Ch1 BigHistory Garber - Latest News ·...

6
CHAPTER 1: PRECAMBRIAN ROCKS OF THE GRAND CANYON JOSHUA GARBER INTRODUCTION In his 1879 expedition through the Grand Canyon, John Wesley Powell identified and described a “Great Unconformity,” an angular unconformity separating tilted Precambrian rocks from nearly flatlying Phanerozoic sediments. The Precambrian rocks below the unconformity are the igneous, sedimentary, and metamorphic basement to the Colorado Plateau, a stable and quiescent tectonic block on the North American continent. The Grand Canyon provides a unique exposure into these rocks as the Colorado River erodes off the edge of the Colorado Plateau into the Basin and Range physiographic province. Two important geologic stories are contained within the Precambrian section. The first is a record of the Paleoproterozoic assembly of the Laurentian craton, as various continental and arc fragments collided and amalgamated with an older continental nucleus. The second history is that of the sedimentary, deformational, climatic, and tectonic history during the assembly and subsequent breakup of the Rodinian supercontinent. Both stories suffer from a clear selection bias; much of the section is missing, and what is present is spatially and temporally limited, but decades of geologic research (including numerous recent studies) have helped to clarify them and place them in a global context. Here, I discuss the general geology of the Precambrian Grand Canyon section, its exposure, and its effect on the modern Grand Canyon. THE GRAND CANYON METAMORPHIC SUITE The deepest and oldest part of the Grand Canyon section is referred to as the “Grand Canyon Metamorphic Suite” (GMCS) (after Ilg et al., 1996). The suite is confined to the Upper (mile 78120), Middle (mile 127137, discontinuously), and Lower (mile 207261) Granite Gorges (Karlstrom et al., 2003). These rocks were built and accreted to the southern margin of the Wyoming craton; the tectonic setting prior to collision was likely similar to modern Indonesia, with crustal arcs, basins, and fragments being accreted to a “continental nucleus” during subduction (Karlstrom et al., 2003). In general, the Grand Canyon Metamorphic Suite records this subduction and accretion of arc related units and its associated deformation in the middle crust, followed by a long period of stability and eventual uplift and erosion prior to later Precambrian sedimentary deposition. Lithologies. The GCMS is divided into a set of metavolcanic and metasedimentary rocks penetrated by igneous intrusives. The metavolcanic rocks can be further subdivided into mafic (Fe, Mgrich) hornblendebiotite schists and amphibolites termed the Brahma Schist, and felsic (Si, Al rich) quartzofeldspathic schists and gneisses termed the Rama Schist (Karlstrom et al., 2003). Both contain relict volcanic textures such as pillow structures, volcanic breccias, and lapilli (Karlstrom et al., 2003), and are thought to represent submarine, islandarc volcanic or intrusive deposits (e.g., Clark, 1979). The Brahma and Rama schists are complexly interlayered where they are exposed (Karlstom et al., 2003). The metasedimentary rocks associated with these metavolcanics are termed the Vishnu Schist; these quartzmica pelitic schists are interpreted as metamorphosed submarine sandstones and mudstones with rhythmic and graded bedding (Karlstrom et al., 2003). UPb detrital zircon ages from the Vishnu Schist indicate a maximum depositional age (MDA) of 1749±19.5 Ma, and are dominated by influx from the older Laurentian basement (e.g., the Elves Chasm pluton, below) rather than the volcanic arc that produced the Rama and Brahma schists (Shufeldt et al., 2010). These schists are therefore representative of the units composing and fringing the volcanic arc prior to subduction.

Transcript of Ch1 BigHistory Garber - Latest News ·...

CHAPTER  1:  PRECAMBRIAN  ROCKS  OF  THE  GRAND  CANYON  

JOSHUA  GARBER  

INTRODUCTION     In  his  1879  expedition  through  the  Grand  Canyon,  John  Wesley  Powell  identified  and  described  a  “Great  Unconformity,”  an  angular  unconformity  separating  tilted  Precambrian  rocks  from  nearly  flat-­‐lying  Phanerozoic  sediments.  The  Precambrian  rocks  below  the  unconformity  are  the  igneous,  sedimentary,  and  metamorphic  basement  to  the  Colorado  Plateau,  a  stable  and  quiescent  tectonic  block  on  the  North  American  continent.  The  Grand  Canyon  provides  a  unique  exposure  into  these  rocks  as  the  Colorado  River  erodes  off  the  edge  of  the  Colorado  Plateau  into  the  Basin  and  Range  physiographic  province.      

