Centrifugal Compressor Design and Rerating in Turbochargers
date post
13-Dec-2015Category
Documents
view
12download
1
Embed Size (px)
description
Transcript of Centrifugal Compressor Design and Rerating in Turbochargers
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 1/8
CentrifugalCompressorDesignandReratinginTurbochargersWrittenbyLeonidMoroz
Monday,05April201008:17
LeonidMoroz
SoftInWay,Inc.Burlington,MA01803,USA
SergeyGnezdilovJSCSKBTPenza,440034,Russia
Contactauthor:LeonidMoroz,L.Moroz@SoftInWay.com
Abstract
Specialnumericalresearchiscarriedouttostudytheeffectsofdifferentcentrifugalcompressordesignandreratingstrategiesneededforflowpathcomponentsstandardizationduringmanufacturingandretrofittingprocessesinturbochargers.
Experimentaldatavscalculationresultscomparisonsforseveralcentrifugalcompressordesignsareusedtoconfirmthevalidityofcalculationsinpredictingperformanceandoperatingrange.
Numericalcalculationsallowedtoestimatetheinfluenceofimpellerandvaneddiffusergeometrymodificationsacceptablewithinselectedconstraints.
Thestrategygivespossibilitytodesignhighlyefficientcentrifugalcompressorsoruseexistingcentrifugalcompressorflowpathsinsteadofnewonesthatcanbecreatedby
trimmingtheimpellerwheelattrailingedgevaryingimpellerbladeheightsatleadingandtrailingedgesmodifyingvaneddiffuserheightanditsstaggerangle
Accurateoffdesignflowpredictionsaremadetofindstableoperationrangesofupgradedcentrifugalcompressorflowpaths.
Thedescribedstudyiscarriedoutincollaborationwithlargeturbochargersmanufacturerengagedinlocomotive,marine,heavydutytrucks,drillingrigs,power,andpipelinestationsappliances.
Nomenclature
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 2/8
D1,D2 Impellerinlet/outletdiameter
l1,l2 Impellerinlet/outletbladeheight
Compressorefficiency
Rotationalspeed
C Compressorpressureratio
Figure1.Centrifugalcompressorinturbocharger
Introduction
Centrifugalcompressorsareusedinturbochargersextensivelybecauseoftheirsmoothoperation,theircapabilityforwideoperatingrange,andtheirhighreliability.
Properselectionofthecentrifugalcompressorisanimportantdecisioninfluencingthesuccessfuloperationoftheturbocharger.Thus,completedesignworkflowshouldbeusedtotakeintoaccountallengineeringaspectsinvolvingsequenceofseveralsteps:
Preliminarydesign(sizing)MeanlinecalculationsPerformancemapsanalysisFlowpathoptimizationProfilingand3DbladedesignStructuralandmodalanalysis3Dflowanalysis
Preliminarydesignofcentrifugalcompressorrequiresminimalinputofgeometricalandoperationalconstraintstofindacceptablesizesoftheflowpath.
Meanlinecalculationsandperformancemapsanalysisisthenextsteptorefinethesolution.Somegeometrymodificationscanbemadeduringthissteptooptimizetheefficiencyandmeetrequiredlevelofstableoperatingrange.
3Dbladedesignandprofilingincombinationwithstructural,modaland3Dflowanalysesgivethefinalanswertothequestionwhatkindofflowpathismostsuitableforspecificneeds.
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 3/8
Centrifugalcompressorreratingisoftenrequiredtomeetnewdesignflowrateorhead.Thesechanges,inmanycases,needthecompressortobe"redesigned".
Itincludesanythingfromasimplespeedchangetotrimmingofimpellers.Inthecaseofvaneddiffuserbeingusedinthecompressor,thecompressorsurgemarginisgreatlyreducedbecauseofchangesinsuctionpressures[1].Thisisduetotheflowangleattheexitoftheimpellerhavingalargeincidenceangleonthediffuserblade.
Inthisarticlesomewaystochangetheheadandflowofexistingcompressorsarediscussedandinvestigated.Compressorreratingrequiresanindepthknowledgeofthecompressoranditscomponents.
Therequirementsforadifferentheadatapproximatelyjustthesameflowwouldrequirechangesinmachinespeedand,insomecases,thetrimmingofthewheels.
Itisalsoknownthattrimmingthecompressorwheelswouldalsoreduceheadproduced.Aspeedincreaseafterthewheelshavebeentrimmedwouldthenincreasetheheaddeliveredatahigherflow[2].
ExperimentalTestFacility
Centrifugalcompressorperformancewasevaluatedusinganexperimentaltestfacility.Centrifugalcompressorwasdrivenbytheaxialturbinestageutilizingthepowerofexhaustgasessuppliedbyconvertedaeroderivativecombustionchamber.Thismethodwasusedbecauseofhighpowerinputlevelthathasbeenneededfordrivingthecentrifugalcompressorinselectedturbocharger.
Thelocationsofpressure,temperature,andflowmeasuringsystemsareschematicallyshownonfig.2.
