cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

download cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

of 16

Transcript of cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    1/16

    Date: 09.10.2009Date: 09.10.2009

    DIN V5031-100DIN V5031-100CEN/TC 169

    N 0788

    English version

    of DIN V 5031-100

    published 2009-06

    Optical radiation physics and illuminating engineering Part 100: Non-visual effectsof ocular light on human beings Quantities, symbols and action spectraOptical radiation physics and illuminating engineering Part 100: Non-visual effectsof ocular light on human beings Quantities, symbols and action spectra

    Strahlungsphysik im optischen Bereich und Lichttechnik Teil 100: ber das Auge vermittelte, nichtvisuelleWirkung des Lichts auf den Menschen Gren, Formelzeichen und WirkungsspektrenStrahlungsphysik im optischen Bereich und Lichttechnik Teil 100: ber das Auge vermittelte, nichtvisuelleWirkung des Lichts auf den Menschen Gren, Formelzeichen und Wirkungsspektren

    Physique de radiation optique et technique d'clairage Partie 100: Effet non-visuel de lumire oculaire sur la

    personne grandeurs, symboles et spctre dactivit

    Physique de radiation optique et technique d'clairage Partie 100: Effet non-visuel de lumire oculaire sur la

    personne grandeurs, symboles et spctre dactivit

    Dokument-Typ: Vornorm

    Dokument-Untertyp:Dokumentstufe:Dokumentsprache: D

    X:\TA3\TG3-1\NA 058\CEN\CEN TC 169\Schriftstcke\N 0788 DIN V 5031-100 (E) 2009-10-10.doc STD

    : D

    X:\TA3\TG3-1\NA 058\CEN\CEN TC 169\Schriftstcke\N 0788 DIN V 5031-100 (E) 2009-10-10.doc STDVersion 2.2Version 2.2

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    2/16

    DIN V 5031-100:2009-03

    Contents Page

    Foreword......................................................................................................................................................... 3

    Introduction .................................................................................................................................................... 3

    1 Scope ................................................................................................................................................. 3

    2 Normative references ....................................................................................................................... 4

    3 Terms and Definitions ...................................................................................................................... 4

    4 Biological effects of light ................................................................................................................. 74.1 General............................................................................................................................................... 74.2 Nocturnal melatonin suppression................................................................................................... 84.3 Shifting of circadian phase............................................................................................................ 114.4 Change in circadian amplitude...................................................................................................... 114.5 Activation by light........................................................................................................................... 114.6 Treatment of seasonal affective disorders (SAD) ....................................................................... 11

    Annex A (informative) Spectral energy distribution of modern light sources ..................................... 13

    Bibliography ................................................................................................................................................. 16

    2

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    3/16

    DIN V 5031-100:2009-03

    Foreword

    This prestandard was prepared by NA 058-00-27 AA Effect of Light on Human Beings within the LightingTechnology Standards Committee (FNL) of the German Institute for Standardization DIN.

    A prestandard is the result of a standardization work, which is not published as a DIN standard because ofcontents related reluctance or a deviant process of creation.

    No draft preceding this prestandard was published.

    Comments on experience with this prestandard are welcomed

    best as an electronic file per e-mail addressed to [email protected] in chart form. A sample chart is ready for

    download at DIN: http://www.din.de/stellungnahme

    or as a paper work addressed to NA 058-00-27 AA.

    Introduction

    With the proof of melanopsin in ganglion cells of the human retina and their given sensitivity mainly in the bluepart of the spectrum it is clear that a description of optical radiation according solely to the photometric action

    spectrum of DIN 5031-3 is not sufficient.

    Depending on time of stimulation, narrow band light in the short wavelength region causes suppression of thenocturnal release of melatonin, increases heart rate as well as alertness and affects thermoregulation,electroencephalogram spectrum and the phase of the circadian system. Fast responses in the range of secondsto short wavelength light were seen in the papillary reflex or in brain activity patterns.

    For these non-visual effects of light perceived by the eyes, the term biological effects is also used in thisprestandard.

    As the available data base is partly unconfirmed, action spectra presented herein have to be updated accordingto new scientific evidence.

    The importance of biological effects of light on humans justifies also in this early stage of evidence to compile aprestandard in order to have a uniform evaluation procedure.

    1 Scope

    This prestandard specifies the spectral quantification of visible optical radiation with respect to biological effectsof light. Additionally, terms and action spectra characterizing light biologically are defined.