Two  important  geologic  stories  are  contained  within  the  Precambrian  section.  The  first  is  a  record  of  the  Paleoproterozoic  assembly  of  the  Laurentian  craton,  as  various  continental  and  arc  fragments  collided  and  amalgamated  with  an  older  continental  nucleus.  The  second  history  is  that  of  the  sedimentary,  deformational,  climatic,  and  tectonic  history  during  the  assembly  and  subsequent  break-­‐up  of  the  Rodinian  supercontinent.  Both  stories  suffer  from  a  clear  selection  bias;  much  of  the  section  is  missing,  and  what  is  present  is  spatially  and  temporally  limited,  but  decades  of  geologic  research  (including  numerous  recent  studies)  have  helped  to  clarify  them  and  place  them  in  a  global  context.  Here,  I  discuss  the  general  geology  of  the  Precambrian  Grand  Canyon  section,  its  exposure,  and  its  effect  on  the  modern  Grand  Canyon.  

THE  GRAND  CANYON  METAMORPHIC  SUITE     The  deepest  and  oldest  part  of  the  Grand  Canyon  section  is  referred  to  as  the  “Grand  Canyon  Metamorphic  Suite”  (GMCS)  (after  Ilg  et  al.,  1996).  The  suite  is  confined  to  the  Upper  (mile  78-­‐120),  Middle  (mile  127-­‐137,  discontinuously),  and  Lower  (mile  207-­‐261)  Granite  Gorges  (Karlstrom  et  al.,  2003).  These  rocks  were  built  and  accreted  to  the  southern  margin  of  the  Wyoming  craton;  the  tectonic  setting  prior  to  collision  was  likely  similar  to  modern  Indonesia,  with  crustal  arcs,  basins,  and  fragments  being  accreted  to  a  “continental  nucleus”  during  subduction  (Karlstrom  et  al.,  2003).  In  general,  the  Grand  Canyon  Metamorphic  Suite  records  this  subduction  and  accretion  of  arc-­‐related  units  and  its  associated  deformation  in  the  middle  crust,  followed  by  a  long  period  of  stability  and  eventual  uplift  and  erosion  prior  to  later  Precambrian  sedimentary  deposition.       Lithologies.  The  GCMS  is  divided  into  a  set  of  metavolcanic  and  metasedimentary  rocks  penetrated  by  igneous  intrusives.  The  metavolcanic  rocks  can  be  further  subdivided  into  mafic  (Fe,  Mg-­‐rich)  hornblende-­‐biotite  schists  and  amphibolites  termed  the  Brahma  Schist,  and  felsic  (Si,  Al-­‐rich)  quartzo-­‐feldspathic  schists  and  gneisses  termed  the  Rama  Schist  (Karlstrom  et  al.,  2003).  Both  contain  relict  volcanic  textures  such  as  pillow  structures,  volcanic  breccias,  and  lapilli  (Karlstrom  et  al.,  2003),  and  are  thought  to  represent  submarine,  island-­‐arc  volcanic  or  intrusive  deposits  (e.g.,  Clark,  1979).  The  Brahma  and  Rama  schists  are  complexly  interlayered  where  they  are  exposed  (Karlstom  et  al.,  2003).  The  metasedimentary  rocks  associated  with  these  metavolcanics  are  termed  the  Vishnu  Schist;  these  quartz-­‐mica  pelitic  schists  are  interpreted  as  metamorphosed  submarine  sandstones  and  mudstones  with  rhythmic  and  graded  bedding  (Karlstrom  et  al.,  2003).  U-­‐Pb  detrital  zircon  ages  from  the  Vishnu  Schist  indicate  a  maximum  depositional  age  (MDA)  of  1749±19.5  Ma,  and  are  dominated  by  influx  from  the  older  Laurentian  basement  (e.g.,  the  Elves  Chasm  pluton,  below)  rather  than  the  volcanic  arc  that  produced  the  Rama  and  Brahma  schists  (Shufeldt  et  al.,  2010).  These  schists  are  therefore  representative  of  the  units  composing  and  fringing  the  volcanic  arc  prior  to  subduction.  

Precambrian  Rocks  of  the  Grand  Canyon  

  2  

    The  igneous  rocks  in  the  GCMS  can  also  be  divided  into  three  major  categories:  older  basement  intrusives  (~1.84  Ga),  arc  plutons  (1.74-­‐1.71  Ga),  and  syn-­‐orogenic  intrusions  (1.70-­‐1.66  Ga)  (Karlstrom  et  al.,  2003,  and  references  therein).  These  rocks  were  previously  referred  to  as  the  “Zoroaster  Granite,”  “Zoroaster  Gneiss,”  or  the  “Zoroaster  Plutonic  Complex,”  (e.g.,  Babcock  et  al,  1979)  but  these  terms  are  unrepresentative  because  the  igneous  rocks  are  actually  many  unique  units  spanning  a  range  from  unfoliated  (i.e.,  undeformed)  to  gneissic  (i.e.,  highly  deformed)  (Karlstrom  et  al.,  2003).  The  overall  sequence  represents  a  transition  from  lower-­‐crust  and  mantle-­‐derived  to  middle-­‐crustal  derived  units,  which  corresponds  to  a  thickening  of  the  crustal  section  and  increased  anatexis  (crustal  melting  and  assimilation  into  the  magma)  with  time  (Babcock  et  al.,  1979).    

