Chapter 1 ordinary differential equations...

51
ME 501, Mechanical Engineering Analysis, Alexey Volkov 1 Chapter 1 Firstorder ordinary differential equations (ODEs) 1.1. Prerequisites. Formulation of engineering problems in terms of ODEs 1.2. Ordinary differential equations. Basic concepts 1.3. Firstorder ODEs. Initial value problem 1.4. Separable ODEs 1.5. Linear ODEs 1.6. Exact ODEs 1.7. ODEs that reduce to exact ODEs. Integrating factors 1.8. Relaxation and equilibrium Reading: Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011 Selection from chapter 1 Topics for selfstudying: 1.1

Transcript of Chapter 1 ordinary differential equations...

Page 1: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 1

Chapter 1 First‐order ordinary differential equations (ODEs)1.1. Prerequisites. Formulation of engineering problems in terms of ODEs1.2. Ordinary differential equations. Basic concepts1.3. First‐order ODEs. Initial value problem1.4. Separable ODEs1.5. Linear ODEs1.6. Exact ODEs1.7. ODEs that reduce to exact ODEs. Integrating factors1.8. Relaxation and equilibrium

Reading:

Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011Selection from chapter 1

Topics for self‐studying: 1.1

Page 2: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 2

1.1. Prerequisites. Formulation of engineering problems in terms of ODEsContinuous and discontinuous functions

Left‐hand limit : 0 lim, →

Right‐hand limit : 0 lim, →

Continuous function                         Discontinuous function                   Discontinuous functionJump discontinuity                          Infinite discontinuity

Function is continuous in point if the limit of as approaches through thedomain of exists and is equal to ,otherwise it is called discontinuous.Continuous function is, roughly speaking, a function for which small changes in the input resultin small changes in the output. .

lim→

and  exist and  and  exist but  Either  or  or both do not exist

Page 3: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 3

1.1. Prerequisites. Formulation of engineering problems in terms of ODEsBounded and differentiable functions

Bounded function in ( , Unbounded function in  , Non‐differentiable function in 

Function is bounded in some domain (interval ) if there is a number such that| | for any point in this domain, otherwise it is called unbounded.Practically it means that the absolute values of the bounded function can not be too large.Function is differentiable in point if the derivatives ′ exists, otherwise it iscalled non‐differentiable.Differentiable function is, roughly speaking, a function for which small changes in the inputresult in small changes in rate of change of this function.Function is smooth or infinitely differentiable if it has derivatives of any order in any pointof its domain of definition.

`

′ does not exist

Page 4: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 4

1.1. Prerequisites. Formulation of engineering problems in terms of ODEsExample tan

tan is continuous in 0. tan has infinite discontinuity in /2, 1, 2, 3, … tan is continuous in /2, /2 . tan is continuous in /4, /4 . tan is bounded in /4, /4 . tan is unbounded in /2, /2 . tan is differentiable everywhere with exception of /2, 1, 2, 3, …

Page 5: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 5

1.1. Prerequisites. Formulation of engineering problems in terms of ODEs

Finding minimum and maximum of a functionCondition of extremum: 

∗ 0

Minimum                                       Maximum

0 0

Example: , ∗ 2 ∗ 0 ⇒ ∗ 0is the extremum, ∗ 2 0 ⇒ ∗0 is the minimum

Full Empty 

Page 6: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Fundamental theorem of calculusSee https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

Here  is antiderivative of  . Then

and Eq. (1.1.1) can be re‐written as 

Chain ruleLet's consider two functions and . Function is the composition offunctions and . Then

ME 501, Mechanical Engineering Analysis, Alexey Volkov 6

1.1. Prerequisites. Formulation of engineering problems in terms of ODEs

(1.1.2)

(1.1.3)

(1.1.5)

(1.1.1)

(1.1.4)

Page 7: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 7

1.1. Prerequisites. Formulation of engineering problems in terms of ODEsIntegration by parts 

Example:

1

(1.1.4)

Page 8: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Variable change in integrals

Case I:⇒ ,

Case II:⇒ ,

Example:

1cos 1 sin

/

2

ME 501, Mechanical Engineering Analysis, Alexey Volkov 8

1.1. Prerequisites. Formulation of engineering problems in terms of ODEs

sinarcsincos

(1.1.6)

(1.1.7)

Page 9: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 9

1.1. Prerequisites. Formulation of engineering problems in terms of ODEsExponential decay 

Physical law: Number of nuclei exhibiting decay per unit time (radioactive decay rate)  is proportional to the current number of nuclei.