    The prestandard establishes a uniform evaluation of light sources and lighting, not implying necessarily that theaction spectra provide a precise measure for the biological effectiveness of the optical radiation.

    3

    mailto:[email protected]:[email protected]
  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    4/16

    DIN V 5031-100:2009-03

    2 Normative references

    The following referenced documents are indispensable for the application of this document. For datedreferences, only the edition cited applies. For undated references, the latest edition of the referenced document(including any amendments) applies.

    DIN 5031-3, Optical radiation physics and illuminating engineering edition cited applies Part 3: quantities,symbols and units of illuminating engineering

    DIN 5033-7, Colorimetry; Part 7: measuring conditions for object colours

    CIE Report 15, Colorimetry, 3rdEdition

    3 Terms and Definitions

    For the purposes of this document, the terms and definitions given in DIN 5031-3 and the following apply.

    3.1Biological Effects of Lighteffects on human physiology and behaviour by light received through the eyes besides the visual perception

    3.2Biological Rating

    Xbiolsize of the biological effect of optical radiation according to equation (1)

    ( ) ( )

    dsXX =

    2

    1

    biolbiol (1)

    Where

    Xbiol is the biologically effective radiant quantity;

    X() is the spectral radiant quantity;

    sbiol() is the relative spectral sensitivity of a biological process, with respect to maximum sbiol,max() = 1 (actionspectrum);

    1, 2 are the limit wave lengths for sensitivity according to chart 2.

    NOTE 1 Equation (1) presumes that the total effect is the sum of single wavelength (monochromatic radiation) effects,also called the law of Abney. Scientific research suggests that this can be assumed at least in a first approximation.

    NOTE 2 Equation (1) is valid for persons at the age of 25 years; correction factors for other person ages are given in 3.4.

    NOTE 3 Biological effects typically show a non-linear correlation to biological effective radiation.

    3.3Biological Action Factorabiol vratio of biological rating to photometric rating of photopic vision according to equation (2)

    4

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    5/16

    DIN V 5031-100:2009-03

    ( )

    ( )

    =nm780

    nm380

    biol

    vbiol

    )(

    )(2

    1

    dVX

    dsX

    a (2)

    Where

    abiol v is the biological action factor;

    V() is the spectral luminous efficiency function V() for photopic vision according to DIN 5031-3;

    1, 2 are the limit wave lengths for sensitivity according to chart 2.

    NOTE 1 The biological action factor is a dimensionless quantity.

    NOTE 2 for a known photometric value Xv(e. g. luminance) for photopic vision, the biological action factor can be used tocalculate the biological rating Xbiolby using equation (3).

    Xbiol= Km-1Xv abiol v (3)

    Where

    Xv is the photometric quantity according to DIN 5031-3

    Km= 683 lm/W is the maximum spectral luminous efficacy according to DIN 5031-3

    NOTE 3 To enable a proper comparison, action factors should be given with 3 significant decimal places.

    3.4Correction factor for person age regarding biological effects of lightkbiol(A)ratio of biological effect of light for a person at age (A) to the one for a person at the age of 25 years according toequation (4).

    ( ) ( ) ( )AkpAkAk pupiltransbiolbiol = (4)

    Where

    kbiol trans(A) is the age (A) dependent correction factor for the transmittance of ocular media according to 3.4.1.

    kpupil(A) is the age (A) dependent correction factor for the reduction of pupil size according to 3.4.2

    NOTE 1 The age dependent correction factor is a dimensionless quantity.

    NOTE 2 for a known photometric value Xv for photopic vision, the age dependent biological effect of light Xbiol Acan becalculated by using equation (5).

    Xbiol A= Km-1 Xv abiol v kbiol(A) (5)

    Where

    Km= 683 lm/W is the maximum spectral luminous efficacy according to DIN 5031-3

    5

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    6/16

    DIN V 5031-100:2009-03

    NOTE 3 The age dependent correction factor incorporates only the transmittance of ocular media and the changes inpupil size with person age but not possible age dependent changes in physiological processes which are subject to biologicaleffects of light.

    3.4.1

    Correction factor for age dependent transmittance of ocular mediakbiol trans(A)ratio that relates the spectrally for biological effects weighted transmitted light fraction passing the ocular mediaof a person at age (A) to the one of a person at the age of 25 years according to equation (6).

