cha10

5
PHYS 635 Solid State Physics Take home exam 1 Gregory Eremeev Fall 2004 Submitted: November 8, 2004 Problem 1:Ashcroft & Mermin, Ch.10, p.189, prob.2 a) Let’s prove β xx = β yy = β zz = β (1) β xx = - dr · Ψ * x (r) · Ψ x (r) · ΔU (r)= - dr · x 2 ·|φ(r)| 2 · ΔU (r) = - dr · y 2 ·|φ(r)| 2 · ΔU (r)= - dr · Ψ * y (r) · Ψ y (r) · ΔU (r)= β yy (2) Now 0= β xx - β yy = - dr · (x 2 - y 2 ) ·|φ(r)| 2 · ΔU (r) (3) If we here make the change of variables: x = x - y; y = x + y, which is basically rotation in space, then we will get 0= β xx - β yy = - dr· (x· y) ·|φ(r)| 2 · ΔU (r)= β xy =0 (4) b) In the case of a simple cubic Bravais lattice with γ ij (R) negligible for all but the nearest-neighbor R let’s calculate ˜ γ xy (k). We should take into account 6 neighbors: R = a(±1, 0, 0); a(0, 0, ±1); a(0, ±1, 0) (5) ˜ γ xy (k)= - e ikxa dr · xyφ(r)φ ( (x - a) 2 + y 2 + z 2 ) 1 2 ΔU (r) - e -ikxa dr · xyφ(r)φ ( (x + a) 2 + y 2 + z 2 ) 1 2 ΔU (r) - e ikya dr · x(y - a)φ(r)φ ( x 2 +(y - a) 2 + z 2 ) 1 2 ΔU (r) - e -ikya dr · x(y + a)φ(r)φ ( x 2 +(y + a) 2 + z 2 ) 1 2 ΔU (r) - e ikza dr · xyφ(r)φ ( x 2 + y 2 +(z - a) 2 ) 1 2 ΔU (r) - e -ikza dr · xyφ(r)φ ( x 2 + y 2 +(z + a) 2 ) 1 2 ΔU (r)=0 (6) , because under rotation transformation xy, y-x each integral changes sign. c) The energies are found by setting to zero the determinant: |(ε(k) - E p )δ ij + β ij γ ij (k)| =0 (7) 1

description

Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed Condensed

Transcript of cha10

  • PHYS 635 Solid State Physics

    Take home exam 1

    Gregory Eremeev

    Fall 2004Submitted: November 8, 2004

    Problem 1:Ashcroft & Mermin, Ch.10, p.189, prob.2

    a) Lets provexx = yy = zz = (1)

    xx = dr x(r) x(r) U(r) =

    dr x2 |(r)|2 U(r)

    = dr y2 |(r)|2 U(r) =

    dr y(r) y(r) U(r) = yy

    (2)

    Now0 = xx yy =

    dr (x2 y2) |(r)|2 U(r) (3)

    If we here make the change of variables: x = x y; y = x+ y, which is basically rotation in space, then wewill get

    0 = xx yy = dr (x y) |(r)|2 U(r) = xy = 0 (4)

    b) In the case of a simple cubic Bravais lattice with ij(R) negligible for all but the nearest-neighborR lets calculate xy(k). We should take into account 6 neighbors:

    R = a(1, 0, 0); a(0, 0,1); a(0,1, 0) (5)

    xy(k) = eikxadr xy(r)

    (((x a)2 + y2 + z2) 12)U(r)

    eikxadr xy(r)

    (((x+ a)2 + y2 + z2

    ) 12)U(r)

    eikyadr x(y a)(r)

    ((x2 + (y a)2 + z2) 12)U(r)

    eikyadr x(y + a)(r)

    ((x2 + (y + a)2 + z2

    ) 12)U(r)

    eikzadr xy(r)

    ((x2 + y2 + (z a)2) 12)U(r)

    eikzadr xy(r)

    ((x2 + y2 + (z + a)2

    ) 12)U(r) = 0

    (6)

    , because under rotation transformation xy, y-x each integral changes sign.

    c) The energies are found by setting to zero the determinant:

    |((k) Ep)ij + ij + ij(k)| = 0 (7)