,  number of nuclei at time ′ / 0, decay rate

1st order ODE /

Solution:   exp

Initial condition:  0 0 , number of nuclei at  0

0exp

Half‐life τ is the time when a half of initial nuclei decayed

0/2 0exp → ln2/

Note: Exponential decay is characteristic for many physical process. For instance, friction forcesbetween two bodies sometime result in exponential decay of their relative velocity.

Time  /

Page 10: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 10

1.1. Prerequisites. Formulation of engineering problems in terms of ODEs

m

x

F

x0 y

Hook’s law x0, equilibrium distance ( 0 at  0) 0, displacement, spring stiffness

Oscillation (Periodic motion, Cyclic motion, Vibration)A body of mass m suspended on an elastic spring.

Physical law:  Newton’s 2nd law of motion,  ′′

2nd order ODE:  ′′

Solution: cos 2

Period of oscillation: 2 / / ,

Initial conditions: 0 0 , / 0 0displacement and velocity at time  0

cos 2

Note: Exponential decay and oscillation are two very general types of processes in nature. 

Page 11: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 11

1.1. Prerequisites. Formulation of engineering problems in terms of ODEs

Conclusions

If in some problem we need to find not an individual number, but a function (e.g.,coordinates of a body as functions of time), then the problem is usuallymathematically formulated in terms of differential equations.

In engineering and science, a differential equation is a mathematical formulation ofa physical law formulated in terms of rates of change (i.e. derivatives) of somephysical quantities.

Solution of a differential equation is not unique (It contains arbitrary constants). Itis a natural reflection of the fact that a physical law describes an infinitely largenumber of processes.

In order to obtain a unique process, a unique solution of a differential equation, weneed to use additional conditions, e.g., we need to fix initial conditions, i.e. specifythe initial state of the process.

The number of initial conditions (parameters which we need to fix at the initialtime) coincides with the highest derivative in the equation.

Page 12: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 12

1.2. Ordinary differential equations: Basic conceptsEquation = a way to formulate a mathematical problem. The solution of the problem (unknown) can be a number, a function, etc.

Differential equation is an equation‐ where the unknown is a function of one or a few independent variables.‐ which contains derivatives of the unknown function.

Ordinary differential equation (ODE) is a differential equation where unknown is a function of a single independent variable.Example: 

:        independent variable:  unknown function

Partial differential equation (PDE) is a differential equation, where unknown is a function of afew independent variables.Example: 

, :       independent variables, :  unknown function

Note: Laplace equation describes steady state temperature field , in a two‐dimensionaldomain, where the heat conduction is governed by the Fourier law and thermal conductivity isconstant.

: differential equation      

0 : Laplace equation      

Page 13: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 13

1.2. Ordinary differential equations. Basic conceptsThe general form of an ODE is   

, , ’, ’’, ’’’, … , 0 (1.2.1)

where   / is the derivative of  th order.

The order of the ODE is the highest order of derivatives in Eq. (1.2.1).Examples: , , ’ 0 general form of the 1st order equation’ , ’ , ’ 0 , , ’, ’’ 0 general form of the 2nd order equation

’’ ’ Linear differential equation of the 2nd order

To solve an ODE means to find all functions for which the equation becomes an identity. Anysuch function is called the solution of the ODE. The process of solving, i.e. findingthe ODE solutions, is often called integration, since it usually reduces to calculation of integrals.Note: It is easy to check whether a function is the solution or not: We should substitutethis function into the equation and ensure that it turns the equation into identity.Examples:

1. ’ , solution  , where  .2. ’ / , solution  2 2 .

In order to check, let’s differentiate the solution: 2 – 2 ’ 0 → ’ / .

Page 14: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 14

1.2. Ordinary differential equations. Basic concepts (optional)Explicit solution = solution in the form  (Example 1).Implicit solution = solution in the form  , 0(Example 2).There are a few general approaches for solving ODEs.1. To solve an ODE algebraically means to represent the solution in terms of some integrals. In

some cased these integrals can be further calculated in terms of elementary functions ( ,exp , sin , etc). Analytical solutions are exact. All other types of solutions are approximate.