    ( )

    ( ) ( )( )

    ( )

    =

    =2

    1

    2

    1

    biol

    biol

    transbiol

    )(

    )(25,

    ,

    dsX

    dsA

    AX

    Ak

    (6)

    Where

    (,A) is the spectral degree of transmittance of ocular media at person age A(see Note 2).

    NOTE 1 Equation (6) implies, that the relative spectral sensitivity of biological process sbiol() was determined for 25 yearold persons.

    NOTE 2 According to [9], the spectral degree of transmittance (, A) of ocular media at person age Acan be determinedby using equations (7a) and (7b).

    ( ) ( )( )ADA ,10, = (7a)

    Where optical density D(, A) =

    ( ) ( )( )( )( )( ) (( )( ) ( )( )( )( )22

    22

    22

    2

    42

    00018876,002288,0325000064,0exp

    00222270,070505,0325000441,0exp

    00013419,012574,23700,000841exp

    5492,151273003249,0exp

    /400000031,0225,0111.0

    A

    A

    A

    A

    ++

    +++

    ++

    ++

    +++=

    ) (7b)

    Table 1 Optical density D() and optical transmittance ()for person ages 25, 50 und 75 yearsdependent on wavelength

    Wavelength Opticaldensity

    Opticaltransmittance

    Opticaldensity

    Opticaltransmittance

    Opticaldensity

    Opticaltransmittance

    [nm] D(, 25) (, 25) D(, 50) (, 50) D(, 75) (, 75)

    400 1,58679429 0,02589439 2,12259831 0,00754053 3,01560503 0,00096471

    450 0,32689622 0,47108989 0,49646809 0,31880998 0,77908788 0,16630761

    500 0,23094084 0,58756939 0,30460767 0,49589797 0,42738572 0,37377847

    550 0,18488335 0,65330601 0,21500561 0,60952902 0,26520939 0,54298847

    650 0,14620968 0,71415145 0,1549558 0,69991323 0,16953267 0,67681088

    700 0,13707319 0,72933458 0,14331429 0,71892852 0,15371611 0,70191397

    750 0,13077339 0,73999129 0,13547958 0,73201573 0,14332324 0,71891371

    6

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    7/16

    DIN V 5031-100:2009-03

    3.4.2ction factor for age dependent size of pupil

    person at the age of 25 years according to equation (8).

    Where

    59 (see note).

    he experiments cited in [10].

    Table 2 Correction factors for age dependent size of pupil according to equation (8)

    CorreK (Apupil )

    ratio of pupil area for a person at age Ato the one of a

    ( ) ( )[ ]225c1 = AAk (8)pupil

    c = 0,005

    Basis for equation (8) are t

    A= 25 A=50 A=75

    kpupil(A) 1 0,740 0,519

    OTE In fact, the factor c in equation (8) is dependent on the adapted luminance L.In typical use cases the luminanceadapted to is unknown. This discrepancy leads to the recommendation of a fixed factor for general use. The underlying

    n

    (9)

    Where

    7;

    4 Biological effects of light

    f light are listed in table 3 and according to todays evidence they are not elicited by exposure

    g to the biological effects in table 3, the biological effective radiant quantity in equation (1) is indexedaccordingly by replacing the index biol by the respective index given in the same line of table 3.

    N

    assumptio for c= 0,00559 is an L= 200 cd/m2. The resulting relative error of kpupil(A) for an Lfrom 10 to 1000 cd/m2remains

    for A

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    8/16

    DIN V 5031-100:2009-03

    Table 3 Biological effects of light - index, range of spectral sensitivity with limit wavelengths 1and 2,and wavelength of maximum sensitivity max

    see

    chapterbiological effect index

    1nm

    2nm

    maxnm

    4.2 nocturnal suppression of melatonin ms 380 580 450

    4.3 shifting of circadiana phase cp 380b 580b 450b

    4.4 change in circadian amplitude ca 380b 580b 450b

    4.5 activation with light ak 380b 580b 450b

    4.6 treatment of seasonal affective disorders (SAD) sad 380c 780c 555c

    a In the German version of this prestandard, the term circadian is written identical to this version and analogous to scientificliterature while the German orthographical reference Duden spells zirkadian.

    b Since action spectra and limit wavelengths are not yet known for shifting circadian phase and amplitude as well as activation bylight, the values for melatonin suppression were used provisionally (see 4.3 and 4.4).

    c Since action spectra and limit wavelengths are not yet known for treatment of seasonal affective disorders, the values for thespectral luminous efficiency function V() for photopic vision according to DIN 5031-3 were used provisionally (see 4.6).

