ChandraLecture18-revised · abstract 1. Wakefield: robustly elevated energy state, relativistic...

36
!"#$%&$'()* +")$,- /0&'$/ )1&$21$- "2( 3"44"5,"6 78,)/) !"#$% !&'%(& )"*(&+ -"#."/0* 1$&%*2 31 4*5%+0 667789: ;&+&<&=&2 >&?&+ )"5@ 9A2 AB9:

Transcript of ChandraLecture18-revised · abstract 1. Wakefield: robustly elevated energy state, relativistic...

  • !"#$%&$'()*+")$,-./0&'$/.)1&$21$-."2(.3"44"5,"6.78,)/)

    !"#$% !&'%(&)"*(&+,-"#."/0* 1$&%*2,31,4*5%+0

    667789:;&+&&?&+

    )"5@,9A2,AB9:

  • Acknowledgements of collaboration and my sincere thanks to:G. Mourou*, K. Nakajima, X. Q. Yan, D. Farinella, F. Dollar, W. Brocklesby, S. Steinke,B. Barish**, M. Downer, T. Ebisuzaki, A. Mizuta, K. Abazajian, M. Spiro, M. Teshima,

    K. Mima, Y. Kato, Y. Kishimoto, S. Bulanov, R. X. Li, A. Necas, S. Gales, M. Leroy, T. Massard, Y. Brechet, M. Kikuchi, F. Tamanoi, S. Hakimi, S. Nicks,

    X.M. Zhang, Y. Shin, P. Taborek, A. Caldwell, K. Shibata, R. Matsumoto,+J. M. Dawson, +N. Rostoker

    * 2018 Nobel, ** 2017 Nobel

  • abstract1. Wakefield: robustly elevated energy state, relativistic coherence,

    Higgs’ state of plasma ßàField Reversed Configuration: robustly elevated energy state (elevation à Landau-Ginzburg-like potential)

    2. Laser acceleration drove (1979) laser innovations: CPA (1985)*, RC (2004), CAN laser (2013), TFC (2014)

    3. Nature prevalently creates wakefields: AGN accretion disk and jetsFermi acceleration à Wakefields acceleration

    4. Gamma-ray bursts (Blazars): signature of wakefieldsGRB : sometimes accompanied by Gravitational Waves (GW)**

    5. CAIL and Toilet Science6. New technology thin film compression (TFC) à

    Leading to a new innovation X-ray LWFA7. “TeV on a chip” (X-ray LWFA); coherent γ-ray laser; new

    zeptosecond science; medical (and other compact) accelerators

  • !"#$%&'(#$)*+!"#$%&'(#$)*+

    !"#$#%&'()*(+,-#*.#"/'

  • !"#$%&'"($)*$+,&-!'./0&123245&&&&

    !"#$%!"#$%& "&%! "'(%)"#$%*+$",-%"./%)",$%'#$%& "&%!#"

    ! relativityregularizes

    (relativistic coherence)

    !"#$%&'"($%)$*+,-./%00%.'$12"*%(&$$3 4)&' 00%%).' 5 !"#$%&'()*%"+(,+-./'01(2+/.&+"(345((&%'$0%'$"(678$%$9:&%$6(#;77:8 "07#/0#7+ /%#"+"(?+$96$

    Relativistic coherence enhances beyond the Tajima-Dawson field E = m!pc /e (~ GeV/cm)

    807.$9(2+%&(:.;(-%"+7 %,+"(0.("%0#7%0'.$(%&)-'0#6+?((E = m!vph /e

    ,"

  • a) a) Classical EMClassical EM : : vvososos z >> !!!x

    a0 =eA0mc2

    =eE0!mc 2

    !"#$%&'&(%&)*+,+#&+"$-&%.*/+0"-*&+%"+("*#$("-

    !"#$%#&'())&*'&+,-.,-/&0*1)-1,#"&2&+31&,1$&)")41(*-&()$0*-$)$'*(%$&,1$&$13(.5&6$0,-)78&

    !

    "

    !"#$#%

    &''()*+,-*-'./0121)013*./)'-*140'4)105*&''()*+,-*-'./0121)013*./)'-*140'4)105*aa0 0 = #$ %&'"c > 1 !"#$#%*! 6176*+1'.(*)31'43'**89:;*!"#

  • !"#$%&'()'&*%&(+*,(-&.#/0#'1* 2&31(4055*6

    !!