The  oldest  pluton  in  the  suite,  the  1.84  Ga  Elves  Chasm  Pluton,  is  thought  to  represent  older  Laurentian  basement  prior  to  the  collision  of  the  allochthonous  arc  units  (Karlstrom  et  al.,  2003);  the  Vishnu  Schist  contains  zircon  derived  either  directly  from  this  pluton  or  from  other  similar-­‐aged  but  unexposed  units  (Shufeldt  et  al.,  2010).  Arc  plutons,  associated  with  the  melting  of  the  lower  plate  during  subduction  and  acting  as  feeders  for  the  arc  volcanic  system,  are  seen  as  a  suite  of  1.74-­‐1.71  Ga  granodiorites  (Babcock,  1990;  Karlstrom  et  al.,  2003)  that  range  from  sheet-­‐  to  stock-­‐like  due  to  

the  effect  of  later  deformation  (Karlstrom  et  al.,  2003).  Rare,  tectonically-­‐imbricated  ultramafic  slivers  are  thought  to  represent  the  base  of  these  arc  magma  chambers  (Karlstrom  et  al.,  2003).  

 Igneous  activity  continued  as  

subduction  gave  way  to  accretion,  with  a  suite  of  1.70-­‐1.66  Ga  syn-­‐orogenic  plutons  representing  emplacement  during  high-­‐strain  deformation  (Karlstrom  et  al.,  2003).  Lithologically,  these  rocks  are  mica  granites  and  pegmatites  that  formed  from  partial  melting  of  the  lower  crust  (Babcock,  1990;  Karlstom  et  al.,  2003).  These  rocks  rose  along  cracks  and  shear  zones  during  deformation,  forming  dikes  and  plutons  with  a  variety  of  different  deformed  and  undeformed  morphologies  (Karlstrom  

et  al.,  2003  and  references  therein).  A  final  igneous  pulse  occurred  significantly  later  at  ~1.35  Ga,  and  is  recorded  in  the  Quartermaster  Pluton  and  other  pegmatites;  these  rocks  clearly  post-­‐date  the  major  deformation  as  indicated  by  cross-­‐cutting  relationships  (Karlstrom  et  al.,  2003).  

 Structural  and  Metamorphic  Context.  The  lithologies  discussed  above  contain  important  

structural  and  metamorphic  relationships.  The  dominant  foliation  in  the  Grand  Canyon  is  a  subvertical  D2  set  of  foliations,  folds,  and  NE-­‐oriented  shear  zones  that  refold  and  reorient  an  earlier  set  of  subhorizontal  D1  structures  and  original  bedding  (Brown  et  al.,  1979;  Karlstrom  et  al.,  2003;  Figure  1).  There  is  evidence  that  this  D2  deformation,  though  predominantly  ductile,  was  synchronous  with  brittle  deformation  (Karlstrom  et  al.,  2003,  and  references  therein).  Additionally,  

Precambrian  Rocks  of  the  Grand  Canyon  

  3  

the  subhorizontal  D1  fabric  is  preserved  within  lower-­‐strain  domains,  and  can  be  directly  observed  in  various  places  along  the  canyon  (Karlstrom  et  al.,  2003).  

 Age  and  cross-­‐cutting  relationships  suggest  the  following  sequence  of  geologic  events:  (1)  

deposition  of  units  at  the  Earth’s  surface  (1.75-­‐1.73  Ga),  (2)  burial  to  20-­‐25  km  depth  and  coeval  deformation  (by  1.68  Ga),  (3)  exhumation  of  the  section  as  a  coherent  block  to  ~10  km  depth  (by  1.68  Ga),  (4)  a  long  period  of  quiescence  in  the  middle  crust  (until  1.4-­‐1.35  Ga),  and  finally  (5)  another  10  km  of  exhumation  prior  to  Grand  Canyon  Supergroup  deposition  by  1.1  Ga  (Karlstrom  et  al.,  2003;  Dumond  et  al.,  2007).  The  main  phase  of  deformation  is  constrained  to  1.70-­‐1.68  Ga  (Hawkins  et  al.,  1996),  but  there  is  also  evidence  of  later  D3  deformation  (e.g.,  Brown  et  al.,  1979).  However,  I  note  that  important  differences  are  preserved  between  major  exposures  of  the  GCMS.  The  Upper  Granite  Gorge  preserves  a  nearly  isobaric  (constant  pressure)  section  (Williams  et  al.,  2009),  but  there  are  numerous  thermal  variations  that  relate  to  the  proximity  of  rocks  to  granitic  melts,  which  produces  major  strength  contrasts  between  cold/strong  blocks  and  the  hot/weak  shear  zones  that  separate  them  (Ilg  et  al.,  1996;  Dumond  et  al.,  2007).  In  contrast,  the  Lower  Granite  Gorge  has  blocks  of  different  pressures  and  therefore  crustal  levels  that  are  structurally  juxtaposed  (Karlstrom  et  al.,  2003).  

