Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic...

15
Chapter 1 Flight Control Systems and Advanced Actuation Concepts The key element in the flight control system, increasingly so with the advent of fly-by-wire and active control units, is the power actuation. Actuation has always been important to the ability of the flight control system to attain its specified performance. The development of analogue and digital multiple-control lane technology has put the actuation central to performance and integrity issues. Power Actuation devices represent products that are typically utilized in applications that require load drive/control. These devices not only provide load control but also load/IC protection and status/diagnostic communication. The nature of the loads can be as simple as LEDs and as sophisticated as motors. The products control the loads as Low-side switches, High-side switches, H-Bridge drivers, MOSFET Pre-Drivers, and Squib Drivers 1 | Page

Transcript of Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic...

Page 1: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

Chapter 1

Flight Control Systems and Advanced Actuation

Concepts

The key element in the flight control system, increasingly so with the advent of fly-by-wire and active control units, is the power actuation. Actuation has always been important to the ability of the flight control system to attain its specified performance. The development of analogue and digital multiple-control lane technology has put the actuation central to performance and integrity issues. Power Actuation devices represent products that are typically utilized in applications that require load drive/control. These devices not only provide load control but also load/IC protection and status/diagnostic communication. The nature of the loads can be as simple as LEDs and as sophisticated as motors. The products control the loads as Low-side switches, High-side switches, H-Bridge drivers, MOSFET Pre-Drivers, and Squib Drivers

Above figure shows a simple control topology for linear/rotary mechanical actuation. Power is supplied to Power Drive Unit (PDU) – who converts the electrical or hydraulic power into mechanical motion (often rotary) and drives the mechanical actuation system. The motion commands go into the transmission box who decides the amount of actuator displacement, which in result is sensed by sensor and feedback to the system. Aircraft spoilers are one example of mechanical actuation system.

1 | P a g e

Page 2: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

Mechanical Actuators with Electrical Signalling

Majority of modern aircraft use electrical signalling and hydraulically powered (electro-hydraulic) actuators for a wide range of applications with varying degrees of redundancy. The demands for electro-hydraulic actuators fall into two categories: simple demand signals or auto-stabilization inputs.

Simple Demand Signals –are inputs from pilot control column, these signals travel electronically, but the rest of the process remained hydraulically controlled. In most cases where electrical signalling is used this will at least be duplex in implementation and for fly-by-wire systems signalling is likely to be quadruplex; An example of duplex electrical signalling with a simplex hydraulic supply is the spoiler actuators on the Tornado.

In general, those systems which extensively use simplex electrical signalling do so for auto-stabilization. In these systems the electrical demand is a stabilization signal derived within a computer unit. The simplest form of auto-stabilization is the yaw damper which damps out the cyclic cross-coupled oscillations which occur in roll and yaw known as ‘Dutch roll’. The Hawk 200 illustrated this implementation. Aircraft which require a stable platform for weapon aiming may have simplex auto stabilization in pitch, roll and yaw; an example of this type of system is the Harrier/AV-8A

Multiple Redundancy Actuation

Multiple-redundant architectures for the aircraft hydraulic and electrical systems must be considered as well as multiple-redundant lanes or channels of computing and actuation for control purposes. A simplified block schematic diagram of a multiple-redundant electro-hydraulic actuator is shown below: For reasons of simplicity only one lane or channel is shown; in practice the implementation is likely to be quadruplex, i.e. four identical lanes.

2 | P a g e

Page 3: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

The solenoid valve is energized to supply hydraulic power to the actuator, usually from two of the aircraft hydraulic systems.

Control demands from the flight control computers are fed to the servo valves. The servo valves control the position of the first stage valves that are mechanically summed before applying demands to the control valves. The control valves modulate the position of the control ram.

Linear Variable Differential Transformers (LVDTs) measure the position of the first-stage actuator and output ram positions of each lane and these signals are fed back to the flight control computers, thereby closing the loop

Following figure shows the relationship between the Flight Control Computers (FCCs), Actuator Drive Units (ADUs) and the actuators:

The foreplane actuators are fed quadruplex analogue demands from the quadruplex digital FCCs.

Demands for the left and right, inboard and outboard flaperons and the rudder are fed in quadruplex analogue form from the four ADUs

The ADUs receive the pitch, roll and yaw demands from the FCCs via dedicated serial digital links and the digital to analogue conversion is carried out within the ADUs.