    1

  • First we will prove that

    (k) Ep + + xx(k) = (k) lon0(k) + 40cos(12kya

    )cos

    (12kza

    )(8)

    , where 0(k),0,1 and 2 are those from A & M. In nearest-neighbor approximation we will have the 12nearest neighbors of the origin at

    R =a

    2(1,1, 0); a

    2(1, 0,1); a

    2(0,1,1) (9)

    In order to prove (6) we should calculate xx(k) in this approximation:

    xx(k) =R

    eikRxx(R) =

    ei a2 (kx+ky)dr x

    (x a

    2

    )(r)

    (((x a

    2

    )2+(y a

    2

    )2+ z2

    ) 12)U(r)

    ei a2 (kxky)dr x

    (x a

    2

    )(r)

    (((x a

    2

    )2+(y +

    a

    2

    )2+ z2

    ) 12)U(r)

    ei a2 (kx+ky)dr x

    (x+

    a

    2

    )(r)

    (((x+

    a

    2

    )2+(y a

    2

    )2+ z2

    ) 12)U(r)

    ei a2 (kxky)dr x

    (x+

    a

    2

    )(r)

    (((x+

    a

    2

    )2+(y +

    a

    2

    )2+ z2

    ) 12)U(r)

    ei a2 (kx+kz)dr x

    (x a

    2

    )(r)

    (((x a

    2

    )2+ y2 +

    (z a

    2

    )2) 12)U(r)

    ei a2 (kxkz)dr x

    (x a

    2

    )(r)

    (((x a

    2

    )2+ y2 +

    (z +

    a

    2

    )2) 12)U(r)

    ei a2 (kx+kz)dr x

    (x+

    a

    2

    )(r)

    (((x+

    a

    2

    )2+ y2 +

    (z a

    2

    )2) 12)U(r)

    ei a2 (kxkz)dr x

    (x+

    a

    2

    )(r)

    (((x+

    a

    2

    )2+ y2 +

    (z +

    a

    2

    )2) 12)U(r)

    ei a2 (ky+kz)dr x2(r)

    ((x2 +

    (y a

    2

    )2+(z a

    2

    )2) 12)U(r)

    ei a2 (kykz)dr x2(r)

    ((x2 +

    (y a

    2

    )2+(z +

    a

    2

    )2) 12)U(r)

    ei a2 (ky+kz)dr x2(r)

    ((x2 +

    (y +

    a

    2

    )2+(z a

    2

    )2) 12)U(r)

    ei a2 (kykz)dr x2(r)

    ((x2 +

    (y +

    a

    2

    )2+(z +

    a

    2

    )2) 12)U(r)

    (10)

    Notice that

    dr x

    (x a

    2

    )(r)

    (((x a

    2

    )2+(y a

    2

    )2+ z2

    ) 12)U(r) = 2 (11)

    dr x2(r)

    ((x2 +

    (y +

    a

    2

    )2+(z +

    a

    2

    )2) 12)U(r) = 0 + 2 (12)

    2

  • Thus we have:

    xx(k) =(ei

    a2 (kx+ky) + ei

    a2 (kxky) + ei

    a2 (kx+ky) + ei

    a2 (kxky)

    + eia2 (kx+kz) + ei

    a2 (kxkz) + ei

    a2 (kx+kz) + ei

    a2 (kxkz)

    )2

    +(ei

    a2 (ky+kz) + ei

    a2 (kykz) + ei

    a2 (ky+kz) + ei

    a2 (kykz)

    )(2 + 0)

    (13)

    And

    xx(k) =(2cos

    (a2(kx + ky)

    )+ 2cos

    (a2(kx ky)

    )+ 2cos

    (a2(kx + kz)

    )+ 2cos

    (a2(kx kz)

    ))2

    +(2cos

    (a2(ky + kz)

    )+ 2cos

    (a2(ky kz)

    ))(2 + 0) =(

    4cos(12kxa

    )cos

    (12kya

    )+ 4cos

    (12kxa

    )cos

    (12kza

    ))2

    + 4cos(12kya

    )cos

    (12kza

    )(2 + 0)

    (14)

    Now lets get back to (6):