THE  GRAND  CANYON  SUPERGROUP     The  Grand  Canyon  Supergroup  overlies  the  GCMS,  and  records  the  geologic  and  climatic  history  of  the  Laurentian  continental  margin  from  ~1100  –  750  Ma  (with  some  major  gaps)  (Figure  2).  These  rocks  are  generally  restricted  to  the  Eastern  Grand  Canyon,  and  are  correlative  with  other  regional  packages  of  similar  age  (e.g.,  Precambrian  exposures  in  Death  Valley).  (Powell  described  these  rocks  on  his  journey  but  thought  they  were  Silurian,  or  post-­‐450  Ma.)  From  base  to  top,  the  rocks  contained  in  the  Supergroup  are  the  Unkar  Group,  Nankoweap  Formation,  Chuar  Group,  and  Sixtymile  Formation.  Prior  to  Unkar  Group  deposition,  the  GCMS  was  leveled  to  a  smooth,  low-­‐relief  “Vishnu”  surface  (Hendricks  and  Stevenson,  2003),  and  initial  deposition  occurred  between  1300-­‐1250  Ma  as  indicated  by  basement  cooling  ages  (from  the  GCMS)  and  air-­‐fall  tephra  ages  from  the  base  of  the  Supergroup  section  (Timmons  et  al,  2005).         Unkar  Group.  The  Unkar  Group  records  major  sea  level  fluctuations  representing  an  overall  west  to  east  transgressive  sequence  (i.e.,  deposition  during  rising  sea  level).  The  basal  member  of  the  Unkar,  the  Hotauta  Conglomerate,  represents  the  first  deposition  after  the  formation  of  the  Vishnu  surface;  it  generally  infills  low  spots  on  basement  rocks  (Hendricks  and  Stevenson,  2003).  However,  the  Hotauta  Conglomerate  is  technically  a  member  of  the  Bass  Limestone  (50-­‐100m),  which  grades  from  the  basal  conglomerate  to  dolomite  with  variable  sand,  shale,  and  argillite  layers  (Hendricks  and  Stevenson,  2003).  Fossils  in  the  Bass  Limestone  include  biohermal  stromatolites  (Nitecki,  1971),  and  the  Bass  is  thought  to  record  low-­‐energy  intertidal  to  supertidal  deposition  (Hendricks  and  Stevenson,  2003).  Overlying  the  Bass  Limestone  is  the  Hakatai  Shale  (135-­‐300m),  a  colorful,  iron-­‐rich,  fractured  set  of  slope-­‐forming  argillaceous  shales  with  quartz  sandstone  cliff-­‐forming  units  (Hendricks  and  Stevenson,  2003);  it  represents  a  mud-­‐flat  to  shallow  marine  

