranquilin R. L, Varela J. A and Longo E,

Orlandi M. O, “Growth mechanism of octahedron-like BaMoO4 micro

crystals processed in microwave-hydrothermal: Experimental observations

and computational modeling”, Particuology, Vol. 7, pp. 353-362, 2009.

[91] Liu D, Shi J, Tong L, Ren X, Li Q and Yang H, “YVO4:Eu3+, Dy3+@Fe3O4

co-doped nanocomposites: preparation, luminescent, and magnetic

properties”, J. Nanopart. Res., Vol. 14, pp. 1216-1222, 2012.

[92] Kurzen H, Bovigny L, Bulloni C and Daul C, “Electronic structure and

magnetic properties of lanthanide 3+ cations”, Chem. Phy. Lett., Vol. 574,

pp. 129-132, 2013.

[93] He F, Niu N, Wang L, Xu J, Wang Y, Yang G, Gai S and Yang P, “Influence

of surfactants on the morphology, up-conversion emission, and magnetic

properties of β-NaGdF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho)”, Dalton Trans., Vol.

42, pp. 10019-10028, 2013.

[94] Gupta B. K, Narayanan T. N, Vithayathil S. A, Lee Y, Koshy S, Reddy A. L.

M, Saha A, Shanker V, Singh V. N, Kaipparettu B. A, Marti A. A and Ajayan

P. M, “Highly luminescent-paramagnetic nanophosphor probes for in vitro

high-contrast imaging of human breast cancer cells”, Small, Vol. 8, pp.

3028-3034, 2012.

[95] X. Peng, “Mechanisms for the shape-control and shape-evolution of

colloidal semiconductor nanocrystals”, Adv. Mater., Vol. 15, pp. 459-463,

2003.

[96] Skoog DA West DM, Holler FJ and Crouch SR, “Fundamentals of analytical

chemistry”, Eight Edition, Thomson, Brooks/Cole, 1-1176, 2004.

[97] Khopkar SM, “Basic concept in analytical chemistry”, New Age International

publishers, Third Edition, Powai, Mumbai, India, 1-604, 2008.

[98] Xu L, Lu C, Zhang Z, Yang X and Hou W, “Various self-assembled three-

dimensional hierarchical architectures of La2(MoO4)3:controlled synthesis,

growth mechanisms, luminescence properties and adsorption activities”,

Nanoscale, Vol. 2, pp. 995-1005, 2010.

Page 12: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

12

[99] Thirumalai J, Chandramohan R, Ahamed M. B, Ezhilvizhian S and Vijayan

T. A, “Pr3+ doped BaMoO4 octahedron to shuttle-like micro crystals:

synthesis and luminescence properties”, J. Mater.Sci. Mater. Elec., Vol. 23,

pp. 325-333, 2012.

[100] Farha S. S. A, Badawy N. A, El-Bayaa A. A and Garamon S. A, “The effect

of chelating agent on the separation of some metal ions from binary mixture

solution by cation-exchange resin”, Nature and Science, Vol. 8, pp. 16-25,

2010.

[101] Goering PL, Fisher BR and Fowler BA, “The lanthanides. In: Metals and

their compounds in the environment”, Merian E (ed), Weinheim, New York,

Basel, Cambridge, 959-970, 1991.

[102] Jenkins GL, Knevel AM and Digangi FE, “Quantitative pharmaceutical

chemistry”, Mc-GrawHill Company, Sixth Edition, New York, 1-519, 1967.

[103] Jia C. J, Sun L. D, Luo F, Jiang X. C, Wei L. H and Yan C. H, “Structural

transformation induced improved luminescent properties for LaVO4:Eu

nanocrystals”, Appl. Phys. Lett., Vol. 84, pp. 5305-5307, 2004.

[104] Bomio M.R.D, Cavalcante L.S, Almeid M.A.P, Tranquilin R.L, Batist N.C,

Pizani P.S, Li M. S, Andres J and Longo E, “Structural refinement, growth

mechanism, infrared/Raman spectroscopies and photoluminescence

properties of PbMoO4 crystals”, Polyhedron, Vol. 50, pp. 532–545, 2013.

[105] Stevens S. B, Morrison C. A, Allik T. H, Rheingold A. L and Haggerty B. S,

“NaLa(MoO4)2 as a laser host material”, Phys. Rev. B Condens. Matter.,

Vol. 43, pp. 7386-7394, 1991.

[106] Thirumalai J, Chandramohan R, Auluck S, Mahalingam T and Srikumar S.

