Ch 1 Tree Biology - Texas A&M AgriLife

25
Tree Biology Mike Sills Regional Urban Forester, Texas A&M Forest Service Dallas Region 1

Transcript of Ch 1 Tree Biology - Texas A&M AgriLife

Page 1: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

Mike SillsRegional Urban Forester, Texas A&M Forest Service Dallas Region

1

Page 2: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• “If you can work on CARS, you can work on ANYTHING.”

2

Page 3: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• “If you can work on CARS, you can work on ANYTHING.”–“If you can work on ANYTHING, then you can figure out how TREES WORK.”

3

Page 4: Ch 1 Tree Biology - Texas A&M AgriLife

4

Tree Biology

Page 5: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

5

vacuole Nucleus

mitochondria

roughendoplasmicreticulum

chloroplast

Cell => Tissue => Organ => OrganismCell Wall, Cellulose, Lignin 

Page 6: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

6

Page 7: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

7

Occurs in cells that contain chloroplasts

Occurs in mitochondria

Page 8: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

8

Page 9: Ch 1 Tree Biology - Texas A&M AgriLife

9

Tree Biology

Page 10: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• What makes stomata open and close?–Responses to signals from the environment

•Light: stomata are open•Dark: stomata are closed•High CO2 inside leaf: stomata are closed•Low CO2 inside leaf: stomata are open•Drought stress: stomata are closed

10

Page 11: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

11

ApicalMeristems

Shoot tip

Root cap

Page 12: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

12

Terminal bud

Lenticels

Leaf budFlower bud

Terminal budScale scars

Leaf scars

This year’s growthNode

Internode

This year’s growth

Lateral bud

Last year’s growth

Page 13: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

13

Lumenlearning.com

Page 14: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

14

Page 15: Ch 1 Tree Biology - Texas A&M AgriLife

15

Tree Biology

Page 16: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• Symplasm (sapwood) vs. Apoplasm(heartwood)

• Xylem of Gymnosperms (pines, spruces)–Tracheids (dead)–Fibers (sclerenchyma)–Parenchyma cells (live)

• Vessels (xylem of hardwoods)–Stacks of dead, hollow cells

16

Page 17: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• Phloem (conifers)–Sieve cells

• Phloem (hardwoods)–Sieve tube elements–Companion cells

• Movement of carbohydrates (sugars) is slow and requires energy

17

Page 18: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

• Phloem–Rays

• Transport and store carbohydrates• Restrict decay  (CODIT)

• Bark–Old phloem

• Crushed & living cells reabsorbed into tree• Cell walls incorporated into bark

– Impregnated with wax and oil–Lenticles

• Gas exchange

18

Page 19: Ch 1 Tree Biology - Texas A&M AgriLife

19

Tree Biology

Page 20: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

20

The cohesion-tension theory of sap ascent is shown. Evaporation from the mesophyll cells produces a negative water potential gradient that causes water to move upwards from the roots through the xylem. Image credit: OpenStax Biology

Page 21: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

21

Page 22: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

22

Page 23: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

23

Mycorrhizae

Page 24: Ch 1 Tree Biology - Texas A&M AgriLife

24

Tree Biology

Page 25: Ch 1 Tree Biology - Texas A&M AgriLife

Tree Biology

25