Ch. 6: Thermochemistry

61
Ch. 6: Thermochemistry

Transcript of Ch. 6: Thermochemistry

Page 1: Ch. 6: Thermochemistry

Ch.6:Thermochemistry

Page 2: Ch. 6: Thermochemistry

Energy

Page 3: Ch. 6: Thermochemistry

TheNatureofEnergy•  Energy(E)isthecapacitytodoworkortoproduceheat– Workisdefinedasforceactingoveradistance

•  Inthischapter,wewillspecificallyfocusontheheattransferthataccompanieschemicalprocesses

•  Don’tforget:potentialvs.kineticenergy

Page 4: Ch. 6: Thermochemistry

TheNatureofEnergy•  LawofConservationofEnergy

– EnergyCANNOTbecreatedordestroyed– EnergyCANbeconvertedfromoneformtoanother

•  FirstLawofThermodynamics– Appliesthisprincipletosystemswherewe’relookingatheattransfer

Page 5: Ch. 6: Thermochemistry

TheProcessofHeat

Page 6: Ch. 6: Thermochemistry

TheProcessofHeat•  Heat(q)isatransferofenergybetweentwoobjectsduetoatemperaturedifference.–  Etransfersfromwarmertocoolerobject

•  Recall:Temperature(T)isproportionaltotheaverageKEofthemolecules

Page 7: Ch. 6: Thermochemistry

TheProcessofHeat•  Whentwoobjectsatdifferenttemperaturesareincontact,theywilleventuallyreachthesameintermediatetemperature.– Ex/Aglassofcoldwaterandacupofhotteaareleftinaroom

Page 8: Ch. 6: Thermochemistry

Types of Heat Transfer •  Conduction•  Convention•  Radiation

Page 9: Ch. 6: Thermochemistry

EnergyandWork

Page 10: Ch. 6: Thermochemistry

Energy •  Whatisenergy?•  Energy=capacityfordoingworkorsupplying

heat–  weightless,odorless,tasteless

•  Gasolinecontainsasignificantamountofchemicalpotentialenergy

Page 11: Ch. 6: Thermochemistry

EnergyandWorkΔE=q+w

– E=energy– q=heat– w=work

•  Heatis(+)ifitisabsorbed,(-)ifitisreleased•  Workis(+)ifdoneonthesystem(compression),(-)ifitisdonebythesystem(expansion)

Page 12: Ch. 6: Thermochemistry

EnergyandWork•  ΔE=q+w•  IfΔE>0,thesystemisgainingenergy(workisdoneonthesystemorheatistransferredtothesystem)

•  IfΔE<0,thesystemisreleasingenergy(workisdonebythesystemorheatistransferredtothesurroundings)

•  Let’stryusingthisequation!•  Ex/CalculateΔEforasystemundergoinganendothermicprocessinwhich15.6kJofheatflowsandwhere1.4kJofworkisdoneonthesystem.

Page 13: Ch. 6: Thermochemistry

EnergyandWork•  Recall:Workistheenergyrequiredtomovesomethingagainstaforce.Pressureisdefinedasforceperunitofarea

•  w=-PΔV– w=work– P=pressure– V=volume

•  Ex/Calculatetheworkassociatedwiththeexpansionofagasfrom46Lto64Lataconstantexternalpressureof15atm

Page 14: Ch. 6: Thermochemistry

TermstoKnow

Page 15: Ch. 6: Thermochemistry

Terms to Know •  Thermochemistry=studyofenergyand

heatassociatedwithchemicalrxns

Page 16: Ch. 6: Thermochemistry

TermstoKnow•  System

– Theareaoftheuniversethatwearefocusingon

– Forexample,theexperiment

•  Surroundings– Everythingoutsideofthesystem

Page 17: Ch. 6: Thermochemistry

TermstoKnow•  StateFunction

–  Propertywhosevaluedoesnotdependonthepathtakentoreachthatspecificvalue

–  Ex/Changeinenergy

Page 18: Ch. 6: Thermochemistry

TermstoKnow•  StandardConditions

– NottobeconfusedwithSTP– Standardconditionsare1.0M,1atm,and25oC

– IfyouseeGo,Ho,orSo,theseareatstandardconditions

– Thismeansyoualreadyknowpressure,temperature,andconcentration

Page 19: Ch. 6: Thermochemistry

TermstoKnow•  Exothermic

– Netreleaseofenergy(heatexchange)bythesystem–  Energyisaproduct–  Ex/Burningmethanegasinthelabburnerproducesheat–  Ex/Lightsticksgiveofflight–  -ΔH

Page 20: Ch. 6: Thermochemistry
Page 21: Ch. 6: Thermochemistry

TermstoKnow•  Endothermic

– Netabsorptionofenergy(heatexchange)bythesystem–  Energyisareactant–  Ex/Bakingsodaandvinegarmixedturnscold–  +ΔH