Precambrian  Rocks  of  the  Grand  Canyon  

  4  

environment  (Hendricks  and  Stevenson,  2003).  Unconformably  lying  on  the  Hakatai  is  the  Shinumo  Quartzite  (345-­‐405m),  a  massive  cliff-­‐forming  set  of  sandstones  and  quartzites  (Hendricks  and  Stevenson,  2003)  that  indicate  shallow  fluvial-­‐deltaic  deposition  (Daneker,  1974).  The  highly-­‐resistant  nature  of  this  quartzite  allowed  the  formation  of  Shinumo-­‐cored  topographic  highs  in  the  pre-­‐Tapeats  erosional  event  (i.e.,  the  Great  Unconformity  of  Powell),  and  as  a  consequence  there  are  locations  where  the  Cambrian  Tapeats  sandstone  is  deposited  directly  on  Shinumo  quartzite  (Hendricks  and  Stevenson,  2003).  Continuing  upsection,  the  Dox  Formation  (921-­‐985m)  is  a  thick  set  of  four  sedimentary  members  (Escalante  Creek,  Solomon  Temple,  Comanche  Point,  and  Ochoa  Point)  that  indicate  a  transition  from  subaqueous  delta,  to  floodplain,  to  tidal  flat  depositional  environments  (Hendricks  and  Stevenson,  2003).       Finally,  the  top  member  of  the  Unkar  is  the  Cardenas  Lava  (240-­‐300m),  a  group  of  basalt  to  basaltic  andesite  flows  interbedded  with  sandstones  (Hendricks  and  Stevenson,  2003).  The  Cardenas  is  conformable  with  the  underlying  Dox  Formation,  as  indicated  by  soft-­‐sediment  deformation  features  that  suggest  lava  flowing  over  unconsolidated  sediments  (Hendricks  and  Stevenson,  2003).  The  Cardenas  transitions  from  a  lower  “bottle-­‐green”  member  that  rapidly  quenched,  to  a  middle  laminated  sandstone  unit  deposited  during  volcanic  quiescence,  before  returning  to  an  upper  mixed  basalt-­‐sandstone  unit  (Hendricks  and  Stevenson,  2003).  Early  work  on  geochronology  in  the  Grand  Canyon  often  focused  on  the  Cardenas  because  of  its  volcanic  nature  (as  opposed  to  sedimentary  units  that  preserve  significantly  fewer  dateable  minerals);  an  Rb-­‐Sr  isochron  age  of  1.09±0.07  Ga  and  later  K-­‐Ar  ages  around  ~800  Ma  suggest  deposition  around  1100  Ma  followed  by  later  heating  at  or  before  800  Ma  (McKee  and  Noble,  1974).  The  Cardenas  was  also  tilted  to  the  NE  prior  to  continued  deposition,  which  could  be  associated  with  early  activity  along  the  Butte  Fault  (Elston  and  Scott,  1976).  I  also  note  that  the  entire  Unkar  section  is  littered  with  dikes  and  sills  up  to  the  base  of  the  Cardenas  (Hendricks  and  Stevenson,  2003);  it  is  unclear  if  these  intrusions  are  related  to  the  Cardenas  or  to  a  different  event,  as  Rb-­‐Sr  ages  are  similar  (~1.07  Ga)  but  K-­‐Ar  reset  ages  are  earlier  (>900  Ma)  (Elston  and  McKee,  1982).       The  Unkar  also  preserves  structural  and  deformational  features  that  change  from  the  base  to  the  top  of  the  section.  A  set  of  NE-­‐SW  trending  contractional  faults  (SE  side  up)  occur  towards  the  base  of  the  section  and  die  out  by  folding  into  bedding  planes  (Timmons  et  al.,  2003);  these  faults  are  parallel  to  the  local  NE-­‐trending  metamorphic  grain  (Timmons  et  al.,  2003)  and  are  thought  to  represent  syn-­‐sedimentary  NW-­‐directed  contraction  at  ~1250  Ma,  perhaps  coinciding  with  early  Grenville  shortening  (Timmons  et  al.,  2005).  A  later  set  of  NW-­‐SE  trending  listric  extensional  faults  dip  to  the  SW  (west  side  down)  and  were  active  ca.  1100  Ma  (Timmons  et  al.,  2003;  2005).  These  later  faults  track  the  development  of  NW-­‐striking  extensional  basins,  perhaps  as  the  Grenville  event  progressed  (Timmons  et  al.,  2005).       Nankoweap  Formation.  The  Nankoweap  is  a  thin  formation  located  between  the  thicker  Unkar  and  Chuar  Groups.  It  is  broken  out  as  a  separate  unit  because  it  is  bounded  by  unconformities  at  its  base  and  top  (Ford  and  Dehler,  2003).  A  lower  “ferruginous”  laminated  member  contains  red  quartz  sandstone,  siltstone,  and  volcanic  clasts  from  the  underlying  Cardenas  Lava,  and  indicates  a  shallow  pond  or  lake  environment  (Elston  and  Scott,  1976;  Ford  and  Dehler,  2003).  The  ferruginous  member  grades  into  an  upper  quartz  sandstone  unit  with  minor  siltstones  and  shales,  suggestive  of  moderate  to  low  energy  shallow-­‐water  deposition  (Ford  and  Dehler,  2003).  Extensional  growth  faults  within  the  Nankoweap  often  penetrate  the  lower  member  and  the  Cardenas  Lava,  but  not  the  upper  member  (Timmons  et  al.,  2003),  while  others  penetrate  the  entire  unit  (Elston  and  Scott,  1976;  Ford  and  Dehler,  2003).  These  faults  have  been  identified  as  syn-­‐growth  structures  but  their  timing  is  unclear  (Elston  and  Scott,  1976;  Ford  and  Dehler,  2003).  The  Nankoweap  is  thought  to  have  been  deposited  between  ~1070-­‐~950  Ma  (Ford  and  Dehler,  2003,  and  references  therein).  

Precambrian  Rocks  of  the  Grand  Canyon  

  5  

    Chuar  Group.  The  Chuar  Group  contains  generally  repeating  cycles  of  carbonate  and  shale,  with  some  later  facies  changes  and  structurally-­‐controlled  thickness  variations  coincident  with  activity  on  the  Butte  Fault  (Ford  and  Dehler,  2003;  Figure  3).  In  general,  the  Chuar  records  the  rifting  of  the  Rodinian  supercontinent,  major  isotopic  carbon  fluctuations,  and  associated  low-­‐oxygen,  ferrous-­‐iron  rich  waters  (Karlstrom  et  al.,  2000;  Johnston  et  al.,  2010).  Competing  processes  during  Chuar  time  include  balances  between  glacioeustacy,  climate,  basin  subsidence,  and  tectonic  rifting  (Ford  and  Dehler,  2003).      