R, “Controlled synthesis, optical and electronic properties of Eu3+ doped

yttrium oxysulfide (Y2O2S) nanostructures”, J. Colloid Interface Sci., Vol.

336, pp. 889-897, 2009.

[107] Fu Z, Zhou S, Pan T and Zhang S, “Preparation and luminescent properties

of cubic Eu3+:Y2O3 nanocrystals and comparison to bulk Eu3+:Y2O3”, J.

Lumin., Vol. 124, pp. 213-216, 2007.

Page 13: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

13

[108] Raju G. S. R, Pavitra E, Ko Y. H and Yu J. S, “A facile and efficient strategy

for the preparation of stable CaMoO4 spherulites using ammonium

molybdate as a molybdenum source and their excitation induced tunable

luminescent properties for optical applications”, J. Mater. Chem., Vol. 22,

pp. 15562-15569, 2012.

[109] Chiu C. H, Liu C. H, Huang S. B and Chen T. M, “Synthesis and

luminescence Properties of intensely red-Emitting M5Eu( WO4 ) 4 − x( MoO4 )x

( M = Li ,  Na ,  K )  Phosphors”, J. Electro Chem. Soc., Vol. 155, J71-J78,

2008.

[110] Su L. T, Tok A. I. Y, Boey F. Y. C, Zhang X. H, Woodhead J. L and

Summers C. J, “Photoluminescence phenomena of Ce3+- doped Y3Al5O12

nanophosphors”, J. Appl. Phys., Vol. 102, pp. 083541-5, 2007.

[111] Du Y. P, Zhang Y. W, Sun L. D and Yan C.-H, “Atomically efficient

synthesis of self-assembled monodisperse and ultrathin lanthanide

oxychloride nanoplates”, J. Am Chem. Soc., Vol. 131, pp. 3162-3163,

2009.

[112] Wang Y, Dong Q, Wang Z and Yu X, “Advances in nanocomposites-

synthesis, characterization and industrial applications”, In: Reddy B (ed)

synthesis of nanosized luminescent materials and their photoluminescence

under VUV Excitation, Chapter-7, 1-37, 2011.

[113] Tian Y, Chen B, Tian B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J,

Zheng Y, Yu T, Huang L and Meng Q, “Concentration-dependent

luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor”,

J. Alloys Compd., Vol. 509, pp. 6096-6101, 2011.

[114] Marques A. P. A, Motta F. V, Cruz M. A, Varela J. A, Longo E and Rosa I.

L. V, “BaMoO4:Tb3+ phosphor properties: synthesis, characterization and

photophysical studies”, Solid State Ionics, Vol. 202, pp. 54-59, 2011.

[115] Neeraj S, Kijima N and Cheetam A. K, “Novel red phosphors for solid-state

lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M = Gd, Y, Bi)”, Chem.

Phys. Lett., Vol. 387, pp. 2-6, 2004.

Page 14: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

14

[116] Dutta S, Som S and Sharma S. K, “Luminescence and photometric

characterization of K+ compensated CaMoO4:Dy3+ nanophosphors”, Dalton

Trans., Vol. 42, pp. 9654-9661, 2013.

[117] Luo Y-S, Dai X-J, Zhang W-D, Yang Y, Sun C. Q and Fu S-Y, “Controllable

synthesis and luminescent properties of novel erythrocyte-like CaMoO4

hierarchical nanostructures via a simple surfactant-free hydrothermal

route”, Dalton Trans., Vol. 39, pp. 2226-2231, 2010.

[118] Li L, Zi W, Li G, Lan S, Ji G, Gan S, Zou H and Xu X, “Hydrothermal

synthesis and luminescent properties of NaLa(MoO4)2:Dy3+ phosphor”,

J. Solid State Chem., Vol. 191, pp. 175-180, 2012.

[119] Mickens M, Assefa Z and Kumar D, “Tunable white light-emission of a

CaW1−x MoxO4:Tm3+, Tb3+, Eu3+ phosphor prepared by a Pechini sol–gel

method”, J Sol-Gel Sci. Technol., Vol. 63, 153-161, 2012.

[120] Ajithkumar G, Yoo B, Goral D. E, Hornsby P. J, Lin A-L, Ladiwala U, Dravid

V. P and Sardar D. K, “Multimodal bioimaging using rare earth doped

Gd2O2S:Yb/Er3+ phosphor with up-conversion luminescence and magnetic

resonance properties”, J. Mater. Chem. B., Vol. 1, pp. 1561-1572, 2013.