Page 22: Ch. 6: Thermochemistry
Page 23: Ch. 6: Thermochemistry

Exothermic and Endothermic •  Everyreactionhasanenergychange

associatedwithit•  Exothermicreactionsreleaseenergy,

usuallyintheformofheat.•  Endothermicreactionsabsorbenergy•  Energyisstoredinbondsbetween

atoms

Page 24: Ch. 6: Thermochemistry

TermstoKnow•  Entropy(S)

– Measureofthedispersalofmatterandenergy•  Naturetendsfromordertodisorder

– Increaseindispersal/disorder+ΔS– Decreaseindispersal/disorder-ΔS

Page 25: Ch. 6: Thermochemistry

TermstoKnow•  GibbsFreeEnergy(G)

– Criteriafordeterminingthermodynamicfavorabilityandcalculatingthetheoreticalamountofenergytodowork

Page 26: Ch. 6: Thermochemistry

Enthalpy

Page 27: Ch. 6: Thermochemistry

Pair-Share-Respond1.  Define“energy”and“heat”.2.  Identifyanddescribethreewaysthatheatcanbetransferred

3.  Whatisthefirstlawofthermodynamics?

4.  Whatisastatefunction,andwhatisanexampleofastatefunction?

5.  Distinguishbetweenexothermicandendothermicprocesses

Page 28: Ch. 6: Thermochemistry

Enthalpy•  Enthalpy(H)=Flowofenergy(heatexchange)atconstantpressurewhentwosystemsareincontact– Wemeasurethechangeinenthalpy,orthedifferencebetweenthepotentialenergiesoftheproductsandthereactants

Page 29: Ch. 6: Thermochemistry

Enthalpy•  ΔHisastatefunction.•  ΔH=qatconstantpressure(i.e.atmosphericpressure)

•  Wecancalculateenthalpymanyways– Stoichiometry– Calorimetry– Tablesofstandardvalues– Hess’sLaw– Bondenergies(weknowthisway!)

Page 30: Ch. 6: Thermochemistry

Enthalpy•  Stoichiometry•  Ex/Uponaddingsolidpotassiumhydroxidepelletstowater,thefollowingreactiontakesplace:

KOH(s)àKOH(aq)+43kJ/mol•  Answerthefollowingquestionsregardingtheadditionof14.0gofKOHtowater:– Doesthebeakergetwarmerorcolder?–  Isthereactionendothermicorexothermic?– Whatistheenthalpychangeforthedissolutionofthe14.0gramsofKOH?

Page 31: Ch. 6: Thermochemistry

Enthalpy•  Enthalpyofreaction(ΔHrxn)=amountofheatreleased(negativevalues)orabsorbed(positivevalues)byachemicalrxnatconstantpressureknkJ/mol

Page 32: Ch. 6: Thermochemistry

Enthalpy•  Enthalpyofcombustion(ΔHcomb)=heatabsorbedorreleasedbyburning(usuallywithO2)inkJ/mol;notethatcombustionreactionsyieldoxidesofthatwhichiscombusted

Page 33: Ch. 6: Thermochemistry

Enthalpy•  Enthalpyofformation(ΔHf)=HeatabsorbedorreleasedwhenONEmoleofcompoundisformedfromelementsintheirstandardstatesinkJ/mol

Page 34: Ch. 6: Thermochemistry

Enthalpy•  Enthalpyoffusion(ΔHfus)=heatasborbedtomelt(overcomeIMFs)1moleofsolidtoliquidatMPexpressedinkJ/mol

Page 35: Ch. 6: Thermochemistry

Enthalpy•  Enthalpyofvaporization(ΔHvap)=heatabsorbedtovaporizeorboil(overcomeIMFs)1moleliquidtovaporattheBPinkJ/mol

Page 36: Ch. 6: Thermochemistry

UnitsforMeasuringHeatFlow

Page 37: Ch. 6: Thermochemistry

Units for Heat Flow Whataresomeunitswecanusetomeasureheat/energy?•  Calorie•  Kilocalorie•  Joule(SIUnit)

Page 38: Ch. 6: Thermochemistry

Units for Heat Flow •  Calorie=quantityofheatneededtoraisethetemperatureof1gofpurewaterby1oC–  Usedexceptwhenreferringtofood–  aCalorie,(writtenwithacapitalC),always

referstotheenergyinfood–  1Calorie=1kilocalorie=1000cal.

Page 39: Ch. 6: Thermochemistry

Units for Heat Flow •  Joule=SIunit

– namedafterJamesPrescottJoule– 4.184J=1cal

Page 40: Ch. 6: Thermochemistry

HeatCapacity&SpecificHeat

Page 41: Ch. 6: Thermochemistry

Heat Capacity & Specific Heat • HeatCapacity=amountofheatneededtoincreasethetempofanobjectexactly1oC– Dependsonboththeobject’smassanditschemicalcomposition

Page 42: Ch. 6: Thermochemistry

Heat Capacity & Specific Heat •  SpecificHeat(C)=amtofheatneededtoraisethetempof1gofasubstanceby1oC– UnitsareusuallyJ/(goC)

• WaterhasaHUGEvalue,whenitiscomparedtootherchemicalsduetohydrogenbonding

Page 43: Ch. 6: Thermochemistry

Table of Specific Heats Note the tremendous difference in

Specific Heat.

