Chap 5 Diffusion [Compatibility Mode]

26
Diffusion in Solids ISSUES TO ADDRESS... • How does diffusion occur? How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend on structure and temperature?

description

asn

Transcript of Chap 5 Diffusion [Compatibility Mode]

Page 1: Chap 5 Diffusion [Compatibility Mode]

Diffusion in Solids

ISSUES TO ADDRESS...

• How does diffusion occur?• How does diffusion occur?

• Why is it an important part of processing?

• How can the rate of diffusion be predicted forsome simple cases?

• How does diffusion depend on structureand temperature?

Page 2: Chap 5 Diffusion [Compatibility Mode]
Page 3: Chap 5 Diffusion [Compatibility Mode]

Diffusion MechanismsVacancy Diffusion:

• atoms exchange with vacancies• atoms exchange with vacancies• applies to substitutional impurities atoms • rate depends on:

number of vacancies--number of vacancies--activation energy to exchange.

increasing elapsed time

Page 4: Chap 5 Diffusion [Compatibility Mode]

Diffusion Mechanisms• Interstitial diffusion – smaller atoms

can diffuse between atoms.can diffuse between atoms.

Adapted from Fig. 5.3 (b), Callister 7e.

More rapid than vacancy diffusion

Page 5: Chap 5 Diffusion [Compatibility Mode]
Page 6: Chap 5 Diffusion [Compatibility Mode]

Processing Using Diffusion• Doping silicon with phosphorus for n-type semiconductors:• Process:

0.5mm 1. Deposit P rich

layers on surface.

magnified image of a computer chip

silicon

3. Result: Dopedsemiconductor

light regions: Si atoms

2. Heat it.

regions.

light regions: Al atomssilicon

light regions: Al atoms

Adapted from chapter-opening photograph, Chapter 18, Callister 7e.

Page 7: Chap 5 Diffusion [Compatibility Mode]
Page 8: Chap 5 Diffusion [Compatibility Mode]

Example: Chemical Protective Clothing (CPC)• Methylene chloride is a common ingredient of paint

removers. Besides being an irritant, it also may be g yabsorbed through skin. When using this paint remover, protective gloves should be worn.

• If butyl rubber gloves (0.04 cm thick) are used, what is the diffusive flux of methylene chloride through the

l ?glove?• Data:

diff i ffi i t i b t l bb– diffusion coefficient in butyl rubber: D = 110x10-8 cm2/s

– surface concentrations: C1 = 0.44 g/cm3

C2 = 0.02 g/cm3C1 0.44 g/cm

Page 9: Chap 5 Diffusion [Compatibility Mode]

Example (cont).

glove

• Solution – assuming linear conc. gradient

12- CCDdCDJ −−≅=2l

gC1

skinpaintremover

12-

xxD

dxDJ

−≅=

Dtb 6

l=

C2

remover

x1 x2

D = 110x10-8 cm2/s

C = 0 02 g/cm3

C1 = 0.44 g/cm3Data:

33

C2 = 0.02 g/cm3

x2 – x1 = 0.04 cm

scmg 10 x 16.1

cm) 04.0()g/cm 44.0g/cm02.0(/s)cm 10 x 110( 2

5-33

28- =−

−=J

Page 10: Chap 5 Diffusion [Compatibility Mode]

Diffusion and Temperature

• Diffusion coefficient increases with increasing T.

D = D exp⎛

⎝⎜

⎠⎟−

QdD Do exp⎝

⎜ ⎠ ⎟

RT

= diffusion coefficient [m2/s]D= pre-exponential [m2/s]= activation energy [J/mol or eV/atom]

Do

Qd

= gas constant [8.314 J/mol-K]= absolute temperature [K]

RT

Page 11: Chap 5 Diffusion [Compatibility Mode]

Diffusion and TemperatureD has exponential dependence on T

0 0

D ( 2/ )

10-8T(°C)15

00

1000

600

300

Dinterstitial >> DsubstitutionalC in α-FeC in γ-Fe

Al in AlFe in α-Fe

D (m2/s)

10-14 C in γ Fe Fe in α FeFe in γ-Fe

10 20

Adapted from Fig. 5.7, Callister 7e. (Date for Fig. 5.7 taken from E.A.

1000K/T0.5 1.0 1.510-20

Brandes and G.B. Brook (Ed.) Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1992.)

Page 12: Chap 5 Diffusion [Compatibility Mode]

Example: At 300ºC the diffusion coefficient and activation energy for Cu in Si areactivation energy for Cu in Si are

D(300ºC) = 7.8 x 10-11 m2/sQd = 41.5 kJ/molQd 41.5 kJ/mol

What is the diffusion coefficient at 350ºC?

transform data

D ln D

⎞⎛⎞⎛ 11 QQ

Temp = T 1/T

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛−=

101

202

1lnln and 1lnlnTR

QDDTR

QDD dd

⎟⎞

⎜⎛2 11lll QDDD d

⎟⎟⎠

⎞⎜⎜⎝

⎛−−==−∴

121

212

11lnlnln TTR

QDDDD d

Page 13: Chap 5 Diffusion [Compatibility Mode]

Example (cont.)