Example: ’ exp 2 . Analytical solution exp 2 2. Series solution implies that the solution is represented as an infinite series. Although such a

representation can be mathematically accurate, when calculated practically, only a finitenumber of members is accounted for, so it becomes approximate.

3. Iterative solutions (Picard method).4. Numerical solutions, when approximate solution is find in the form of a table with finite

number of elements.

5. Asymptotic solutions are usually obtained analyzing singular solutions of equationscontaining small coefficient at highest derivative.

⋯ ⋯ Power series

, ≪ 1

Page 15: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 15

1.3. First‐order ODEs. Initial value problemThe general form of an ODE of the 1st order is

, , ’ 0 (1.3.1)As we noted before, a solution of Eq. (1.3.1) is not unique. A set of different solutions of Eq.(1.3.1) can be written in the form

, , 0. (1.3.2)where is an arbitrary real number. Solution in the form (1.3.2) termed general solution, sincethis equation includes a lot of solutions for different . A particular solution of Eq. (1.3.1) can beobtained from its general solution if variable c is replaced by a some particular real number.

Example: 1st order ODE: ’ – ’ 0General solution: – 2, family of straight linesCheck: ’ , 2– – 2 0Particular solution: 5 – 25

Along with particular solutions, an ODE can have singular solutions that cannot be obtainedfrom Eq. (1.3.2) by varying .

Example: 1st order ODE: ’ – ’ 0Singular solution: 2/4, parabolaCheck: ’ /2, 2/4– 2/2 2/4 0

Page 16: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 16

1.3. First‐order ODEs. Initial value problemGeometrical representation of solutions of ’ – ’ 0

General solution: – 2, family of straight linesSingular solution: 2/4, parabola

Singular solution

Particular solutions

x

y

Geometrical meaning of the general solutions: General solution represents a family of curves onthe plane , . Every particular choice of constant c corresponds to a particular solution andparticular curve in this family. Curves representing solutions of an ODE are called integralcurves. Some integral curves can intersect each other or reduce to a point on the plane , .

Page 17: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 17

1.3. First‐order ODEs. Initial value problemIn many engineering (and scientific) applications we are not interested in the general solution ofan ODE, but we are interested in the particular solution that satisfies some additionalcondition(s). For the 1st order ODE in the explicit form (resolved with respect to derivative)

(1.3.3)

such conditions can be formulated as a requirement that at some given point 0thesolution is equal to the prescribed value y0, i.e.

(1.3.4)

Eq. (1.3.4) is called the initial condition for Eq. (1.3.3).

A problem given by (1.3.3) and (1.3.4) is called the initial value problem (IVP) or Cauchyproblem.

Formulation of the IVP: To find a particular solution of Eq. (1.3.3) that satisfies condition (1.3.4).

Note: If we are able to find the general solution of Eq. (1.3.3) algebraically in the form , , 0, then in order to solve the initial value problem we need to find that satisfies

the equation

or

,

, , 0

Page 18: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 18

1.3. First‐order ODEs. Initial value problem

Example 1: ODE of the 1st order: ’ – ’ 0Initial condition:General solution: – 2, family of straight lines

Let’s find c:

Solution ofthe Cauchy problem:

0 ⟹ 2 2

1. 0/2 2 0: Two particular solutions, Solution is not unique!2. 0/2 2 0:One particular and one singular solution, Solution is not unique!3. 0/2 2 0: Solution does not exist!

2 2 2 2

Note: If we formulated an initial value problem, it does not necessarily mean that its solutionexists and is unique. We need to know when the unique solution exists.

We should be particularly careful about existence and uniqueness of the solution of the initialvalue problem if we solve the problem numerically using computers.