    4.2 Nocturnal melatonin suppression

    The bases for describing the spectral sensitivity for melatonin suppression provide [2], [3] and [4].

    Labelling of radiation quantities for suppression of melatonin is according to table 3 and equation (10):

    ( ) ( ) sXX

    d

    nm580

    nm380

    msms

    2

    1

    = =

    =

    (10)

    Where

    Xms is the effective radiant quantity for melatonin suppression

    sms() is the relative spectral sensitivity for melatonin suppression

    Values for the action spectrum for suppression of melatonin sms() at a given wavelength are listed in table 4.

    Data in [2] and [3] were determined from dark adapted volunteers at nocturnal maximum of melatonin releaseand with pharmaceutically dilated pupils.

    8

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    9/16

    DIN V 5031-100:2009-03

    Table 4 Action spectrum for nocturnal suppression of melatonin sms() in relation to wavelength

    nm

    sms()

    nm

    sms()

    nm

    sms()

    380 0,002 450 1,000 520 0,378385 0,004 455 0,997 525 0,312

    390 0,011 460 0,994 530 0,249

    395 0,024 465 0,987 535 0,192

    400 0,063 470 0,972 540 0,142

    405 0,128 475 0,946 545 0,101

    410 0,231 480 0,907 550 0,073

    415 0,355 485 0,854 555 0,055

    420 0,486 490 0,793 560 0,04

    425 0,615 495 0,727 565 0,027

    430 0,737 500 0,658 570 0,017435 0,850 505 0,588 575 0,011

    440 0,949 510 0,517 580 0,007

    445 0,987 515 0,447

    NOTE 1 The action spectrum for nocturnal suppression of melatonin sms() as given in table 4 is shown infigure 1.

    Wavelenght, (nm)

    Figure 1 Action spectrum for nocturnal suppression of melatonin sms()

    NOTE 2 Biological action factors and age dependent correction factors for suppression of melatonin withdifferent illuminants according to DIN 5033-7 and CIE Report 15.2 are listed in table 5.

    9

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    10/16

    DIN V 5031-100:2009-03

    Table 5 Biological action factors for suppression of melatonin and age dependent correction factorsfor lens transmittance using selected standard illuminants according to DIN 5033-7 and CIE-Report 15.2,

    calculated according to 3.3 and 3.4 on the basis of table 4

    Illuminant ams v kbiol trans(25) kbiol trans(50) kbiol trans(75)Standard illuminant A (incandescent, Tf=2856 K)

    0,376 1,000 0,773 0,527

    Illuminant B (Sunlight) 0,759 1,000 0,741 0,473

    Illuminant G (vacuum-incandescent) 0,267 1,000 0,790 0,554

    Illuminant F10 of CIE (FL, Tf= 5000 K) 0,654 1,000 0,724 0,446

    Illuminant F11 of CIE (FL, Tf= 4000 K) 0,522 1,000 0,726 0,451

    Illuminant F12 if CIE (FL, Tf= 3000 K) 0,342 1,000 0,733 0,468

    Illuminant D50 (daylight Tf= 5000 K) 0,749 1,000 0,745 0,480Illuminant D55 (daylight Tf= 5500 K) 0,820 1,000 0,740 0,472

    Standard illuminant D65 (nat. daylight) 0,941 1,000 0,732 0,461

    Illuminant D75 (daylight Tf= 7500 K) 1,040 1,000 0,727 0,453

    Illuminant P (petrol oil/candlelight) 0,167 1,000 0,811 0,590

    Illuminant Xe (Xenon light) 0,918 1,000 0,731 0,459

    The spectral characteristics of the illuminants in table 5 are defined in other standards. These are mainly

    conventional light sources, while new applications make increasingly use of light emitting diodes (LED) withcolour temperatures between 2700 K and 7000 K and new fluorescent lamps with high colour temperatures.Therefore, table 6 contains typical biological action factors and age dependent correction factors for such lightsources. The underlying spectral distributions of the light sources are given in table A.1.