    (k) Ep + + xx(k) =

    (k) Ep + +(4cos

    (12kxa

    )cos

    (12kya

    )+ 4cos

    (12kxa

    )cos

    (12kza

    ))2+

    4cos(12kya

    )cos

    (12kza

    )(2 + 0) =

    (k) Ep + +(4cos

    (12kxa

    )cos

    (12kya

    )+ 4cos

    (12kxa

    )cos

    (12kza

    )+

    4cos(12kya

    )cos

    (12kza

    ))2 + 4cos

    (12kya

    )cos

    (12kza

    )0 =

    (k) 0(k) + 40cos(12kya

    )cos

    (12kza

    )(15)

    The same way one can verify other elements of matrix (10.33) in A & M.

    d) For k=0 all three bands are degenerate and 0 = Ep12240 Ep = 0+12 2+4 0;X - k =

    (2pia , 0, 0

    ), where 0 1.

    e1()e0

    = 1 +8 2e0

    (1 cos (pi )) (16)

    e2()e0

    = 1 +8 2 + 4 0

    e0 (1 cos (pi )) (17)

    the energy band (16) is double degenerate; L - k = 2pia (, , ), where 0 12e1()e0

    = 1 +12 2 + 4 0 4 1

    e0 (sin2 (pi )) (18)

    the energy band (18) is double degenerate,

    e2()e0

    = 1 +12 2 + 4 0 + 8 1

    e0 (sin2 (pi )) (19)

    3

  • Figure 1: Energy bands along X.

    Figure 2: Energy bands along L.

    Problem 2 Solution was kindly provided by Professor Vinay Ambegaokar

    a) Best done in scalar potential gauge:

    H =p2

    2m+ e(~x) =

    p2

    2m e ~E ~x

    ~p =1i~[~p, ~H] = e ~E

    (20)

    b) Best done in the vector potential gauge:

    H = ei~~E~xtH exp

    i

    ~~E ~xt+ e ~E ~x = 1

    2m(~p+

    e

    c~Et)2 (21)

    Note:Eigenvalues depend on ~p(t) = ~p0 + e ~Et, ~p = e ~EShrodinger equation in this gauge

    i~

    t= [

    12m

    (~p+e

    c~Et)2 + U(x)], (22)

    where U(x) is periodic potetial

    a(t) d3x ei~k0~x(~x, t)

    b(t) d3x ei(~k0 ~K)~x(~x, t)

    (23)

    4

  • Assume that only two Fourier components of U are inportant

    U(x) = Ukei~K~x + Ukei

    ~K~x

    i~da

    dt=

    ~2

    2m( ~k1 +

    e

    c~Et)2a+ Ukb

    i~db

    dt=

    ~2

    2m( ~k0

    +e

    c~Et)2b+ Uka

    ~k0 = ~k0 ~K

    (24)

    Note:in this problem inversion symmetry UK = UK is assumed. Time-reversal invariance assures UK = Uk

    c) Remove the diagonal terms by the transformation

    a = eih

    R t0 (t

    )dta

    b = eih

    R t0

    (t)dtb(25)

    to obtain

    i~da

    dt= e

    ih

    R t0 [(t

    )(t)]dtUk b

    i~db

    dt= e

    ih

    R t0 [(t

    )(t)]dtUk a(26)

    The most important time is when the levels cross ~k = ~k = ~K2 . The integrand in the expression (20) is then~2m

    e~~E ~K(t t0). Define em ~E ~K. Note that has units of (time)2. For very weak UK , a = const 1.

    i~db

    dt= ei

    2 (tt0)2e

    i2 t

    20UK

    i~b = UKdt ei2 (tt0)2 phase

    (27)

    The transition from b = 0 to finite b occures on the time scale 12 . In the small UK or strong E limit, this

    time is much smaller than the mixing time for a and b, ~|UK | . One can then do the integral over all times

    dt ei2 (tt0)2 = i

    2pi

    (28)

    So finally one has

    |b|2 = |b|2 = 2pi|Uk|2

    ~22(29)

    which is the answer given.

    d) |b2| 1 is the condition|Uk|2 ~

    2eEK

    m(30)

    Since K 1a0 a0 is an atomic length and ~2

    ma20 F a typical electron energy The condition is

    eEa0 |UK |2

    f(31)

    The opposite of the condition for no electrical breakdown.

    5