Page 19: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 19

1.3. First‐order ODEs. Initial value problem

Solution of the Cauchy problem:

ODE resolved withrespect to derivative (1.3.5)

2 2 2 2

′ 2 2

x

y

,

,

,

2 2

2 2

No solutions

Two solutions of (1.3.5)

One solution of (1.3.5),but two solutions of the initialequation

Page 20: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Example 2: ODE of the 1st order: ’ – /Initial condition: 0

General solution: , circles

Conclusions: The Cauchy problem may not have a solution at all. The Cauchy problem may have multiple solutions. Even if the Cauchy problem has a unique solution, this solution may not exist for arbitrary .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 20

1.3. First‐order ODEs. Initial value problem

x

y

, 0

This particular solution cannot be continued to 

0

Page 21: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 21

1.3. First‐order ODEs. Initial value problem (optional)Let’s consider the initial value (or Cauchy) problem for the 1st order ODE

(1.3.6)

Problem of existence: Under what conditions does an initial problem of the form (1.3.6) have atleast one solution (hence one or several solutions)? Such necessary conditions are given by theexistence theorem.Problem of uniqueness: Under what conditions does that problem have at most one solution?Such necessary conditions are given by the uniqueness theorem.In order to formulate these theorems we need to recall the notions of continuous and boundedfunctions. Function is said to be continuous in point if the limit of as approaches

through the domain of exists and is equal to , i.e. . Function is said to be continuous in some domain (interval , : ) if it is

continuous in every point of this domain. Practically, it means that, for a continuous function,small changes of x corresponds to small changes of the function itself.

Function is said to be bounded in some domain (interval ) if there is anumber such that | | for any point in this domain. Practically it means, that theabsolute values of the bounded function can not be too large.

Examples: tan is continuous, but unbounded in /2 /2, sign is not continuous at x = 0, but bounded at ∞ ∞.

,

lim→

Page 22: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 22

1.3. First‐order ODEs. Initial value problem (optional)Existence theorem (Peano existence theorem):Let the RHS,  , , in the Cauchy problem (1.3.6) 

1) be continuous at all points of some rectangle  : 

2) and bounded in  , i.e.  

Then the initial value problem (1.3.6) has at leastone solution . Such a solution exists at leastfor all in the subinterval

Example:Integral curve should lay between red lines

min , /

, forall , ∈

: , ,

/ , 0 1

: 0.5, 0.5

max ,0.50.5 1, min 0.5,0.5/1 0.5

Solutionexists at least at 0.5

2 212

x

y

1

2

Page 23: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 23

1.3. First‐order ODEs. Initial value problem (optional)A function  , is said to be Lipschitz continuous (or to satisfy the Lipschitz condition for y) in some domain G (e.g., interval  ) if there is a constant  M such that

(1.3.7)

Note: A function, which has a continuous and bounded derivative, | / | in any point in G, satisfies the Lipschitz condition in G. It is easy to prove, using the mean value theorem:

Examples: , satisfies the Lipschitz condition;, does not satisfies the Lipschitz condition for ∞ ∞.

Uniqueness theorem (Picard uniqueness theorem):Let the RHS , in the initial problem (1.3.6) is (1) continuous, (2) bounded, and (3) satisfiesthe Lipschitz condition for y in some rectangle

i.e. 

Then the initial value problem (1.3.6) has a unique solution. This solutions exists at least at

forall , from : | , , | | |

min , /

, , | |∈| − | | − |

: , ,

, , | , , | | − |forall , ∈

Page 24: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Note: The Lipschitz condition (or bounded derivative / ) is essential for uniqueness. Only theexistence of derivative / is not enough for the uniqueness of the solution of the initialvalue problem.Example: Initial value problem | |, 0 0 has two solutions

ME 501, Mechanical Engineering Analysis, Alexey Volkov 24

1.3. First‐order ODEs. Initial value problem (optional)

Page 25: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 25

1.4. Separable ODEsSeparable ODE or ODE with separable variables is an ODE which can be written in the form

’or, since ’ /

It is important that depends only on y and f depends only on in Eq. (1.4.1).

The general solution of Eq. (1.4.1) can be found by integrating left‐ and right‐hand sides of thisequation and can be written in the form

(1.4.2)

Note 1: In some cases, even if a equation does not look like Eq. (1.4.1), it can be easily reducedto the form of Eq. (1.4.1).

1. Equation reduces to / / .

2. Equation 1 1 2 2 0is also separable if 1 2 0, sincethen it reduces to

General solution of the separable ODE

(1.4.1)

Page 26: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 26

1.4. Separable ODEsNote 2: Geometrically, the general solution corresponds to a family of integral curves on theplane , . Any particular choice of parameter in Eq. (1.4.1) corresponds to an integral curve.