3 | P a g e

Page 4: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

Advanced Actuation Concepts

So far mechanical actuators have been discussed in function using servo valves. The novel types of actuators are as follows:

Direct Driven Actuation The Electro-Mechanical Actuation (EMA) The Electro-Hydrostatic Actuation (EHA)

In the electro-hydraulic actuator a servo valve requires a relatively small electrical drive signal, typically in the order of 10 – 15 mA. The reason such low drive currents are possible is that the control signal is effectively amplified within the hydraulic section of the actuator. In the direct drive actuator the aim is to use an electrical drive with sufficient power to obviate the need for the servo valve/first stage valve. The main power spool is directly driven by torque motors requiring a higher signal current, hence the term ‘direct drive’.

The electromechanical actuator or EMA replaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox assembly applying the motive force to move the ram. EMAs have been used on aircraft for many years for such uses as trim and door actuation; however the power, motive force and response times have been less than that required for flight control actuation. The three main technology advancements that have improved the EMA to the point where it may be viable for flight control applications are: the use of rare earth magnetic materials in 270 VDC motors; high-power solid-state switching devices; and microprocessors for lightweight control of the actuator motor.

4 | P a g e

Page 5: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

Solid-state power switching devices allow the use of pulse width modulation techniques to maintain constant motor torque over the speed range and minimize power losses. Microprocessors offer a cheap and effective means of exercising the necessary control. Microprocessors also enable easy interfacing to an aircraft digital data bus system if this feature is required. At the moment EMAs may also be heavier than hydraulic actuators, however an aircraft level weight analysis may prove the installed EMA system to be lighter. One reservation which has been expressed is the reliability of the gearbox drive which is essential to the EMA.

A further option for flight control actuation which is under active development is the Electro-hydrostatic actuator or EHA. In the EHA an electric motor in each actuator drives a self-contained hydraulic system comprising pump and reservoir which provides the motive force to power the control surface to the demanded position. Once the control surface attains the demanded position the system ‘locks up’ and no further power is required while that control position is held. This has significant potential for use in high-power/sustained load applications such as a foreplane or stabilizer actuator, whereas an EMA would require power to hold the control surface position. The electric motor which drives the hydraulic pump is reversible. In EHA, the electro hydrostatic actuator matches well with the all-electric 270 VDC aircraft.

A common feature of all three new actuator concepts outlined above is the use of microprocessors to improve control and performance. The introduction of digital control in the actuator also permits the consideration of direct digital interfacing to digital flight control computers by means of data buses (ARINC 429/ARINC 629/1553B). The direct drive developments described emphasize concentration upon the continued use of aircraft hydraulics as the power source, including the accommodation of system pressures up to 8,000 psi. The EMA and EHA developments on the other hand lend themselves to a greater use of electrical power deriving from the all-electric aircraft concept, particularly if 270 VDC power is available.

Figure – the basic form of Electro-mechanical Actuation (EMA) system. Note the electrical signals and hydraulic power unit is being replaced by eclectic motor and gearbox which drives the actuator. It must be noted that high power actuation systems are characterised by wide bandwidth frequency response, low resolution and high stiffness. Here is EM servo actuation control model:

5 | P a g e

Page 6: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

In general the basic configuration of EMA includes the following:

Three phase brushless DC motor Precision ball screw – to provide linear output motion Spur gear reduction LVDT to provide position feedback Rotor position sensors for sequencing the electronic commutation Tachometer to provide minor-loop speed feedback for better servo performance

B777i Control System Implementation

The flight control and guidance of civil transport aircraft has steadily been getting more sophisticated in recent years. Boeing’s first fly-by-wire system on the Boeing 777 was widely believed to be a response to the Airbus technology development. The importance and integrity aspects of flight control lead to some form of monitoring function to ensure the safe operation of the control loop. Also for integrity and availability reasons, some form of redundancy is usually required.

In the Boeing philosophy shown in simplified form on the right of Figure below the system comprises three Primary Flight Computers (PFCs) each of which has three similar lanes with dissimilar hardware but the same software. Each lane has a separate role during an operating period and the roles are cycled after power-up. Voting techniques are used to detect discrepancies or disagreements between lanes and the comparison techniques used vary for different types of data. Communication with the four Actuator Control Electronics (ACE) units is by multiple A629 flight control data buses. The ACE units directly drive the flight control actuators. A separate flight control DC system is provided to power the flight control system.