    Table 6 Biological action factors for suppression of melatonin and age dependent correction factorsfor lens transmittance using different modern light sources according to 3.3 and 3.4 on the basis of table

    4 and typical spectral characteristics of these light sources (see table A.1)

    Illuminant ams v kbiol(25) kbiol(50) kbiol(75)

    LED (Tf= 3035 K) 0,341 1,000 0,768 0,511

    LED (Tf= 4250 K) 0,609 1,000 0,773 0,515

    LED (Tf= 5400 K) 0,740 1,000 0,745 0,470

    LED (Tf= 6535 K) 0,807 1,000 0,726 0,444

    fluorescent lamp (Tf= 8000 K) 0,981 1,000 0,718 0,434

    fluorescent lamp (Tf= 17000 K) 1,23 1,000 0,706 0,414

    NOTE Above mentioned white LEDs produce a light mixture, composed of a primary blue component produced byelectroluminescence in the semiconductor and a broad spectrum yellow component produced by an overlying fluorescent

    layer that converts part of the primary blue component. The given LEDs differ in composition of fluorescent phosphors and inspectrum of luminescence. LED types of different colour temperatures were gained e. g. by sorting of production output into

    10

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    11/16

    DIN V 5031-100:2009-03

    different classes (binning). Depending on the manufacturer and type, LEDs may have different light spectrum while producingthe same light colour. Values in table 6 and table A.1 should therefore be regarded as typical. Similar considerations applyfor fluorescent lamps. They may also have different spectral distributions leading to a comparable light colour. The values intable 6 and A.1 may be seen as typical for recent fluorescent lamps with high colour temperatures.

    4.3 Shifting of circadian phase

    Humans own an inner clock, which - independently from external day-night-cycle - controls neuronal andhormonal processes in a so called circadian rhythm. The circadian rhythm affects the daily schedule of sleepand wake phases, release of melatonin and other hormones, and other physiological parameters of theorganism, like e. g. the body temperature. Light is capable of shifting the timing (phase) and changing thestrength (amplitude) of the circadian rhythm (see 4.4).

    An action spectrum for shifting of the circadian phase is not available yet. Studies ([5]) suggest, that this actionspectrum is more likely to correspond with the action spectrum for melatonin suppression than with the spectralluminous efficiency function V() for photopic vision according to DIN 5031-3. Therefore equation (11) is defined:

    scp() = sms() (11)

    NOTE With equation (11), tables 3 and 4 as well as figure 1 apply correspondingly.

    4.4 Change in circadian amplitude

    The amplitude of the circadian system is affected by light analogously to 4.3. In consequence, the nocturnalmelatonin release is dependent on the preceding daytime light exposure, generally speaking in leading to highermelatonin release with more biologically effective light over the day. Though a respective action spectrum wasnot subject of studies in this regard, it may be assumed that this effect is controlled through the samephotoreceptors as the melatonin suppression. The action spectrum for change in circadian amplitude is definedby equation (12).

    sca() = sms() (12)

    NOTE With equation (12), tables 3 and 4 as well as figure 1 apply correspondingly.

    4.5 Activation by light

    Light exposure of the human retina increases subjective alertness. Such activating light effects have beenconsistently shown also for objective physiological parameters.

    An action spectrum for activation by light is not available yet. Studies (see [6]) suggest, that this action spectrumis more likely to correspond with the action spectrum for melatonin suppression than with the spectral luminousefficiency function V() for photopic vision according to DIN 5031-3. Therefore equation (13) is defined:

    sak() = sms() (13)

    NOTE With equation (13), tables 3 and 4 as well as figure 1 apply correspondingly.

    4.6 Treatment of seasonal affective disorders (SAD)

    Light therapy shows considerable healing success in patients with seasonal depressions (SAD). Such patients,making up about 3 % of the population, show a higher sleep pressure, sense an increased need forcarbohydrates, feel sad and depressed, are often less productive, have higher error rates, tend to avoid contactsand show increased morbidity. They are free of symptoms from spring to fall [8]. Additional 9 % of the population([12]) sense a milder form of this interference and need no treatment (S-SAD). In total, 25 % of the generalpopulation feel seasonal variations in their mental state and behaviour [11].

    11

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    12/16

    DIN V 5031-100:2009-03

    An action spectrum for treatment of seasonal affective disorders (SAD) with light is not available yet. Studies(see [7]) up to now do not support an action spectrum differing from the spectral luminous efficiency functionV() for photopic vision according to DIN 5031-3. Therefore equation (14) is defined:

    sSAD() = V() (14)

    NOTE With equation (14), the biological action factor is aSAD= 1. Age dependent correction factors can not bedetermined because the age distributionunderlying V() is undetermined.