Examples: Equation of type

1 2

3 4

0,        , , , 0, 1

0

2 2 2

Circle

0

2 2 2

Hyperbole 

0

ln ln ln

Hyperbole

0

ln ln ln

Line

Note: In examples 1‐4, 0, 0 is the singular point = singular solution.

x x

y

c

x

y

x

y00

00

Page 27: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 27

1.4. Separable ODEsFor the 1st order ODE in the symmetrical form

the singular point 0, 0 is a point where 0, 0 0, 0 0.

Example 5:

Note 1: Gauss curve is important function in many applications Probability theory (Gaussian distribution of a random variable). Statistical physics and kinetic theory of gases (Maxwell‐Boltzmann velocity distribution).

Note 2: These examples show that different particular solutions are defined in different domains(intervals) of independent variable (example 1).

Note 3: We should be careful in derivation of general solutions: Operations like division, takingsquare root or ln can result in the “loss” of some particular solutions (example 4).

2 ⟹ 2 0

2 ̃ ⟹ ln ̃

exp ̃c exp

x

yc

, , 0

Gauss or bell‐shaped curve

Does not have a singular point

Page 28: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 28

1.4. Separable ODEs (optional)Example 6: Gas compression in a piston

Many problems in thermodynamics reduce to separable ODEsdue to the specific form of the 1st law of thermodynamics

Let's consider a fixed amount of an ideal gas (N molecules) in the piston, then

Assume that compression/decompression occurs adiabatically, i.e. 0:

, , ,

0

∶ SeparableEquation

Initialvalueproblem:

xO

S

Gas

Compression → Temperature risesDecompression → Temperature drops

Page 29: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 29

1.4. Separable ODEsSome equations can be reduced to the separable form by the change of variable.

A function , is called a homogeneous function of degree k if

(1.4.3)

Examples: , 2 2, 2 are homogeneous functions of degree 2

Let’s consider an ODE in the symmetrical form

(1.4.4)

where , and , are homogeneous functions of the same degree. We can prove that

1. An ODE (1.4.4), where , and , are homogeneous functions of the same degree,reduces to equation

(1.4.5)

Proof:

2. Any equation in the form (1.4.5) reduces to a separable ODE.Proof: Lets introduce new variable / or . Then

, ,

, , 0

1.4.4 ⟹,,

· 1, ·

· 1, ·

1,

1,

1,

1,⟹ 1.4.5

(1.4.3)

1.4.5 ⟹ ⟹ ⟹

Page 30: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 30

2.4. Separable ODEsExample:

1 /1 /

⟹ 11

1 1

1 1

arctan12 ln 1 ln

arctan12 ln 1 ln

Page 31: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 31

1.5. Linear ODEsAn ODE of the 1st order is said to be linear if it can be written as

(1.5.1)

where and are arbitrary functions of independent variable only. If 0, thenEq. (1.5.1) is said to be homogeneous equation, otherwise it is said to be nonhomogeneous.

Note 1: Existence and uniqueness theorem. For any ODE (1.5.1) with continuous andin , the Lipschitz condition holds and the Cauchy problem has a unique solution.

Proof:

since continuous function in the closed and bounded domain, , is bounded.

Note 2: Linear homogeneous equation is also separable and, thus, can be solved algebraicallyby the method developed for separable ODEs.

Note 3: Solutions of linear homogeneous ODEs possess the following property: if 1 and2 are two solutions, then 1 1 2 2 is also a solution ( 1 and 2 are

arbitrary constants).

Note 4: Any linear ODE can be solved algebraically. Two equivalent ways:1. To find an integrating factor and reduce Eq. (1.5.1) to an exact ODE: See Kreyszig, Sect. 1.5.2. To reduce Eq. (1.5.1) to a separable ODE.