6 | P a g e

Page 7: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

The Boeing 777 Primary Flight Control System (PFCS) is outlined at a system level in Figure below. The drawing shows the PFCS along the top together with the three CDUs. Most of the sensors are shown along the bottom of the diagram. The PFCS system units are interconnected by three ARINC 629 flight control data buses: left, centre and right. In total there are 76 ARINC 629 couplers on the flight control buses.

7 | P a g e

Page 8: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

The PFCS system comprises the following control surface actuators and feel actuators:

Four elevators. Left and right inboard and outboard. Elevator feel. Left and right. Two rudders. Upper and lower. Four ailerons. Left and right inboard and outboard. Four flaperons. Left and right inboard and outboard. Fourteen spoilers. Seven left and seven right

The flight control actuators are interfaced to the three A629 flight control data buses by means of Four Actuator Control Electronics (ACE) units. These are:

ACE Left 1 ACE Left 2 ACE Centre ACE Right

The above defined units interface in turn with the flight control and feel actuators in accordance with the scheme shown in the centre of above Figure. The (ACE) units contain the digital-to-analogue and analogue-to-digital elements of the system. A simplified schematic for an ACE is shown in Figure below: Each ACE has a single interface with each of the A629 flight control data buses and the unit contains the signal conversion to interface the ‘digital’ and ‘analogue’ worlds.

8 | P a g e

Page 9: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

The actuator control loop is shown in the centre-right of the diagram. The actuator demand is signalled to the Power Control Unit (PCU) which moves the actuator ram in accordance with the control demand and feeds back a ram position signal to the ACE, thereby closing the actuator control loop. The ACE also interfaces to the solenoid valve with a command to energize the solenoid valves to allow – in this example – the left hydraulic system to supply the actuator with motive power and at this point the control surface becomes ‘live’.

The flight control computations are carried out in the Primary Flight Computers (PFCs) shown in above model.

9 | P a g e

Page 10: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

Primary Flight Computer (PFC) Operation

Each PFC has three A629 interfaces with each of the A629 flight control buses, giving a total of nine data bus connections in all. These data bus interfaces and how they are connected and used form part of the overall Boeing 777 PFCS philosophy. The three active lanes within each PFC are embodied in dissimilar hardware. Each of the three lanes is allocated a different function as follows:

PFC command lane. The command lane is effectively the channel in control. This lane will output the flight control commands on the appropriate A629 bus; e.g. PFC left will output commands on the left A629 bus.

PFC stand-by lane. The stand-by lane performs the same calculations as the command lane but does not output the commands on to the A629 bus. In effect the stand-by lane is a ‘hot stand-by’, ready to take command in the event that the command lane fails. The stand-by lane only transmits cross-lane and cross-channel data on the A629 data bus.

PFC Monitor Lane. The monitor lane also performs the same calculations as the command lane. The monitor lane operates in this way for both the command lane and the stand-by lane. Like the stand-by lane, it only transmits cross-lane and cross-channel data on the A629 data bus.

As shown in PFC model above, each PFC will only transmit aircraft control data on the appropriate left, centre or right A629 data bus. Within each PFC the command, stand-by and monitor lane operation will be in operation as previously described and only the command channel – shown as the upper channel in the figure – will actually transmit command data.

Within this PFC and A629 architecture:

Cross-lane comparisons are conducted via the like bus (in this case the left bus). Cross-channel comparisons are conducted via the unlike buses (in this case the centre and

right buses).

This use of standard A629 data buses to implement the flight control integration and to host the cross-lane and cross-channel monitoring is believed to be unique in flight control. There are effectively nine lanes available to conduct the flight control function. In the event that a single lane fails then only that lane will be shut down. Subsequent loss of a second lane within that channel will cause that channel to shut down, as simplex control is not permitted.

The aircraft may be operated indefinitely with one lane out of nine failed. The aircraft may be dispatched with two out of nine lanes failed for ten days. The aircraft may be operated for a day with one PFC channel inoperative. The autopilot function of the Boeing 777 PFCS is undertaken by the three Autopilot Flight Director Computers (AFDCs): left, centre and right. The AFDCs have A629 interfaces on to the respective aircraft systems and flight control data buses. In other words, the left AFDC will interface on to the left A629 buses, the centre AFDC on to the centre buses and so on.

10 | P a g e

Page 11: Chapter 1 Web viewreplaces the electrical signalling and power actuation of the electro-hydraulic actuator with an electric motor and gearbox ... A separate flight control DC system

i Aircraft systems, Second Edition, Ian Moir and Allan Seabridge