ch06.ppt O.kh

download ch06.ppt O.kh

of 34

Transcript of ch06.ppt O.kh

  • 8/10/2019 ch06.ppt O.kh

    1/34

  • 8/10/2019 ch06.ppt O.kh

    2/34

    Chapter 6 - 2

    Elastic means reversible!

    Elastic Deformation

    2. Small load

    F

    d

    bonds

    stretch

    1. Initial 3. Unload

    return to

    initial

    F

    d

    Linear-

    elastic

    Non-Linear-elastic

  • 8/10/2019 ch06.ppt O.kh

    3/34

    Chapter 6 - 3

    Plastic means permanent!

    Plastic Deformation (Metals)

    F

    d

    linearelastic

    linearelastic

    dplastic

    1. Initial 2. Small load 3. Unload

    planesstillsheared

    F

    delastic + plastic

    bondsstretch& planesshear

    dplastic

  • 8/10/2019 ch06.ppt O.kh

    4/34

    Chapter 6 - 4

    Stress has units:

    N/m2 or lbf/in2

    Engineering Stress

    Shearstress, t:

    Area,Ao

    Ft

    Ft

    Fs

    F

    F

    Fs

    t =Fs

    Ao

    Tensile stress, s:

    original area

    before loading

    s = FtAo

    2f

    2mNor

    inlb=

    Area,Ao

    Ft

    Ft

  • 8/10/2019 ch06.ppt O.kh

    5/34

    Chapter 6 - 5

    Simple tension: cable

    Note: t = M/AcRhere.

    Common States of Stress

    os=

    F

    A

    o

    t =Fs

    A

    ss

    M

    M Ao

    2R

    FsAc

    Torsion (a form of shear): drive shaftSki lift (photo courtesyP.M. Anderson)

    Ao = cross sectional

    area (when unloaded)

    FF

  • 8/10/2019 ch06.ppt O.kh

    6/34

    Chapter 6 - 6

    (photo courtesy P.M. Anderson)Canyon Bridge, Los Alamos, NM

    os= F

    A

    Simple compression:

    Note: compressivestructure member

    (s < 0 here).(photo courtesy P.M. Anderson)

    OTHER COMMON STRESS STATES (i)

    Ao

    Balanced Rock, ArchesNational Park

  • 8/10/2019 ch06.ppt O.kh

    7/34

  • 8/10/2019 ch06.ppt O.kh

    8/34

    Chapter 6 - 8

    Tensile strain: Lateral strain:

    Strain is always

    dimensionless.

    Engineering Strain

    Shearstrain:

    q

    90

    90 -qy

    x qg = x/y= tan

    e = d

    Lo

    Adapted from Fig. 6.1(a) and (c), Callister & Rethwisch 8e.

    d/2

    Lowo

    -deL=

    L

    wo

    dL/2

  • 8/10/2019 ch06.ppt O.kh

    9/34

    Chapter 6 - 9

    Stress-Strain Testing

    Typical tensile test

    machine

    Adapted from Fig. 6.3, Callister & Rethwisch 8e. (Fig. 6.3 is taken from H.W.

    Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials,

    Vol. III, Mechanical Behavior, p. 2, John Wiley and Sons, New York, 1965.)

    specimenextensometer

    Typical tensile

    specimen

    Adapted from

    Fig. 6.2,

    Callister &Rethwisch 8e.

    gauge

    length

  • 8/10/2019 ch06.ppt O.kh

    10/34

    Chapter 6 - 10

    Linear Elastic Properties

    Modulus of Elasticity, E:(also known as Young's modulus)

    Hooke's Law:

    s = Ee s

    Linear-elastic

    E

    e

    F

    Fsimpletensiontest

  • 8/10/2019 ch06.ppt O.kh

    11/34

    Chapter 6 - 11

    Poisson's ratio, n

    Poisson's ratio, n:

    Units:

    E: [GPa] or [psi]

    n: dimensionless

    n > 0.50 density increases

    n < 0.50 density decreases(voids form)

    eL

    e

    -n

    en= - L

    e

    metals: n ~ 0.33

    ceramics: n ~ 0.25

    polymers: n ~ 0.40

  • 8/10/2019 ch06.ppt O.kh

    12/34

    Chapter 6 - 12

    Mechanical Properties

    Slope of stress strain plot (which is

    proportional to the elastic modulus) dependson bond strength of metal

    Adapted from Fig. 6.7,

    Callister & Rethwisch 8e.