, ⟹ , , | || | | |

Page 32: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Let’s look for a solution in the form(1.5.2)

and substitute Eq. (1.5.2) into Eq. (1.5.1). Then(1.5.3)

We can choose such that the sum of 2nd and 3rd terms in the LHS of Eq. (2.5.3) turns to 0:

(1.5.4)

Now let’s insert Eq. (1.5.4) into left‐hand part of Eq. (1.5.3):

(1.5.5)

0 ⟹ ⟹ ⟶ separableODE

exp

exp ⟹ exp ⟶ separableODE

exp Eq. 1.5.4 ⟹ Eq. 1.5.2

ME 501, Mechanical Engineering Analysis, Alexey Volkov 32

2.5. Linear ODEs

exp exp

General solution of the 1st orderlinear ODE

Page 33: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 33

1.5. Linear ODEsThe general solution can be written in a slightly different form

(1.5.6)

Example 1: ’ 2 is linear homogeneous ODE ( 2 , 0),solution is the Gauss curve

Example 2:

exp exp

2 : LinearODE: 2 ,

exp exp 2

exp 2

2

Page 34: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 34

1.5. Linear ODEs

1 2 cos 2 sin

Change of variable:      sin , cos

22

1 ∶ LinearODE: 2

1 , 2

21

11 ln 1

11

2 1 2

/2 11

arcsin arcsin/2 11

: Non‐linear equation

Example 3: Some non‐linear equations reduce to linear ones by the change of variable. 

Page 35: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 35

1.5. Linear ODEs

⟹ 1 ⟹ ′ ′

1′

1

′ 1 1

The 1st order ODE(1.5.7)

where  is an arbitrary real number, is called the Bernoulli equation.At 0 and 1 the Bernoulli equation is linear, otherwise is nonlinear, but it reduces to alinear equation by the change of variable.Let’s first transform Eq. (1.5.7) into 

and then introduce new variable u:

Problem: A specific case of the Bernoulli equation is the logistic equation( and are arbitrary constants), which corresponds to a simple model of the populationdynamics. Find a general solution of this equation.

: Linear ODE

Page 36: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 36

1.6. Exact ODEsThe 1st order ODE in the symmetrical form

(1.6.1)

is said to be exact if there is such function , that the left‐hand side if Eq. (1.6.1) isthe total (or exact) differential of , i.e. can be represented in the form

(1.6.2)

If Eq. (1.6.1) is exact then 0, which means that the general solution of exact Eq. (1.6.1)takes the form

(1.6.3)Comparing (1.6.1) and (1.6.2) one can conclude that for the exact equation

Assume that and have continuous first derivatives. Then

If mixed derivatives are continuous, then they are equal to each other, i.e.

(1.6.4)

, , 0

,

, ,

Page 37: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 37

2.6. Exact ODEs

(1.6.4)

Thus, condition (1.6.4) is necessary for the left‐hand size of Eq. (1.6.1) to be the total differential(necessity means that (1.6.2) results in (1.6.4) for arbitrary and ). Let’s prove that thecondition (criterion) given by Eq. (1.6.4) is sufficient, i.e. if arbitrary and satisfy (1.6.4), then

, exists which satisfy Eq. (1.6.2) and, thus, Eq. (1.6.1) is exact.

Plan of the proof:1. To construct a function , that satisfies / , and / , .2. To show that , becomes a solution if the criterion given by Eq. (1.6.4) is satisfied.

Let’s chose some point 0, 0 on plane , such that it belongs to a particular solution of Eq.(1.6.1) and in vicinity of this point any point also belongs to some particular solution.

Then let’s introduce a function , which satisfy equation / , . Then thesolution of the last equation along the path AB can be written in the form

(1.6.5)

If we do it at different y (taking different paths AB),then the “constant” depends on .

, ,

x0

x

y

y0 A

C B

Criterion of exactness

Page 38: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 38

1.6. Exact ODEs

(1.6.5)

Now let’s find that satisfies equation / , :

Now let’s integrate the obtained equation along path AC

choose the particular solution corresponding to 0, and substitute into Eq. (1.6.5)

(1.6.6)

, ,

,

, ⟹ , , ,

,

,

, , ,

x0

x

y

y0 A

C B

Page 39: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 39

1.6. Exact ODEs

Now we can prove that total differential of , given by Eq. (1.6.6) coincides with LHS of Eq.(1.6.1) and, thus, condition (1.6.4) implies that Eq. (1.6.1) is exact.

Eqs. (1.6.6) together with (1.6.3) give the general solution of exact Eq. (1.6.1).