[121] Wong H. T, Chan H. L. W and Hao J. H, “Magnetic and luminescent

properties of multifunctional GdF3:Eu3+ nanoparticles”, App. Phy. Lett., Vol.

95, pp. 022512, 2009.

[122] Gupta B. K, Rathee V, Narayanan T. N, Thanikaivelan P, Saha A, Govind,

Singh S. P, Shanker V, Marti A. A and Ajayan P. M, “Probing a bifunctional

luminomagnetic nanophosphor for biological applications: a

photoluminescence and time-resolved spectroscopic study”, Small, Vol. 7,

pp. 1767-1773, 2011.

[123] Chen G. Y, Liu Y, Zhang Y. G, Somesfalean G, Zhang Z. G, Sun Q and

Wang F. P, “Bright white up-conversion luminescence in rare-earth-ion-

doped Y2O3 nanocrystals”, Appl. Phys. Lett., Vol. 91, pp. 133103, 2007.

[124] Li H, Wang G, Zhang L, Huang Y and Wang G, “Growth and structure of

Nd3+-doped Li3Ba2Y3(WO4)8 crystal with a disorder structure”, Cryst. Eng.

Comm., Vol. 12, 1307-1310, 2010.

Page 15: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

15

[125] Meijer J. M, Aarts L, van der Ende B. M, Vlugt T. J. H and Meijerink A,

“Down-conversion for solar cells in YF3:Nd3+, Yb3+”, Phy. Rev. B., Vol. 81,

pp. 035107, 2010.

[126] Zheng K, Liu Z, Lv C and Qin W, “Temperature sensor based on the UV

up-conversion luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ codoped NaLuF4

microcrystals”, J. Mater., Chem. C., Vol. 1, pp. 5502-5507, 2013.

[127] Wang Y, Yang P, Ma P, Qu F, Gai S, Niu N, He F and J. Lin, “Hollow

structured SrMoO4:Yb3+, Ln3+ (Ln = Tm, Ho, Tm/Ho) microspheres: tunable

up-conversion emissions and application as drug carriers”, J. Mater. Chem.

B., Vol. 1, pp. 2056-2065, 2013.

[128] Chien Y-H, Chou Y-L, Wang S-W, Hung S-T, Liau M-C, Chao Y-J, Su C-H

and Yeh C-S, “Near-Infrared light photocontrolled targeting, bioimaging,

and chemotherapy with caged up-conversion nanoparticles in vitro and in

vivo”, ACS Nano, Vol. 7, 8516-8528, 2013.

[129] Singh S. K, Kumar K and Rai S. B, “Multifunctional Er3+–Yb3+ codoped

Gd2O3 nanocrystalline phosphor synthesized through optimized combustion

route”, Appl. Phys. B., Vol. 94, 165-173, 2009.

[130] Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D and Guo L-H, “Synthesis,

characterization, and biological application of size-controlled

nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors”,

Nano Lett., Vol. 4, pp. 2191-2196, 2004.

[131] Lie Y, Song H, Yang L, Yu L, Liu Z, Pan G, Bai X and Fan L, “Up-

conversion luminescence, intensity saturation effect, and thermal effect in

Gd2O3:Er3+,Yb3+ nanowires”, J. Chem. Phys., Vol. 123, pp. 174710, 2005.

[132] Li Y, Wang G, Pan K, Zhou W, Wang C, Fan N, Chen Y, Feng Q and Zhao

B, “Controlled synthesis and luminescence properties of rhombic

NaLn(MoO4)2 submicrocrystals”, Cryst. Eng. Comm., Vol. 14, pp. 5015-

5020, 2012.

[133] Wang X, Kong X, Shan G, Yu Y, Sun Y, Feng L, Chao K, Lu S and Li Y,

“Luminescence spectroscopy and visible up-conversion properties of Er3+ in

ZnO nanocrystals”, J. Phys. Chem. B., Vol. 108, pp. 18408-18413, 2004.

Page 16: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

16

[134] Wang G, Qin W, Wang L, Wei G, Zhu P and Kim R, “Intense ultraviolet up-

conversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals”,

Opt. Exp., Vol. 16, pp. 11908-11914, 2008.

[135] Chung J. H, Lee S. Y, Shim K. B and Ryu J. H, “White lighting up-

conversion in Tm3+/Ho3+/Yb3+ co-doped CaWO4”, App. Phy. Exp., Vol. 5,

pp. 052602, 2012.