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−= 12

11exp TTR

QDD d

⎦⎣ ⎠⎝ 12 TTR

T1 = 273 + 300 = 573K1

T2 = 273 + 350 = 623K

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

−= −

K 5731

K 6231

K-J/mol 314.8J/mol 500,41exp /s)m 10 x 8.7( 211

2D

D2 = 15.7 x 10-11 m2/s2

Page 14: Chap 5 Diffusion [Compatibility Mode]

Non-steady State Diffusiony• The concentration of diffucing species is a

function of both time and position C = C(x,t)• In this case Fick’s Second Law is used

2CDC ∂∂Fick’s Second Law2x

Dt ∂

=∂

Fick s Second Law

Page 15: Chap 5 Diffusion [Compatibility Mode]

Non-steady State Diffusion• Copper diffuses into a bar of aluminum.

pre existing conc C of copper atoms

Surface conc., C of Cu atoms bars pre-existing conc., Co of copper atoms s

Cs

Adapted from Fig. 5.5, Callister 7e.

B.C. at t = 0, C = Co for 0 ≤ x ≤ ∞

at t > 0, C = CS for x = 0 (const. surf. conc.)

C = Co for x = ∞

Page 16: Chap 5 Diffusion [Compatibility Mode]

Solution: ( )

⎟⎠

⎞⎜⎝

⎛−=−

−Dtx

CCCt,xC

os

o

2 erf1

C(x,t) = Conc. at point xat

CS

⎠⎝ DtCC os 2

at time t

erf (z) = error function C(x t)erf (z) error function

Co

C(x,t)

dye yz 2

0

2 −∫π=

erf(z) values are given in T bl 5 1Table 5.1

Page 17: Chap 5 Diffusion [Compatibility Mode]

How much is erf(0 24)? =>erf(z)?How much is erf(0.24)? =>erf(z)?erf (?) is 0.85? =>erf inverse(0.85)?

Page 18: Chap 5 Diffusion [Compatibility Mode]

Non-steady State Diffusiony• Sample Problem: An FCC iron-carbon alloy

initially containing 0 20 wt% C is carburized atinitially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentrationthat gives a surface carbon concentration constant at 1.0 wt%. If after 49.5 h the concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the treatment was

i d tcarried out.

⎞⎛− xCtxC )(• Solution: use Eqn. 5.5 ⎟⎠

⎞⎜⎝

⎛−=−

−Dtx

CCCtxC

os

o

2erf1),(

Page 19: Chap 5 Diffusion [Compatibility Mode]

Solution (cont ): ⎟⎞

⎜⎛−=

− xC)t,x(C o erf1Solution (cont.): ⎟⎠

⎜⎝

−=− DtCC os 2

erf1

– t = 49.5 h x = 4 x 10-3 m– Cx = 0.35 wt% Cs = 1.0 wt%– Co = 0.20 wt%

⎞⎛ )(erf12

erf120.00.120.035.0),( z

Dtx

CCCtxC

os

o −=⎟⎠

⎞⎜⎝

⎛−=

−−

=−

∴ erf(z) = 0.8125

Page 20: Chap 5 Diffusion [Compatibility Mode]

Solution (cont.):We must now determine from Table 5.1 the value of z for which the error function is 0.8125. An interpolation is necessary as follows

z erf(z)0.90 0.7970 7970.08209.0

7970.08125.090.095.0

90.0−−

=−

−z

z 0.81250.95 0.8209

z = 0.93

Now solve for D

Dtxz

2=

tzxD 2

2

4=

/sm10x 6.23600

h 1m)10 x 4( 2112

23

2

2−

−==⎟

⎟⎞

⎜⎜⎛

=∴xD

s 3600h)5.49()93.0()4(4 22 ⎟⎠

⎜⎝ tz

Page 21: Chap 5 Diffusion [Compatibility Mode]

Solution (cont.):• To solve for the temperature

at which D has above value, )lnln( DDRQTo

d−

=

we use a rearranged form of Equation (5.9a);

f T bl 5 2 f diff i f C i FCC Ffrom Table 5.2, for diffusion of C in FCC Fe

Do = 2.3 x 10-5 m2/s Qd = 148,000 J/mol

/s)m10x6.2ln/sm10x3.2K)(ln-J/mol 314.8(J/mol 000,148

21125 −− −=T∴

))((

T = 1300 K = 1027°CT 1300 K 1027 C

Page 22: Chap 5 Diffusion [Compatibility Mode]
Page 23: Chap 5 Diffusion [Compatibility Mode]
Page 24: Chap 5 Diffusion [Compatibility Mode]

Example: Chemical Protective Cl hi (CPC)Clothing (CPC)

• Methylene chloride is a common ingredient of paint removers. Besides being an irritant, it also may be absorbed through skin. When using this paint remover, protective gloves should be worn.protective gloves should be worn.

• If butyl rubber gloves (0.04 cm thick) are used, what is the breakthrough time (tb), i.e., how long could the gloves be used before methylene chloride reaches the hand?

• Data (from Table 22.5)Data (from Table 22.5)– diffusion coefficient in butyl rubber:

D = 110x10-8 cm2/s

Page 25: Chap 5 Diffusion [Compatibility Mode]

Example (cont).

glove

• Solution – assuming linear conc. gradientg

C1

skinpaintremover 2l

Equation 22.24

C2

remover

x1 x2 Dtb 6

2l=

i4240cm)04.0( 2t

Time required for breakthrough ca 4 min

min4 s 240/s)cm 10 x 110)(6(

cm)04.0(28- ===bt

Time required for breakthrough ca. 4 min

Page 26: Chap 5 Diffusion [Compatibility Mode]

SummaryDiffusion FASTER for... Diffusion SLOWER for...

y

• open crystal structures

• materials w/secondary

• close-packed structures

• materials w/covalent• materials w/secondarybonding

• smaller diffusing atoms

• materials w/covalentbonding

• larger diffusing atoms• smaller diffusing atoms

• lower density materials

• larger diffusing atoms

• higher density materials