, , ,

, ,

, , , , , ,

, ,

, ,General solution of the exact ODE

(1.6.4)

(1.6.7)

Here we use the fundamental theorem of calculus, Eq. (1.1.2)

Here we use Eq. (1.1.4)

Page 40: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Example 1:

Example 2:

0

1, 1 ⟹ Equationisexact

, ⟹

Generalsolution:

ME 501, Mechanical Engineering Analysis, Alexey Volkov 40

1.6. Exact ODEs

2 0

, ⟹ Equationisexact

, 2

Generalsolution:

Page 41: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 41

1.7. ODEs that reduce to exact ODEs. Integrating factorsAssume that a 1st order ODE in the symmetrical form

(1.7.1)

is not exact. Sometime it is possible to transform then such equation into the exact form aftermultiplying by a suitable function , ≢ 0. If Eq. (1.7.2)

(1.7.2)

is exact, then function , is termed the integrating factor for Eq. (1.7.1).

In order to find an integrating factor, one should use the criterion of exactness,

(1.7.3)

i.e. the integrating factor should be a solution of the partial differential equation

or

(1.7.4)

We cannot find a solution of (1.7.4). We even do not know whether the solution exists or not.

, , 0

, , , , 0

1 If integrating factor , exists, it must 

satisfy this equation

Page 42: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 42

1.7. ODEs that reduce to exact ODEs. Integrating factorsThere is no rule that can give us an integrating factor for any ODE. We can find the integratingfactor, if we reduce Eq. (1.7.4) to an ODE. The following theorem shows us how it can be done.Theorem:Let's consider a 1st order ODE in the symmetrical form, Eq. (1.7.1), and assume that we foundsuch function , that1. , has continuous derivatives / and / .2. , satisfies the equation

(1.7.5)

Then the integrating factor exists and is equal to(1.7.6)

Proof:Let’s look for , in the form , , . Then

Now we need to solve the separable ODE with respect to :

, , , exp[ ]

, ⟹ 1(1.7.4) (1.7.5)

1⟹ ln ⟹ exp .

is the composition of functions  and 

Here we use the 

chain rule, Eq. (1.1.5)

Page 43: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 43

1.7. ODEs that reduce to exact ODEs. Integrating factorsNote 1: The theorem shows that if there is , that satisfies Eq. (1.7.5), then integratingfactor can be easily found, since the partial differential equation Eq. (1.7.4) reduces to an ODE.Note 2: If an integrating factor exists, it is non‐unique. If , is an integrating factor, then1 , , is also an integrating factor (Here is an arbitrary differentiable

function): Let’s check that 1 and 1 satisfy the criterion of exactness given by Eq. (1.7.3):

Note 3: Search for integrating factors is usually limited by simple , . Examples:

1. , then Eq. (1.7.5) reduces to

2. , then Eq. (1.7.5) reduces to

3. , , , 2 2, etc.Example 1: 0.

.

1

1

2 ⟹ Let stry ⟹ 1

2 ⟹

0: Exact equation, solution .

HereweuseEqs. 1.7.2 and 1.7.3 for , : ,

Page 44: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

Example 2: Find an integrating factor and solve the equation

Solution:

Prompting: Use the rule for the inverse tangent of reciprocal argument:

2 1 1 2 1 ⟹ Let stry ⟹

2 1· 2 · 2

1 1⟹

Integratingfactorexists: / 1

1,

1

0: Exactequation

ME 501, Mechanical Engineering Analysis, Alexey Volkov 44

1.7. ODEs that reduce to exact ODEs. Integrating factors

0

arctan

arctan1

2 arctan

Page 45: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 45

1.8. Relaxation and equilibrium

Equation of motion of the sphere (Newton's 2nd law of motion) can be written as follows12 | |

where is velocity of the sphere, is the gravitational acceleration, is the sphere dragcoefficient, is the air density, and is the sphere cross section. We assume that

Here  2 | |/ is the Reynolds number;  is the air viscosity. It means that   | | .We assume that in the initial state  0 the sphere has the initial velocity  :

At 0: 0

Our goal is to predict the droplet velocity by solving the problem given by Eqs. (1.8.1), (1.8.2).