    !$0+0&' +&788%(+*,(9&831&8:;03?#3?0&'(! @AB(! C&%=8! 4055*(+&788%!"#$%&' )'&*%&(DE(9&31&8(1&%)035(! D&.#/0#'1* F()'&*%&(D0?"(#'#+&?#1(#3#$5G!"#$%&' )'&*%&(! H0#'1(I#+#$*#1(A>3/058$&?0>3()'&*%&(

    "9&31&8(1&%)035#$$%&'()$*+$&,'-.&%$/(0&1$.*$&23-4-56-37$84&+.$9-'.36&:;

    -&.#/0#'1#$

  • ΔE ≈ 2m0c2a02γ ph2 = 2m0c

    2a02 ncrne

    #

    $%%

    &

    '((,

    20

    2 ,crd pe

    nL an

    lp

    æ ö= ç ÷

    è ø 01 ,3

    crp p

    e

    nL an

    lp

    æ ö= ç ÷

    è ø

    (when 1D theory applies)

    Theory of wakefield toward extreme energies

    In order to avoid wavebreak,a0 < γph1/2 ,

    whereγph = (ncr / ne )1/2

    100

    101

    102

    103

    104

    105

    106

    107

    Ele

    ctro

    n en

    ergy

    (M

    eV)

    1017 1018 1019 1020

    Plasma density (cm-3)

    1 GeV

    1 TeV

    dephasing length pump depletion length

    ←experimental

    ←theoretical

    ncr =1021ne = 1016

  • !"#$%&'(#$)*+!"#$%&'(#$)*+

    !"#$%&'()$&*+$,&'()$!-%%.+()$

  • !"!# !"!$ !"!% !"!&

    !

    !"

    !""

    !"""'()

    *+,-".!!"!/

    !"#$

    !%&'()*+,) -#.")

    )+/0((1(

    0$2

    (,1()+/0

    &"(((1(

    01(234536

    71

    !""5'()

    !58()

    9:6;+65?(27+(1=6:5

  • !"#$%$&'()*+,-.-/0'-"&(1$'2"%3(!""#$#%&'()*+,-./(0#10(2%3(24'%5()6789(:;89./(

  • !"#$%&'(#$)*+!"#$%&'(#$)*+

    !"#$%&'()!"#$%"*)+",&-.&*/(01)2",-.&*/( /%.3&4)56/.(,)789).4(#"5.*.#6)

    ,-'./0*1' 2#%*34%5.#(67*(#4%8$+.4%9:";

  • !"#$%&'()*%+%(,

    -.($/

    )0.1%.+2'

  • Γ

    ICRR Jan. 12, 20182018/11/29

    Alfven Wa

    ves

    Wake at bow of Alfven Pulse

    Bow Wake Acceleration 14

    EM Waves

    EM Waves

  • !"#$%&'(()*+#$'" !"#$""%&,-.$"'/$#0 '%(&&1'2)(3$"4)53)*+,&6*+7+(/

    !"#$%&'(()*+#$'" +)&,-.$"'/$#03! +) 8+..+%(+0 '%(-+$"*&.%("/&&" .%.,"

    9:+;)

  • !"#$%&'$()*&+*,-##-*.-)*/#$''$&%*-%0*'1/2(."#*345***67898:6*;$(*?@A*=!

    !"#$%&'$()*!

    +,-./*0%1-2"

    01-34*-,$'&1-*5&6*738-5$-419*$%1-2*"#$#%&

    :(;-67$'- " '#%*?3@$#3>*A3'-B373*CDDCE*?383;3';$>*A$44#3%>*?3@$#3*FGGG>*HI$'"J38$>*?3@$#3*FGCKL*

    +(6&%B*3..6-($&%" '(6&%B*738-5$-41

    !"#$%&'$()*!

    ($#-

    #"$%

  • !"#$%&%'(#)*+#$,*#(-*!#..#*/0"1&1

    2,".% 1#&,))%&,*!"34!5# 6#..#*/0"1&1**********************************!# !7 $%&'()*&+,-".)-'-/-$"01221"34)$5$

    $--"673+$4,18+ -5"19:";?@-45)*&"$51)#@-45)*&"$51)"'*99+$+*&"

    ! $+2+91)"A18-B+-9/$6C181(1$(+"-5"19D";

  • !"#$%&'(#$)*+!"#$%&'(#$)*+

    !"#$%'(%)*(+,-..#*$%/$0)1234%/$0%!*#'-5%67#-$7-

    ,-.(-./%0#%*12%34"567

  • G. Mourou*, et al. Eur. Phys. J. (2014)

    Single-cycle laser (new Thin Film Compression)

    Optical nonlinearity of thin film à pulse frequency width bulge, pulse compression

    1PW

    10PW

    Laser power energy / pulse lnegth

  • Chirped Mirror: CMGold Mirror: GMWedge: WTFC Target (Fused Silica): TFC

    F. Dollar, D. Farinella, T. Nguyen, TT

    CM

    CM

    GM

    GM

    W

    WTFC

    UCI TFC

  • Adiabatic (Gradual) Acceleration from #1 lesson of Mako-Tajima problem (1978)

    Inefficient if suddenly

    accelerated

    Efficient when

    gradually accelerated

    Accelerating structure!

    protons "! Accelerating structure!

    !"##$%&'()&*+,-.,/&,00"/"+,12$%&3&4"/"5,%1&6$+&2$%#

  • !

    !