Water’s value is

VERY HIGH.

Page 44: Ch. 6: Thermochemistry

Heat Capacity & Specific Heat •  Forwater,C=4.18J/(goC)inJoules,andC=1.00cal/(goC)incalories.

•  Thus,forwater:– ittakesalongtimetoheatup,and– ittakesalongtimetocooloff!

• Waterisusedasacoolant!

Page 45: Ch. 6: Thermochemistry

HeatCapacity(C)•  Molarheatcapacity:EnergyrequiredtoraisethetemperatureofonemoleofasubstancebyonedegreeCelsius– Units-J/°C·molorJ/K·mol

•  Heatcapacitiesofmetalsaredifferentfromthatofwater–  Ittakeslessenergytochangethetemperatureofagramofametalby1°Cthanforagramofwater

Page 46: Ch. 6: Thermochemistry

Heat Capacity & Specific Heat •  Ausefulformula:

q=mxΔTxC– m=massingrams– ΔT=changeintemperature– C=SpecificHeat

• Unitsareeither:J/(goC)orcal/(goC)

Page 47: Ch. 6: Thermochemistry

Example•  Thetemperatureofa95.4gpieceofcopperincreasesfrom25.0oCto48.0oCwhenthecopperabsorbs849Jofheat.Whatisthespecificheatofcopper?

Page 48: Ch. 6: Thermochemistry

Calorimetry

Page 49: Ch. 6: Thermochemistry

Calorimetry •  A burning match releases heat to its

surroundings in all directions. •  Is this exothermic or endothermic?

Page 50: Ch. 6: Thermochemistry

Calorimetry •  Can we determine the amount of heat

given off?

Page 51: Ch. 6: Thermochemistry

Calorimetry•  Calorimetryistheprocessofmeasuringheatbasedonobservingthetemperaturechangewhenabodyabsorbsordischargesenergyasheat•  Based on the fact that the heat released = the heat

absorbed •  Acalorimeterisfilledwithwaterandtheinitialtemperatureisrecorded

•  The mass of the sample and water is taken •  The substance is heated, and the heat should be

transferred to the water •  The final temperature of the water and the mass

burned is recorded •  This data can be used to calculate the heat released

and the energy content

Page 52: Ch. 6: Thermochemistry

Calorimetry •  Calorimeters =

used to measure the absorption or release of heat – Ex/ Foam Cups

Page 53: Ch. 6: Thermochemistry

Coffee-CupCalorimeter

•  ContainstwonestedStyrofoamcupswithacoverthroughwhichastirrerandthermometercanbeinserted– Outercupisusedtoprovideextrainsulation

–  Innercupholdsthesolutioninwhichthereactionoccurs

Page 54: Ch. 6: Thermochemistry

Calorimetry •  Calorimeters are

used to measure the absorption or release of heat – Ex/ Soda Cans

Page 55: Ch. 6: Thermochemistry

Example •  Recall:

q=mxΔTxC• Wecanalsoexpressthisintermsofspecificheat:

C=q/mxΔT

Page 56: Ch. 6: Thermochemistry

Example • When100.0mLofawatersolutionisheatedfrom22.5oCto26.0oC,heatisgivenoff.Calculatetheheatgivenoff.

•  (Recall–thespecificheatofwateris4.18J/goC,andthedensityis1.00g/mL)

Page 57: Ch. 6: Thermochemistry

Example •  Howmuchheatisneededtowarm250gofwaterfrom22oCto98oC?

Page 58: Ch. 6: Thermochemistry

SampleQuestion•  Whichofthefollowingstatementsistrue?

a.  Changeinenthalpyisastatefunctionb.  Inexothermicreactions,thereactantsarelowerin

potentialenergythantheproductsc.  Achemisttakesthesurroundingspointofviewwhen

determiningthesignforworkorheatd.  Heatofreactionandchangeinenthalpycanalwaysbe

usedinterchangeably

Page 59: Ch. 6: Thermochemistry

SampleQuestion•  Twodifferentmetalsofequalmasswithdifferentheatcapacitiesaresubjectedtothesameamountofheat– Whichundergoesthesmallestchangeintemperature?

a.  Themetalwiththehigherheatcapacityshowsthesmallestchangeintemperature

b.  Themetalwiththelowerheatcapacityshowsthesmallestchangeintemperature

c.  Becausetheyhaveequalmass,bothmetalsundergothesamechangeintemperature.distilledmixture

Page 60: Ch. 6: Thermochemistry

SampleQuestion•  A50.0-gsampleofwaterat80°Cisaddedtoa50.0-gsampleofwaterat20°C– Thefinaltemperatureofthewatershouldbe:

a.  between20°Cand50°Cb.  50°Cc.  between50°Cand80°C

Page 61: Ch. 6: Thermochemistry

SampleQuestion•  A50.0-gsampleofwaterat80°Cisaddedtoa100.0-gsampleofwaterat20°C– Thefinaltemperatureofthewatershouldbe:

a.  between20°Cand50°Cb.  50°Cc.  between50°Cand80°C