[136] Basieve T. T, Sobol A. A, Voronko Y. K and Zverev P. G, “Spontaneous

Raman spectroscopy of tungstate and molybdate crystals for Raman

lasers”, Opt. Mater., Vol. 15, pp. 205-216, 2000.

[137] S. Hwang, Kang B-A, Hwangbo S, Kim Y-S and Kim J-T, “Low-temperature

synthesis of LiEuMo2O8 red phosphor for a white-light-emitting diode”,

Electron. Mater. Lett., Vol. 6, pp. 27-30, 2010.

[138] Comby S, Surender E. M, Kotova O, Truman L. K, Molloy J. K and

Gunnlaugsson T, “Lanthanide-functionalized nanoparticles as MRI and

luminescent probes for sensing and/or imaging applications”, Inorg. Chem.,

Vol. 53, pp. 1867-1879, 2014.

[139] Wu Y, Yang D, Kang X, Li C and Lin J, “Facile fabrication of water-soluble

Ln3+-doped β-NaGdF4 nanocrystals (Ln = Ce, Tb, Eu, Dy) with multicolor

luminescence and magnetic properties”, Mater. Res. Bull., Vol. 48, pp.

2843-2849, 2013.

[140] Ma Z. Y, Dosev D, Nichkova M, Gee S. J, Hammock B. D and Kennedy I.

M, “Synthesis and bio-functionalization of multifunctional magnetic

Fe3O4@Y2O3:Eu nanocomposites”, J Mater. Chem., Vol. 19, pp. 4695-

4700, 2009.

[141] Shi J, Liu D, Tong L, Yang X and Yang H, “Magnetic and

photoluminescence properties of Fe3O4@SiO2@YP1−xVxO4:Dy3+

nanocomposites”, J. Alloys Compd., Vol. 509, pp. 10211-102016, 2011.

[142] Vanderkooy A and Brook M. A, “Polyvinylpyrrolidone molecular weight

controls silica shell thickness on au nanoparticles with diglycerylsilane as

precursor”, Appl. Mater. Inter., Vol. 4, pp. 3980-3986, 2012.

Page 17: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

17

[143] Bagaria H. G, Kadali S. B and Wong M. S, “Shell thickness control of

nanoparticle/polymer assembled microcapsules”, Chem. Mater., Vol. 23,

pp. 301-308, 2011.

[144] Wei S, Wang Q, Zhu J, Sun L, Lin H and Guo Z, “Multifunctional composite

core–shell nanoparticles”, Nanoscale, Vol. 3, pp. 4474-4502, 2011.

[145] Jin G, Weng W, Lin Z, Dummer N. F, Taylor S. H, Kiely C. J, Bartley J. K,

and Hutchings G. J, “Fe2(MoO4)3/MoO3 nano-structured catalysts for the

oxidation of methanol to formaldehyde”, J. Catalysis, Vol. 296, pp. 55-64,

2012.

[146] Zhang Y, Zheng A, Yang X, He H and Fan Y, “Controlled synthesis,

characterization and photoluminescence property of olive-like tetragonal

α-Nd2(MoO4)3”, Mater. Res. Bull., Vol. 47, pp. 2364-2368, 2012.

[147] Radeva D. D, Blaskov V, Klissurski D, Mitov I and Toneva A, “Effect of the

mechanical activation of the reagents on the solid phase synthesis of iron

(III) molybdate”, J. Alloys Compd., Vol. 256, pp. 108-111, 1997.

[148] Kachkanov V, Wallace M. J, van der Laan G, Dhesi S. S, Cavill S. A,

Fujiwara Y and O’Donnell K. P, “Induced magnetic moment of Eu3+ ions in

GaN”, Sci. Rep., Vol. 2, pp. 969, 2012.

[149] Hughes I. D, Dane M, Ernst A, Hergert W, Luders M, Poulter J, Staunton J.

B, Svane A, Szotek Z and Temmerman W. M, “Lanthanide contraction and

magnetism in the heavy rare-earth elements”, Nature, Vol. 446, pp. 650-

653, 2007.

[150] Xu L, Yang X, Zhai Z, Chao X, Zhang Z and Hou W, “EDTA-mediated

hydrothermal synthesis of NaEu(MoO4)2 microrugbies with tunable size and

enhanced luminescence properties”, Cryst. Eng. Comm., Vol. 13, pp. 4921-

4929, 2011.

[151] Dalmaschio C. J, Ribeiro C and Leite E. R, “Impact of the colloidal state on

the oriented attachment growth mechanism”, Nanoscale, Vol. 2, pp. 2336-

2345, 2010.