  • 8/10/2019 ch06.ppt O.kh

    13/34

    Chapter 6 - 13

    Elastic Shear

    modulus, G:

    t

    Gg

    t = Gg

    Other Elastic Properties

    simple

    torsion

    test

    M

    M

    Special relations for isotropic materials:

    2(1n)

    EG=

    3(12n)

    EK =

    Elastic Bulk

    modulus, K:

    pressure

    test: Init.vol =Vo.

    Vol chg.

    = V

    P

    P PP= -K

    VVo

    P

    V

    KVo

  • 8/10/2019 ch06.ppt O.kh

    14/34

    Chapter 6 - 14

    Metals

    Alloys

    Graphite

    Ceramics

    Semicond

    PolymersComposites

    /fibers

    E(GPa)

    Based on data in Table B.2,

    Callister & Rethwisch 8e.

    Composite data based on

    reinforced epoxy with 60 vol%

    of aligned

    carbon (CFRE),

    aramid (AFRE), or

    glass (GFRE)

    fibers.

    Youngs Moduli: Comparison

    109 Pa

    0.2

    8

    0.6

    1

    Magnesium,

    Aluminum

    Platinum

    Silver, Gold

    Tantalum

    Zinc, Ti

    Steel, Ni

    Molybdenum

    Graphite

    Si crystal

    Glass -soda

    Concrete

    Si nitrideAl oxide

    PC

    Wood( grain)

    AFRE( fibers) *

    CFRE*

    GFRE*

    Glass fibers only

    Carbon fibers only

    Aramid fibers only

    Epoxy only

    0.4

    0.8

    2

    4

    6

    10

    20

    40

    6080

    100

    200

    600800

    10001200

    400

    Tin

    Cu alloys

    Tungsten

    Si carbide

    Diamond

    PTFE

    HDPE

    LDPE

    PP

    Polyester

    PSPET

    CFRE( fibers) *

    GFRE( fibers)*

    GFRE(|| fibers)*

    AFRE(|| fibers)*

    CFRE(|| fibers)*

  • 8/10/2019 ch06.ppt O.kh

    15/34

    Chapter 6 - 15

    Simple tension:

    d = FLoEAo

    dL

    = - nFwoEAo

    Material, geometric, and loading parameters all

    contribute to deflection.

    Larger elastic moduli minimize elastic deflection.

    Useful Linear Elastic Relationships

    F

    Aod/2

    dL/2

    Lowo

    Simple torsion:

    a = 2MLoro

    4G

    M = momenta = angle of twist

    2ro

    Lo

  • 8/10/2019 ch06.ppt O.kh

    16/34

    Chapter 6 - 16

    (at lower temperatures, i.e. T< Tmelt/3)

    Plastic (Permanent) Deformation

    Simple tension test:

    engineering stress, s

    engineering strain, e

    Elastic+Plasticat larger stress

    ep

    plastic strain

    Elasticinitially

    Adapted from Fig. 6.10(a),

    Callister & Rethwisch 8e.

    permanent (plastic)after load is removed

  • 8/10/2019 ch06.ppt O.kh

    17/34

    Chapter 6 - 17

    Stress at which not iceable plastic deformation has

    occurred.when ep = 0.002

    Yield Strength,sy

    sy= yield strength

    Note: for 2 inch sample

    e = 0.002 = z/z

    z= 0.004 in

    Adapted from Fig. 6.10(a),

    Callister & Rethwisch 8e.

    tensile stress, s

    engineering strain, e

    sy

    ep = 0.002

  • 8/10/2019 ch06.ppt O.kh

    18/34

    Chapter 6 - 18

    Room temperaturevalues

    Based on data in Table B.4,

    Callister & Rethwisch 8e.

    a = annealed

    hr = hot rolled

    ag = aged

    cd = cold drawn

    cw = cold worked

    qt = quenched & tempered

    Yield Strength : ComparisonGraphite/Ceramics/Semicond

    Metals/Alloys

    Composites/fibers

    Polymers

    Yieldstreng

    th,

    sy

    (MPa

    )

    PVC

    H

    ard

    tomeasure

    ,

    since

    intens

    ion,

    fra

    ctureusua

    llyoccurs

    beforey

    ield

    .