Two  formations  with  numerous  members  are  preserved  in  the  Chuar  Group.  The  four  members  of  the  lower  Galeros  Formation  (~900m)  preserve  a  series  of  carbonate  to  shale  transitions  that  contain  increasing  siliciclastic  input  (Ford  and  Dehler,  2003).  The  overlying  Kwagunt  Formation  (~625m)  is  more  variable;  the  basal  Carbon  Butte  member  contains  thick  red  sandstones  at  the  base,  which  grade  up  into  biohermal  stromatolies,  dolomites,  and  carbonates  with  variable  siliciclastic  input  (Ford  and  Dehler,  2003).  An  ash  bed  from  the  top  of  the  Kwagunt  contains  zircons  with  a  U-­‐Pb  age  of  742±6  Ma  (Karlstrom  et  al.,  2000),  dating  the  final  phase  of  deposition.  Fossils  within  the  section  are  generally  algal  or  stromatolitic  (Ford  and  Dehler,  2003),  though  “vase-­‐shaped”  microfossils  are  thought  to  represent  testate  amoebae  that  indicate  heterotrophic  protists  (Karlstrom  et  al.,  2000).  The  depositional  setting  for  the  Chuar  is  likely  a  tidal  and  wave-­‐affected  continental  shelf  edge  (Ford  and  Dehler,  2003),  with  shallow  subtidal  to  supratidal  deposition  (Karlstrom  et  al.,  2000),  though  a  lake  setting  has  also  been  suggested  (Ford  and  Dehler,  2003).  Paleomagnetic  data  indicate  that  the  Chuar  occupied  a  near-­‐equatorial  position  during  deposition  (Karlstrom  et  al.,  2000).  

 With  the  overlying  Sixtymile  Formation,  the  Chuar  records  deposition  synchronous  with  

normal-­‐sense  activity  on  the  Butte  Fault  and  folding  into  the  Chuar  Syncline,  which  can  be  mapped  out  using  thickness  variations  (Timmons  et  al.,  2003).  Parallel,  synthetic  and  antithetic  normal  faults  contained  within  the  section  provide  further  evidence  of  E-­‐W  extension  and  clear  interaction  between  sedimentation  and  deformation  (Timmons  et  al.,  2003).  The  Chuar  Syncline  is  not  preserved  in  the  Paleozoic  cover,  even  though  the  Butte  Fault  was  reactivated  as  a  thrust  fault  during  the  Cretaceous  –  Tertiary  Laramide  Orogeny  (Timmons  et  al.,  2003).  

 Sixtymile  Formation.  The  Sixtymile  is  a  set  of  locally-­‐derived  breccias,  conglomerates,  

sandstones,  and  siltstones  developed  on  top  of  the  Chuar  Group  (Elston,  1979;  Ford  and  Dehler,  2003).  The  unit  contains  slump  folds,  landslide  blocks,  and  locally-­‐derived  detritus,  with  the  top  member  filling  paleochannels  in  the  middle  member  (Ford  and  Dehler,  2003).  Channels  within  the  Sixtymile  are  parallel  to  the  trace  of  the  Butte  Fault  (Ford  and  Dehler,  2003).  The  major  change  in  depositional  style  represented  by  this  unit  is  likely  controlled  by  folding  of  the  Chuar  Syncline  and  normal-­‐sense  activity  along  the  Butte  Fault,  which  would  have  produced  kilometer-­‐scale  structural  relief  (Ellston,  1979).  However,  this  transition  was  probably  also  controlled  by  sea  level  base  changes  (Karlstrom  et  al.,  2000).  

THE  PRECAMBRIAN  SECTION  AND  THE  MODERN  GRAND  CANYON     The  rocks  and  structures  preserved  within  the  Grand  Canyon  Metamorphic  Suite  and  the  Grand  Canyon  Supergroup  have  had  a  significant  effect  on  the  development  of  the  Grand  Canyon,  from  Paleozoic  to  recent  time.  The  Precambrian  rocks  were  eroded  and  redeposited  to  form  many  of  the  lithologies  upsection  (Gehrels,  2011);  as  a  corollary,  apatite  still  preserved  within  the  Precambrian  section  is  used  to  constrain  modern  rates  of  rock  uplift  (e.g.,  Flowers  et  al.,  2008).  Many  of  the  locations  and  orientations  of  both  Paleozoic  and  modern  structures  are  controlled  by  basement  faults  and  shear  zones,  which  exert  a  long-­‐lived  control  on  rock  deformation  in  the  Grand  

Precambrian  Rocks  of  the  Grand  Canyon  

  6  

Canyon  and  its  surroundings  (Timmons  et  al.,  2001;  Brumbaugh,  2005);  an  example  is  the  Kaibab  monocline,  which  formed  due  to  thrust-­‐sense  activity  along  the  reactivated  Butte  Fault.  Finally,  these  basement  faults  also  have  an  important  effect  on  water  quality;  basement  faults  transmit  CO2-­‐enriched  waters  derived  from  the  upper  mantle,  and  are  responsible  for  travertine  deposition  and  salinity/trace  element  concentrations  at  the  surface  (Crossey  et  al.,  2006).  For  example,  87Sr/86Sr  values  show  interaction  with  Precambrian  basement  where  the  Colorado  River  crosses  basement  faults  (Crossey  et  al.,  2006).  