    12

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    13/16

    DIN V 5031-100:2009-03

    Annex A(informative)

    Spectral energy distribution of modern light sources

    Since spectral energy distributions of modern light sources which were used increasingly in new applications arenot defined in existing standards, typical spectral energy distributions of such sources were listed in table A.1.These light sources are white light emitting diodes (LEDs) and white fluorescent lamps (FL) with high colourtemperatures.

    Table A.1 standardized spectral energy distributions of modern light sources

    Wavelength

    LED white

    (Tf= 3075 K)

    LED white

    (Tf= 4250 K)

    LED white

    (Tf= 5400 K)

    LED white

    (Tf= 6535 K)

    FL

    (Tf= 8000 K)

    FL

    (Tf= 13650 K)

    385 0,00279 0,00223 0,00306 0,00389 0,00162 0,00322

    390 0,00273 0,00254 0,00428 0,00519 0,00137 0,00280

    395 0,00355 0,00284 0,00700 0,00753 0,00197 0,00365

    400 0,00431 0,00395 0,01198 0,01062 0,00881 0,00832

    405 0,00571 0,00639 0,01921 0,01458 0,15859 0,23883

    410 0,00796 0,01212 0,02445 0,02104 0,03510 0,05707

    415 0,01151 0,02333 0,03040 0,03386 0,04722 0,07620

    420 0,01945 0,03485 0,04519 0,06092 0,07475 0,11915

    425 0,03504 0,03721 0,07721 0,11635 0,10985 0,17100430 0,06363 0,03682 0,13273 0,21961 0,14975 0,22489

    435 0,11094 0,04798 0,21972 0,38938 0,62879 0,79086

    440 0,18326 0,07696 0,34348 0,65384 0,26263 0,31015

    445 0,28533 0,13556 0,51017 0,95582 0,23308 0,32914

    450 0,41372 0,24970 0,72708 1,00000 0,24066 0,33047

    455 0,53846 0,46596 0,94118 0,73017 0,23636 0,31742

    460 0,57621 0,77866 1,00000 0,48996 0,22146 0,29163

    465 0,49359 1,00000 0,84314 0,36248 0,20076 0,25834

    470 0,37480 0,94030 0,61742 0,26339 0,17551 0,22139

    475 0,29504 0,72641 0,46575 0,19500 0,14949 0,18441480 0,24369 0,57078 0,36739 0,16581 0,14091 0,16937

    485 0,20349 0,47360 0,28794 0,15694 0,25126 0,30377

    490 0,18140 0,38642 0,23878 0,16724 0,27273 0,28620

    495 0,17744 0,32459 0,22212 0,19700 0,18333 0,19724

    500 0,19229 0,29861 0,22650 0,23881 0,10783 0,12263

    505 0,22504 0,29604 0,25138 0,28533 0,07121 0,05756

    510 0,27813 0,30863 0,29608 0,33102 0,07475 0,03797

    515 0,34373 0,34045 0,34814 0,37435 0,07551 0,02839

    520 0,41545 0,38289 0,40315 0,41125 0,06338 0,02198

    13

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    14/16

    DIN V 5031-100:2009-03

    Table A.1 standardized spectral energy distributions of modern light sources(continued)

    Wavelength

    LED white

    (Tf= 3075 K)

    LED white

    (Tf= 4250 K)

    LED white

    (Tf= 5400 K)

    LED white

    (Tf= 6535 K)

    FL

    (Tf= 8000 K)

    FL

    (Tf= 13650 K)

    525 0,48903 0,42924 0,45448 0,43975 0,05051 0,01773

    530 0,56274 0,47358 0,49855 0,46437 0,04470 0,01687

    535 0,62960 0,51656 0,53608 0,48167 0,07045 0,06664

    540 0,69388 0,55621 0,56593 0,49369 0,51768 0,55599

    545 0,75348 0,58945 0,58795 0,50279 1,00000 1,00000

    550 0,80389 0,61547 0,60230 0,50477 0,31313 0,43139

    555 0,84987 0,63883 0,61410 0,50737 0,08485 0,09762

    560 0,88812 0,65452 0,62072 0,50384 0,02189 0,02126

    565 0,92148 0,66565 0,62239 0,49709 0,01328 0,01298

    570 0,94963 0,67483 0,61776 0,48850 0,01298 0,01081575 0,97034 0,67945 0,61173 0,47673 0,05934 0,05156