    Nylon 6,6

    LDPE

    70

    20

    40

    6050

    100

    10

    30

    200

    300

    400

    500600700

    1000

    2000

    Tin (pure)

    Al (6061) a

    Al (6061) ag

    Cu (71500) hrTa (pure)Ti (pure) aSteel (1020) hr

    Steel (1020) cd

    Steel (4140) a

    Steel (4140) qt

    Ti (5Al-2.5Sn) aW (pure)

    Mo (pure)Cu (71500) cw

    Hard

    tomeasure,

    inceram

    icma

    trixan

    depoxyma

    trixcompo

    sites,

    since

    intens

    ion,

    frac

    tureusua

    llyoccurs

    befo

    rey

    ield

    .

    HDPEPP

    humid

    dry

    PC

    PET

  • 8/10/2019 ch06.ppt O.kh

    19/34

    Chapter 6 -

    VMSE: Virtual Tensile Testing

    19

  • 8/10/2019 ch06.ppt O.kh

    20/34

    Chapter 6 - 20

    Tensile Strength, TS

    Metals: occurs when noticeable necking starts.

    Polymers: occurs when polymer backbone chains are

    aligned and about to break.

    Adapted from Fig. 6.11,Callister & Rethwisch 8e.

    sy

    strain

    Typical response of a metal

    F= fracture or

    ultimate

    strength

    Neck acts

    as stress

    concentratorenginee

    ring

    TS

    stres

    s

    engineering strain

    Maximum stress on engineering stress-strain curve.

  • 8/10/2019 ch06.ppt O.kh

    21/34

    Chapter 6 - 21

    Tensile Strength: Comparison

    Si crystal

    Graphite/Ceramics/Semicond

    Metals/Alloys

    Composites/fibers

    Polymers

    Tens

    ilest

    reng

    th,

    TS

    (MPa

    )

    PVC

    Nylon 6,6

    10

    100

    200300

    1000

    Al (6061) a

    Al (6061) ag

    Cu (71500) hr

    Ta (pure)Ti (pure) a

    Steel (1020)

    Steel (4140) a

    Steel (4140) qt

    Ti (5Al-2.5Sn) aW (pure)

    Cu (71500) cw

    LDPE

    PP

    PC PET

    20

    3040

    2000

    3000

    5000

    Graphite

    Al oxide

    Concrete

    Diamond

    Glass-soda

    Si nitride

    HDPE

    wood ( fiber)

    wood(|| fiber)

    1

    GFRE(|| fiber)

    GFRE( fiber)

    CFRE(|| fiber)

    CFRE( fiber)

    AFRE(|| fiber)

    AFRE( fiber)

    E-glass fibC fibersAramid fib

    Based on data in Table B.4,

    Callister & Rethwisch 8e.

    a = annealed

    hr = hot rolled

    ag = aged

    cd = cold drawncw = cold worked

    qt = quenched & tempered

    AFRE, GFRE, & CFRE =

    aramid, glass, & carbon

    fiber-reinforced epoxy

    composites, with 60 vol%

    fibers.

    Room temperaturevalues

  • 8/10/2019 ch06.ppt O.kh

    22/34

    Chapter 6 - 22

    Plastic tensile strain at failure:

    Ductility

    Another ductility measure: 100xA

    AARA%

    o

    fo-

    =

    x 100

    L

    LLEL%

    o

    of -

    =

    LfAo AfLo

    Adapted from Fig. 6.13,

    Callister & Rethwisch 8e.

    Engineering tensile strain, e

    Engineering

    tensile

    stress, s

    smaller %EL

    larger %EL

  • 8/10/2019 ch06.ppt O.kh

    23/34

    Chapter 6 - 23

    Energy to break a unit volume of material

    Approximate by the area under the stress-strain curve.