(1.8.1)

(1.8.2)

Let's consider a rain droplet: A sphere of radius and massthat moves in air along the vertical direction.

The motion of the sphere is affected by two forces: Gravityand aerodynamic drag force.

Aerodynamic drag

Gravity 

Drag force always decelerates the body, so its direction is opposite to velocity

Page 46: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 46

1.8. Relaxation and equilibriumPreliminary analysis of the problem

12 | |

We can notice that the gravity and drag forces tend to act in the opposite directions. Itmeans that at some they will counterbalance each other.

The situation, when there are factors that drive the system under consideration in opposite"directions" is quite common in engineering and natural sciences.

The state of our system when  and  / 0 is called the equilibrium state. In this problem, the equilibrium state is the state when the sphere moves with constant

equilibrium (terminal) velocity given by the condition / 0, i.e.

12 | |

The equilibrium state is the state that is established at  → ∞. Our ODE describes the dynamical process of approaching the equilibrium state from arbitrary

initial state. The process of transition to the equilibrium state is called the relaxation. Eq. (1.8.3) is the simple example of relaxation equations describing the relaxation processes. Equilibrium state can be established without solving the dynamical equation.

This is the algebraic equation that predicts the equilibrium state

(1.8.3)

(1.8.4)

Page 47: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 47

1.8. Relaxation and equilibriumLet's consider the case when Re << 1. In this case, the sphere is given by the Stokes equation

24 12| |

This is the result of the accurate solution of the Navier‐Stokes equations for fluid flow! Then12

This is the first‐order linear non‐homogeneous ODE.We can notice that the coefficient in the R.H.S. has unit of the inverse time, so let's introduce

12Then

The equilibrium velocity is given by the condition / 0, i.e.

The solution of the Cauchy problem with the initial conditions given by Eq. (1.8.2) reads/

This solution describes the relaxation of the sphere velocity from the initial velocity to theequilibrium velocity .

(1.8.5)

Page 48: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 48

1.8. Relaxation and equilibrium/

/

1

Parameter is equal to the time which is required to reduce the difference between the currentstate and equilibrium state in times. In relaxation problems, this parameter is called therelaxation time.

Let's consider the case when Re >> 1. In this case, the sphere drag coefficient , and

2 | | | | , 2This is the first‐order separable ODE. Let’s consider only the case when 0 and .The equilibrium velocity in this case is equal to

and Eq. (1.8.6) can be re‐written as

This is an example of non‐linear relaxation equation.

(1.8.6)

Page 49: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 49

1.8. Relaxation and equilibriumIn order to find the integral in the L.H.S, let's re‐write it as

1

1

From the comparison of the left and right‐hand sides in this equation we can conclude that

0 and 1/ , i.e. 1/ 2 and 1/ 2 , i.e.

2

Integration results in

log log 2 ⇒

This equation describes non‐linear relaxation of velocity from to .

(1.8.7)

Page 50: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 50

1.8. Relaxation and equilibrium

Velocity vs. time  | |, semilog scale

Non‐linear relaxation, Eq. (1.8.7)

Linear relaxation, Eq. (1.8.5)

For simplicity, let’s consider the case  1/ ,  ,  = 1 m/s,  1m/s 

In the non‐linear problem, | | exhibits approximately exponential decay. This is typical for relaxation problems.

/

We can introduce a relaxation time even for non‐linear problems

Relaxation time is 

Relaxation time is ~

Page 51: Chapter 1 ordinary differential equations (ODEs)volkov.eng.ua.edu/ME501/2017-Fall-ME501-01-ODE-Part1.pdf · 2017-04-30 · 1.2. Ordinary differential equations: Basic concepts Equation=

ME 501, Mechanical Engineering Analysis, Alexey Volkov 51

1.8. Relaxation and equilibriumDo we really need to solve the relaxation equation?

The answer depends on other time scales in theconsidered problem.

Assume that we are interested in the velocity of arain droplet after its fall from height .

The typical time required for this fall is equal to/ .

If / , the process is non‐equilibrium and inorder to describe it we really need to solve therelaxation equation.

If / ≫ , the process is quasi‐equilibrium andsmall error is made if we replace with . Inthis case, it is enough to find only the equilibriumstate, while the solution of full relaxation equation isredundant.