REFERENCES      Babcock,  R.S.,  1990.  Precambrian  Crystalline  Core,  in  Grand  Canyon  Geology,  eds.  S.S.  Beus  and  M.  Morales.  New  York:  Oxford  University  Press,  pp.  11-­‐

28.  Babcock,  R.S.,  Brown,  E.H.,  Clark,  M.D.,  and  Livingston,  D.E.,  1979.  Geology  of  the  Older  Precambrian  Rocks  of  the  Grand  Canyon,  Part  II:  The  Zoroaster  

Plutonic  Complex  and  Related  Rocks.  Precambrian  Research  8,  243-­‐275.  Brown,  E.H.,  Babcock,  R.S.,  Clark,  M.D.,  and  Livingston,  D.E.,  1979.  Geology  of  the  Older  Precambrian  Rocks  of  the  Grand  Canyon,  Part  I:  Petrology  and  

Structure  of  the  Vishnu  Complex.  Precambrian  Research  8,  219-­‐241.  Brumbaugh,  D.S.,  2005.  Active  Faulting  and  Seismicity  in  a  Prefractured  Terrane:  Grand  Canyon,  Arizona.  Bulletin  of  the  Seismological  Society  of  

America  95  (4),  1561-­‐1566.  Clark,  M.D.,  1979.  Geology  of  the  Older  Precambrian  Rocks  of  the  Grand  Canyon,  Part  III:  Petrology  of  Mafic  Schists  and  Amphibolites.  Precambrian  

Research  8,  277-­‐302.  Crossey,  L.J.,  Fischer,  T.P.,  Patchett,  J.,  Karlstrom,  K.E.,  Hilton,  D.R.,  Newell,  D.L.,  Huntoon,  P.,  Reynolds,  A.C.,  and  de  Leeuw,  G.A.M.,  2006.  Dissected  

hydrologic  system  at  the  Grand  Canyon:  Interaction  between  deeply  derived  fluids  and  plateau  aquifer  waters  in  modern  springs  and  travertine.  Geology  34,  25-­‐28.  

Daneker,  T.M.,  1974.  Sedimentology  of  the  Precambrian  Shinumo  Quartzite,  Grand  Canyon,  Arizona.  Geological  Society  of  America  Abstracts  with  Program  6,  438.  

Dumond,  G.,  Mahan,  K.H.,  Williams,  M.L.,  and  Karlstrom,  K.E.,  2007.  Crustal  segmentation,  composite  looping  pressure-­‐temperature  paths,  and  magma-­‐enhanced  metamorphic  field  gradients:  Upper  Granite  Gorge,  Grand  Canyon,  USA.  Geological  Society  of  America  Bulletin  119  (1-­‐2),  202-­‐220.  

Elston,  D.P.,  1979.  Late  Precambrian  Sixtymile  Fromation  and  Orogeny  at  Top  of  the  Grand  Canyon  Supergroup,  Northern  Arizona.  US  Geological  Survey  Professional  Paper  1092,  20  pp.  

Elston,  D.P.,  and  McKee,  E.H.,  1982.  Age  and  correlation  of  the  late  Proterozoic  Grand  Canyon  disturbance,  northern  Arizona.  Geological  Society  of  America  Bulletin  93,  681-­‐699.  

Elston,  D.P.,  and  Scott,  G.R.,  1976.  Unconformity  at  the  Cardenas-­‐Nankoweap  contact  (Precambrian),  Grand  Canyon  Supergroup,  northern  Arizona.  Geological  Society  of  America  Bulletin  87,  1763-­‐1772.  

Flowers,  R.M.,  Wernicke,  B.P.,  and  Farley,  K.A.,  2008.  Unroofing,  incision,  and  uplift  history  of  the  southwestern  Colorado  Plateau  from  apatite  (U-­‐Th)/He  thermochronometry.  Geological  Society  of  America  Bulletin  120  (5-­‐6),  571-­‐587.  

Ford,  T.D.,  and  Dehler,  C.M.,  2003.  Grand  Canyon  Supergroup:  Nankoweap  Formation,  Chuar  Group,  and  Sixtymile  Formation,  in  Grand  Canyon  Geology,  eds.  S.S.  Beus  and  M.  Morales.  New  York:  Oxford  University  Press,  2nd  Edition,  pp.  53-­‐75.  

Gehrels,  G.E.,  Blakey,  R.,  Karlstrom,  K.E.,  Timmons,  J.M.,  Dickinson,  B.,  and  Pecha,  M.,  2011.  Detrital  zircon  U-­‐Pb  geochronology  of  Paleozoic  strata  in  the  Grand  Canyon,  Arizona.  Lithosphere  3  (3),  183-­‐200.  

Hendricks,  J.D.,  and  Stevenson,  G.M.,  2003.  Grand  Canyon  Supergroup:  Unkar  Group,  in  Grand  Canyon  Geology,  eds.  S.S.  Beus  and  M.  Morales.  New  York:  Oxford  University  Press,  2nd  Edition,  pp.  39-­‐52.  