    Toughness

    Brittle fracture: elastic energy

    Ductile fracture: elastic + plastic energy

    Adapted from Fig. 6.13,

    Callister & Rethwisch 8e.

    very small toughness(unreinforced polymers)

    Engineering tensile strain, e

    Engineeringtensile

    stress, s

    small toughness (ceramics)

    large toughness (metals)

  • 8/10/2019 ch06.ppt O.kh

    24/34

    Chapter 6 - 24

    Resilience, Ur

    Ability of a material to store energy

    Energy stored best in elastic region

    If we assume a linear

    stress-strain curve this

    simplifies to

    Adapted from Fig. 6.15,

    Callister & Rethwisch 8e.

    yyr2

    1U es@

    e

    es= y

    dUr0

  • 8/10/2019 ch06.ppt O.kh

    25/34

    Chapter 6 - 25

    Elastic Strain Recovery

    Adapted from Fig. 6.17,

    Callister & Rethwisch 8e.

    Stre

    ss

    Strain

    3. Reapplyload

    2. Unload

    D

    Elastic strain

    recovery

    1. Load

    syo

    syi

  • 8/10/2019 ch06.ppt O.kh

    26/34

    Chapter 6 - 26

    Hardness

    Resistance to permanently indenting the surface.

    Large hardness means:-- resistance to plastic deformation or cracking in

    compression.

    -- better wear properties.

    e.g.,10 mm sphere

    apply known force measure sizeof indent afterremoving load

    dDSmaller indentsmean largerhardness.

    increasing hardness

    mostplastics

    brassesAl alloys

    easy to machinesteels file hard

    cuttingtools

    nitridedsteels diamond

  • 8/10/2019 ch06.ppt O.kh

    27/34

    Chapter 6 - 27

    Hardness: Measurement

    Rockwell No major sample damage

    Each scale runs to 130 but only useful in range

    20-100.

    Minor load 10 kg Major load 60 (A), 100 (B) & 150 (C) kg

    A = diamond, B = 1/16 in. ball, C = diamond

    HB = Brinell Hardness TS (psia) = 500 x HB

    TS (MPa) = 3.45 x HB

  • 8/10/2019 ch06.ppt O.kh

    28/34

    Chapter 6 - 28

    Hardness: MeasurementTable 6.5

  • 8/10/2019 ch06.ppt O.kh

    29/34

    Chapter 6 - 29

    True Stress & Strain

    Note: S.A. changes when sample stretched

    True stress

    True strain

    iT AF=s

    oiT ln=e

    e+=e

    e+s=s

    1ln

    1

    T

    T

    Adapted from Fig. 6.16,

    Callister & Rethwisch 8e.

  • 8/10/2019 ch06.ppt O.kh

    30/34

  • 8/10/2019 ch06.ppt O.kh

    31/34

    Chapter 6 - 31

    Variability in Material Properties

    Elastic modulus is material property

    Critical properties depend largely on sample flaws

    (defects, etc.). Large sample to sample variability.

    Statistics

    Mean

    Standard Deviation

    s =

    n

    xi-x

    2

    n- 1

    1

    2

    n

    xx

    n

    n

    =

    where n is the number of data points

  • 8/10/2019 ch06.ppt O.kh

    32/34

    Chapter 6 - 32

    Design uncertainties mean we do not push the limit.

    Factor of safety, N

    N

    y

    working

    s=s

    Often Nisbetween

    1.2 and 4

    Example: Calculate a diameter, d, to ensure that yield doesnot occur in the 1045 carbon steel rod below. Use a

    factor of safety of 5.

    Design or Safety Factors

    220 ,000 N

    d2/ 4

    5N

    y

    working

    s=s 1045 plain

    carbon steel:

    sy= 310 MPa

    TS = 565 MPa

    F= 220,000N

    d

    Lo

    d= 0.067 m = 6.7 cm

  • 8/10/2019 ch06.ppt O.kh

    33/34

    Chapter 6 - 33

    Stress and strain: These are size-independentmeasures of load and displacement, respectively.

    Elastic behavior: This reversible behavior often

    shows a linear relation between stress and strain.

    To minimize deformation, select a material with a

    large elastic modulus (Eor G).

    Toughness: The energy needed to break a unit

    volume of material.

    Ductility: The plastic strain at failure.

    Summary

    Plastic behavior: This permanent deformation

    behavior occurs when the tensile (or compressive)

    uniaxial stress reaches sy.

  • 8/10/2019 ch06.ppt O.kh

    34/34