[152] Donnay J. D. H and Harker D, “A new law of crystal morphology extending

the law of Bravais”, Am. Mineral., Vo. 22, pp. 446-467, 1937.

Page 18: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

18

[153] Li Z, Li C, Mei Y, Wang L, Du G and Xiong Y, “Synthesis of rhombic

hierarchical YF3 nanocrystals and their use as up-conversion

photocatalysts after TiO2 coating”, Nanoscale, Vol. 5, pp. 3030-3036, 2013.

[154] Ye X, Chen J, Engel M, Millan J. A, Li W, Qi L, Xing G, Collins J. E, Kagan

C. R, Li J, Glotzer S. C and Murray C. B, “Competition of shape and

interaction patchiness for self-assembling nanoplates”, Nature Chem., Vol.

5, pp.466-473, 2013.

[155] Gai S, Yang P, Li C, Wang W, Dai Y, Niu N and Lin J, “Synthesis of

magnetic, up-conversion luminescent, and mesoporous core–shell-

structured nanocomposites as drug carriers”, Adv. Funct. Mater., Vol. 20,

pp. 1166-1172, 2010.

[156] Zhang Y, Pan S, Teng X, Luo Y and Li G, “Bifunctional

magnetic−luminescent nanocomposites: Y2O3/Tb nanorods on the surface

of iron oxide/silica core−shell nanostructures”, J. Phys. Chem., Vol. 112,

pp. 9623-9626, 2008.

[157] Ali A. I, Ahmed M. A, Okasha N, Hammam M and Son J. Y, “Effect of the

La3+ ions substitution on the magnetic properties of spinal Li-Zn-ferrites at

low temperature”, J. Mater. Res. Technol., Vol. 2, pp. 356-361, 2013.

[158] Yang H. Wang W, Liu Z, Yang W and Li G, “Epitaxial growth mechanism of

pulsed laser deposited AlN films on Si (111) substrates”, Cryst. Eng.

Comm., Vol. 16, pp. 3148-3154, 2014.

[159] Zhang Y and Hao J, “Metal-ion doped luminescent thin films for

optoelectronic applications”, J. Mater. Chem. C., Vol. 1, pp. 5607-5618,

2013.

[160] Mahmood K, Swain B. S and Jung H. S, “Controlling the surface

nanostructure of ZnO and Al-doped ZnO thin films using electrostatic

spraying for their application in 12% efficient perovskite solar cells”,

Nanoscale, Vol. 6, pp. 9127-9138, 2014.

[161] Atanasov P. A, Tomov R. I, Perriere J, Eason R. W, Vainos N, Klini A,

Zherikhin A and Millon E, “Growth of Nd:potassium gadolinium tungstate

Page 19: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

19

(KGW) thin-film waveguides by pulsed laser deposition”, Appl. Phys. Lett.,

Vol. 76, pp. 2490-2492, 2000.

[162] Barreca D, Depero L. E, Noto V. D, Rizzi G. A, Sangaletti L and Tondello E,

“Thin films of bismuth vanadates with modifiable conduction properties”,

Chem. Mater., Vol. 11, pp. 255-261, 1999.

[163] Shaikh P. A, Thakare V. P, Late D. J and Ogale S, “A back-to-back MOS–

Schottky (Pt–SiO2–Si–C–Pt) nano-hetero junction device as an efficient

self-powered photodetector: one step fabrication by pulsed laser

deposition”, Nanoscale, Vol. 6, pp. 3550-3556, 2014.

[164] Patel P. K, Yadav K. L and Kaur G, “Reduced dielectric loss in

Ba0.95Sr0.05(Fe0.5Nb0.5)O3 thin film grown by pulsed laser deposition”, RSC

Adv., Vol. 4, pp. 28056- 28061, 2014.

[165] Eason R, “Pulsed laser deposition of thin films:applications-Led growth of

functional materials”, Wiley-Interscience, Hoboken, New Jersey, pp. 1-682,

2007.

[166] McKittrick J, Bacalski C. F, Hirata G. A, Hubbard K. M, Pattillo S. G,

Salazar K. V and Trkula M, “Characterization of photoluminescent

(Y1–xEux)2O3 thin films prepared by metallorganic chemical vapor

deposition”, J. Am. Ceram. Soc., Vol. 83, pp. 1241-1246, 2000.