Inletanddischargepipingwasselectedinthatwaytopreserveflowconditionsthatminimizemeasuringuncertainties.
Dataacquisitionmethodswereusedduringexperimentaldataprocessing.Pressure,temperature,flowmeasuringandrotationalspeedmeasuringinstrumentationwascalibratedbeforecarryingouttheexperimentalstudiestomeetallmeasurementrequirements.
Figure2.Experimentaltestfacility
ProblemFormulation
Currentstudywasintendedtofindquickandreliableapproachtopredictoffdesignperformanceandstableoperatingrangeofnewandupgradedcentrifugalcompressorflowpathsusedinturbochargers.Thestudywasdividedinto
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 4/8
severalphases:
ValidationofcentrifugalcompressorflowpredictiontoolusingperformancedataobtainedduringexperimentalstudiesofseveralcompressorflowpathsPerformanceandstableoperatingrangepredictionsfordifferentalternativecentrifugalcompressorflowpathmodifications
PreliminaryDesign
Thefirststepofthestudywastocarryoutthepreliminarydesignfromthegroundandfindoptimalsolutionusinggeometricalconstraintsandoperationalboundaryconditionsclosetovaluesofdesignparametersusedincentrifugalcompressor(TK23series)manufacturedbyJSCSKBT.
Preliminarydesignin1Dinverseproblemformulationwasusedtofindthesolutiontakingintoaccountspecifieddesignconditions(=32000rpm,C=3.5).
Arandomsearchmethodisallowedtofindacloudofsolutionpointswithintheselectedranges(fig.3).Themaximumefficiencyistakenascriteriontodefinetheoptimalsolutionpoint.
Figure3.Cloudofsolutionpoints
Figure4.Bestcentrifugalcompressorflowpathselectedafterpreliminarydesign
Resultsfromthepreliminarydesignstudyshowedthatgeometricalandoperationalparametersofanewlydesigned
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 5/8
flowpathareveryclosetotheoriginalone(fig.4).Thismeansthattheflowpathoftheoriginalcentrifugalcompressorisatitsoptimallevel.
ComparisonofExperimentalandCalculationalResults
Theexperimentalperformancesofseveralcentrifugalcompressorswereevaluatedandcomparedtonumericalcalculations.Comparisonofexperimentalandflowpredictionsforonecasestudyisshownonfig.5.Analysisofperformancemapsshowsgoodagreementofnumericalcalculationswithexperiment.
Figure5.Performancemapscomparisonofexperimentalandcalculationresults
Figure6.Centrifugalcompressor3Dflowpath
Accurateoffdesignflowpredictionsallowedtousethecalculationapproachinfurtherstudiesofupgradedcentrifugalcompressorflowpaths.Numericalstudiestestplanincludesperformanceevaluationoforiginalcompressorflowpathmodificationsdueto
trimmingofimpellertrailingedgediametervaryingimpellerbladeheightsatleadingandtrailingedgesmodifyingvaneddiffuserheightandstaggerangle
EffectofImpellerWheelTrimmingatTrailingEdge
Flowpredictionsweremadeforseveralmodificationstostudytheeffectofimpellerwheeltrimming.Fig.7depictscalculatedperformancemapsforcasestudiesdescribedbellow:
initialflowpathgeometry:impelleroutletdiameterD2=275mm
modification1:wheeltrimming(3.5mm)modification2:wheeltrimming(7mm)
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 6/8
Figure7.Effectofimpellerwheeltrimmingattrailingedge
EffectofImpellerInletHeightVariation
Flowpredictionsweremadeforseveralmodificationstostudytheeffectofimpellerinletheightvariation.Fig.8depictscalculatedperformancemapsforcasestudiesdescribedbellow:
initialflowpathgeometry:impellerinletheightl1=47.5mm
modification3:impellerinletheightreducing(2.5mm)modification4:impellerinletheightreducing(5mm)
Itisevidentthatchokeinvaneddiffusercausesthecoincidenceofspeedlineswhenperformanceisbeingestimatedonlowerrotationalspeeds.
Figure8.Effectofimpellerinletheightvariation
EffectofImpellerOutletHeightVariation
Flowpredictionsweremadeforseveralmodificationstostudytheeffectofimpelleroutletheightvariationincombinationwithreducingofvaneddiffuserheight.Fig.9depictscalculatedperformancemapsforcasestudiesdescribedbellow:
2=11.4mmmodification5:impelleroutletheightreducing(1mm)modification6:impelleroutletheight
reducing(2mm)
8/31/2015 CentrifugalCompressorDesignandReratinginTurbochargers
http://articles.compressionjobs.com/articles/engineering/3458centrifugalcompressordesignreratingturbochargers?tmpl=component&print=1&page= 7/8
Figure9.Effectofimpelleroutletheightvariation
EffectofVanedDiffuserStagerAngleVariation
Flowpredictionsweremadeforseveralmodificationstostudytheeffectofvaneddiffuserstaggeranglevariation.Fig.10depictscalculatedperformancemapsforcasestudiesdescribedbellow:
initialflowpathgeometry:defaultvaneddiffuserstaggerangl
Recommended