Hawkins,  D.P.,  Bowring,  S.A.,  Ilg,  B.R.,  Karlstrom,  K.E.,  and  Williams,  M.L.,  1996.  U-­‐Pb  geochronologic  constraints  on  the  Paleoproterozoic  crustal  evolution  of  the  Upper  Granite  Gorge,  Grand  Canyon,  Arizona.  Geological  Society  of  America  Bulletin  108  (9),  1167-­‐1181.  

Ilg,  B.R.,  Karlstrom,  K.E.,  Hawkins,  D.P.,  and  Williams,  M.L.,  1996.  Tectonic  evolution  of  Paleoproterozoic  rocks  in  the  Grand  Canyon:  Insights  into  middle-­‐crustal  processes.  Geological  Society  of  America  Bulletin  108  (9),  1149-­‐1166.  

Johnston,  D.T.,  Poulton,  S.W.,  Dehler,  C.,  Porter,  S.,  Husson,  J.,  Canfield,  D.E.,  and  Knoll,  A.H.,  2010.  An  emergin  picture  of  Neoproterozoic  ocean  chemistry:  Insights  from  the  Chuar  Group,  Grand  Canyon,  USA.  Earth  and  Planetary  Science  Letters  290,  64-­‐73.  

Karlstrom,  K.E.,  Bowring,  S.A.,  Dehler,  C.M.,  Knoll,  A.H.,  Porter,  S.M.,  Des  Marais,  D.J.,  Weil,  A.B.,  Sharp,  Z.D.,  Geissman,  J.W.,  Elrick,  M.B.,  Timmons,  J.M.,  Crossey,  L.J.,  and  Davidek,  K.L.,  2000.  Chuar  Group  of  the  Grand  Canyon:  Record  of  breakup  of  Rodinia,  associated  change  in  the  global  carbon  cycle,  and  ecosystem  expansion  by  740  Ma.  Geology  28,  619-­‐622.  

Karlstrom,  K.E.,  Ilg,  B.R.,  Williams,  M.L.,  Hawkins,  D.P.,  Bowring,  S.A.,  and  Seaman,  S.J.,  2003.  Paleoproterozoic  Rocks  of  the  Granite  Gorges,  in  Grand  Canyon  Geology,  eds.  S.S.  Beus  and  M.  Morales.  New  York:  Oxford  University  Press,  2nd  Edition,  pp.  9-­‐38.  

McKee,  E.H.,  and  Noble,  D.C.,  1974.  Age  of  the  Cardenas  Lavas,  Grand  Canyon,  Arizona.  Geological  Society  of  America  Bulletin  87,  1188-­‐1190.  Shufeldt,  O.P.,  Karlstrom,  K.E.,  Gehrels,  G.E.,  and  Howard,  K.E.,  2010.  Archean  detrital  zircons  in  the  Proterozoic  Vishnu  Schist  of  the  Grand  Canyon,  

Arizona:  implications  for  crustal  architecture  and  Nuna  supercontinent  reconstructions.  Geology  38,  1099-­‐1102.  Timmons,  J.M.,  Karlstrom,  K.E.,  Dehler,  C.M.,  Geissman,  J.W.,  and  Heizler,  M.T.,  2001.  Proterozoic  multistage  (ca.  1.1  and  0.8  Ga)  extension  recorded  in  

the  Grand  Canyon  Supergroup  and  establishment  of  northwest  and  north-­‐trending  tectonic  grains  in  the  southwestern  United  States.  Geological  Society  of  America  Bulletin  113  (2),  163-­‐181.  

Timmons,  J.M.,  Karlstrom,  K.E.,  and  Sears,  J.W.,  2003.  Geologic  Structure  of  the  Grand  Canyon  Supergroup,  in  Grand  Canyon  Geology,  eds.  S.S.  Beus  and  M.  Morales.  New  York:  Oxford  University  Press,  2nd  Edition,  pp.  76-­‐89.  

Timmons,  J.M.,  Karlstrom,  K.E.,  Heizler,  M.T.,  Bowring,  S.A.,  Gehrels,  G.E.,  and  Crossey,  L.J.,  2005.  Tectonic  inferences  from  the  ca.  1255-­‐1100  Ma  Unkar  Group  and  Nankoweap  Formation,  Grand  Canyon:  Intracratonic  deformation  and  basin  formation  during  protracted  Grenville  orogenesis.  Geological  Society  of  America  Bulletin  117  (11-­‐12),  1573-­‐1595.  

Williams,  M.L.,  Karlstrom,  K.E.,  Dumond,  G.,  and  Mahan,  K.H.,  2009.  Perspectives  on  the  architecture  of  continental  crust  from  integrated  field  studies  of  exposed  isobaric  sections,  in  Crustal  Cross  Sections  from  the  Western  North  American  Cordillera  and  Elsewhere:  Implications  for  Tectonic  and  Petrology  Processes,  eds.  R.B.  Miller  and  A.W.  Snoke,  Geological  Society  of  America  Special  Papers  456,  219-­‐241.