[167] Li L, Zheng J, Zuo Y, Cheng B and Wang Q, “Structural and optical

properties of (Sr,Ba)2SiO4:Eu2+ thin films grown by magnetron sputtering”,

J. Lumin., Vol. 152, pp. 234-237, 2014.

[168] Yang H, Wang W, Liu Z and Li G, “Homogeneous epitaxial growth of AlN

single-crystalline films on 2 inch-diameter Si (111) substrates by pulsed

laser deposition”, Cryst. Eng. Comm., Vol. 15, pp. 7171-7176, 2013.

[169] Hazra C, Samanta T, Asaithambi A. V and Mahalingam V, “Bilayer

stabilized Ln3+-doped CaMoO4 nanocrystals with high luminescence

quantum efficiency and photocatalytic properties”, Dalton Trans., Vol. 43,

pp. 6623-6630, 2014.

[170] Thirumalai J, Chandramohan R and Saaminathan V, “Synthesis and

luminescence properties of EuMoO4 octahedron-Like microcrystals”,

Page 20: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

20

Materials Science and Technology, Prof. Sabar Hutagalung (Ed.), ISBN:

978-953-51-0193-2, InTech, pp. 275-286, 2012.

[171] Hou L, Cui S, Fu Z, Wu Z, Fu X and Jeong J. H, “Facile template free

synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor

tunable luminescence”, Dalton Trans., Vol. 43, pp. 5382-5392, 2014.

[172] Cao X, Li L, Wei X, Chen Y, Zhang W and Yin M, “CaMoO4:x%Yb3+: a

novel near-infrared quantum-cutting phosphors via cooperative energy

transfer”, J. Nanosci. Nanotechnol., Vol. 11, pp. 9543-9549, 2011.

[173] Nam H. J, Cha J, Lee S. H, Yoo W. J and Jung D-Y, “A new mussel-

inspired polydopamine phototransistor with high photosensitivity: signal

amplification and light-controlled switching properties”, Chem. Commun.,

Vol. 50, pp. 1458-1461, 2014.

[174] Datar A, Oitker R and Zang L, “Surface-assisted one-dimensional self-

assembly of a perylene based semiconductor molecule”, Chem. Commun.,

Issue 15, pp. 1649-1651, 2006.

[175] Parchur A. K and Ningthoujam R. S, “Behaviour of electric and magnetic

dipole transitions of Eu3+, 5D0 →7F0 and Eu–O charge transfer band in

Li+ co-doped YPO4:Eu3+”, RSC Adv., Vol. 2, pp. 10859-10868, 2012.

[176] Omkaram I, Rao V. B and Buddhudu S, “Photoluminescence properties of

Eu3+:MgAl2O4 powder phosphor”, J. Alloys Compd., Vol. 474, pp. 565-568,

2009.

[177] Xiao X, Lu G, Shen S, Mao D, Guo Y and Wang Y, “Synthesis and

luminescence properties of YVO4:Eu3+ cobblestone-like microcrystalline

phosphors obtained from the mixed solvent - thermal method”, Mater. Sci.

Eng. B, Vol. 176, pp. 72-78, 2011.

[178] Krishnan R and Thirumalai J, “Synthesis and up/down-conversion

luminescence properties of Na0.5R0.5MoO4:Ln3+ (R3+ = La, Gd), (Ln3+ = Eu,

Tb, Dy, Yb/Er) thin phosphor films grown by pulsed laser deposition

technique”, RSC Adv., Vol. 4, pp. 64258–64266, 2014.

[179] Katelnikovas A, Plewa J, Sakirzanovas S, Dutczak D, Enseling D, Baur F,

Winkler H, Kareiv A and Justel T, “Synthesis and optical properties of

Page 21: CHAPTER - 10 REFERENCESshodhganga.inflibnet.ac.in/bitstream/10603/49454/12/references.pdfAmsterdam, First Edition, The Netherlands, 2003. [51] Willard HH, Merrit LL, Dean JA and Settle

21

Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs”,

J. Mater. Chem., Vol. 22, pp. 22126-22134, 2012.

[180] Pontuschka W. M, Kanashiro L. S and Courrol L. C, “Luminescence

mechanisms for borate glasses: the role of local structural units”, Glass

Phys. Chem., Vol. 27, pp. 37-47, 2001.

[181] Becerro A. I, Rodriguez-Liviano S, Fernandez-Carrion A. J and Ocana M,

“A novel 3D architecture of GdPO4 nanophosphors: multicolored and white

light emission”, Cryst. Growth Des., Vol. 13, pp. 526-535, 2013.