    Adiabatic (Shinkansen) acceleration (2) Thick metal target

    laser protons electrons

    Graded, thin (nm), or clustered target and/or circular polarization

    Most experimental configurations of

    proton acceleration(2000-2009)

    Innovation (“Adiabatic Acceleration”)(CAIL, 2009-)

    "#$%&'()#&(#*+,%#&'%#%-%!&.(/0#12&'2/#2(/#&.+332/4#12)&'

  • !"#$"%&'("'"%)*(+,-($./01'",,(&2(2&/3

    4$"/'1"(567879

    �/a0

    Emax[M

    eV]

    � ⇡ a0

    $:%)"$($./01'",,(;'&%

  • !"#$%&'()*)+&,$-./$01'".1"2)$34(5'(($0"(567"*+).*'8'('2,

    9:2& ;".247,"7,

    !

    9?*2 ;".247,<@)'("2$01'".1"<

    A"*+).*'>"$2)*)1'"2-($'**4"**"(56'.5('12"/$

    !"#$%"&'"()*+,-.//01

  • !"#$"#%&'($")*+,-./&'012341&'5346,$78'917#$,':;"7"

  • !"#$%&'(#$)*+!"#$%&'(#$)*+

    !"#$%&'()*&+,&-$,./0#1201#3

    ,*-'.*/%012%334%53"6789$*:;%%53"6?8

  • Relativistic Compression

  • !"#$%'(%)*(+,-..#*$%/!&)0%#$1*%23#$4'-5)67'-8%92.-, :;'.-

    !"#$"#%&'&($")*+,-./'&012341'&5346,$7 89:;

  • !"#"$%&'()"*(+,#-(./!"#$%!&'( )*##&+,%

    -*!*.#/",&0&'" *'/1&/#.+#$!"$%2"'*$%345/016/788/9:;;

    -5/?"+*!%@ 9ABC=D/)*!*.#/",.0&'"9:;;E=

    2"'*/4*,%#D!%F.3%/$4%/#$*))&'(/

    )*G%!@%%)/#$!*'(/G"@%H&%,F#

    !I"!!&"(%/*H/!"!#$%&' "'F'()'*+(%,-*.&(%!&%

    /0"$(" 1!234*$(2%1".56.34*-%!.($7*89:;*

  • !"#$%&'()*+,-"../#01-/2-2'2/10#3403#"-5'6".%"&7 '44"&"#'0%/2

    !"#$%&'(#$)*+!"#$%&'(#$)*+

  • X-ray laser with short length and small spot:NB: electrons in outers-shell bound states, too, interact with X-rays

    Simulation:Laser pulse with small spot can be well controlled and guided with a tube. Such structure available e.g. with carbon nanotube, or alumina nanotubes (typical simulation parameters)

    024 3

    1 , 4, 5 , 3 /

    5 10 / , 2.5L L

    tube tube

    nm a nm nm cn cm nml s t

    s

    = = = =

    = ´ =

    X.M. Zhang, et al.PR AB (2016)

    X-ray wakefield accelerationin nanomaterials tubes

    T. Tajima, EPJ (2014)

  • Wakefield comparison between the cases of a tube and a uniform density

    uniform density case

    tube case

    X. M. Zhang, Tajima,…Mourou*,… (2016)

  • !"#$%&'(%)"#$*+#%!"#$%&' "(!)!)*+,&)%(,*(-.%*/%*0#"1&. 0$*'*'%23&'1$!""#$"#%&'(%"%)*"+$",-.'/*%0"12"3"456789

    ! '&'*0.&45*'"14 "'%673&8 3-9"5-

    !"#$*+#%.#"1-%/*31-%:";-;%0.&45&

  • !"#$%&$'()*+)"),-&.!"#$%&'()* "+)%',-'./)$-0&%1+)23

    45'6712'.8

    9:;3

    45'6712'.8

    9:;3

  • Conclusions• Robust heightened energy state of plasma, Higgs’ state: Wakefields• In fusion plasma: FRC (Field Reverse Configuration), a Higgs’ state (or Landau-Ginzburg

    excited stable state)

    • Wakefields: Nature’s natural and ubiquitous creation: jets from Blackhole (AGN) driven by MRI instability of the accretion disk, NS-NS collisions

    • Gamma rays bursts (TeV), flares, Cosmic rays (ZeV): simultaneous observations (sometimes with GW à Barish**’s LIGO observation of GW)

    • Toilet Science: efficient ion acceleration for transmutation• A new direction of ultrahigh intensity: zeptosecond lasers• EW 10keV X-rays laser from 1PW optical laser• Single-cycled X-ray laser pulse (relativistic compression)• X-ray LWFA in crystal: accelerating gradient (from GeV/cm) àTeV/cm • Nanoengineering: s.a. nanoholes, arrays, focus nano-optics for nano-accelerator• Start of zeptoscience: ELI-NP zeptoproject (collaboration)---

    laser tools fit for nuclear phys. (ßàattoseconds for atoms)

    • Scale revolution: eVàkeV; PWàEW; asàzs; μmànm; GeV/cmàTeV/cm;• 100màcm; μ-beamànanobeam; 1018 /cc à 1024/cc

    àsocietal impact (medical, Toilet Science,…)• Laser acceleration: stimulated high field science laser technologies (CPA*, RC, CAN, TFC, …)

  • !"#$%&'()*+()&,#)-",&./0+()&$)1,)1/2&./0

    !!"!!"#$!%&