    580 0,98623 0,67862 0,60241 0,46381 0,15909 0,14310

    585 0,99456 0,67617 0,59063 0,44621 0,22096 0,20526

    590 1,00000 0,66881 0,57431 0,42804 0,16389 0,18086

    595 0,99827 0,65995 0,55567 0,40824 0,07727 0,08945

    600 0,99449 0,64711 0,53523 0,38622 0,05303 0,04848

    605 0,98397 0,63067 0,51217 0,36341 0,05455 0,02871

    610 0,96953 0,61540 0,48765 0,33992 0,54798 0,41324

    615 0,95463 0,59512 0,46217 0,31753 0,30051 0,21654

    620 0,92884 0,57215 0,43471 0,29255 0,17197 0,12195

    625 0,90683 0,55041 0,40832 0,27058 0,10833 0,11627

    630 0,87922 0,52903 0,38049 0,24851 0,09823 0,10391

    635 0,84740 0,50259 0,35234 0,22721 0,02601 0,02135

    640 0,81410 0,47860 0,32627 0,20718 0,01548 0,01868

    645 0,77851 0,45139 0,29980 0,18868 0,02035 0,02062

    650 0,74122 0,42396 0,27557 0,17069 0,03283 0,02469

    655 0,70329 0,39940 0,25285 0,15424 0,01629 0,01536

    660 0,66480 0,37217 0,22994 0,13828 0,01788 0,01942

    665 0,62393 0,34642 0,21038 0,12423 0,02013 0,02306

    670 0,58398 0,32239 0,19114 0,11219 0,01657 0,01201

    675 0,54410 0,29835 0,17251 0,09952 0,01490 0,01294

    680 0,50575 0,27576 0,15555 0,08922 0,01626 0,01361

    685 0,46780 0,25414 0,14041 0,07942 0,01636 0,01463

    690 0,43188 0,23290 0,12613 0,07079 0,01369 0,01637

    695 0,39524 0,21278 0,11293 0,06316 0,00793 0,00925

    700 0,36301 0,19454 0,10171 0,05613 0,00543 0,00320

    705 0,32945 0,17579 0,09131 0,04997 0,04167 0,02303

    710 0,30008 0,15937 0,08212 0,04435 0,05051 0,04107

    715 0,27206 0,14528 0,07326 0,03870 0,01033 0,01133

    14

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    15/16

    DIN V 5031-100:2009-03

    Table A.1 standardized spectral energy distributions of modern light sources(continued)

    Wavelength

    LED white

    (Tf= 3075 K)

    LED white

    (Tf= 4250 K)

    LED white

    (Tf= 5400 K)

    LED white

    (Tf= 6535 K)

    FL

    (Tf= 8000 K)

    FL

    (Tf= 13650 K)

    720 0,24613 0,13068 0,06572 0,03457 0,00205 0,00178

    725 0,22180 0,11705 0,05881 0,03067 0,00179 0,00155

    730 0,19979 0,10572 0,05178 0,02673 0,00150 0,00135

    735 0,17836 0,09559 0,04599 0,02415 0,00108 0,00094

    740 0,16042 0,08499 0,04134 0,02148 0,00194 0,00118

    745 0,14296 0,07572 0,03688 0,01889 0,00136 0,00172

    750 0,12926 0,06832 0,03266 0,01670 0,00080 0,00074

    755 0,11567 0,06060 0,02944 0,01484 0,00210 0,00050

    760 0,10331 0,05467 0,02626 0,01273 0,00874 0,01244

    765 0,09171 0,04888 0,02318 0,01116 0,00111 0,00048770 0,08230 0,04320 0,02078 0,00999 0,00161 0,00247

    775 0,07288 0,03888 0,01866 0,00951 0,00040 0,00073

    780 0,06790 0,03550 0,01181 0,00833 0,00021 0,00026

    15

  • 5/26/2018 cen-tc169_n0788_prestandard_din_v_5031-100_e_for_nwi-propo.pdf

    16/16

    DIN V 5031-100:2009-03

    16

    Bibliography

    [1] Mariana G. Figueiro, John D. Bullough, Robert H. Parsons, Mark S. Rea (2004): Preliminary evidence forspectral opponency in the suppression of melatonin by light in humans. NeuroReport 15:313316

    [2] Brainard, George C., Hanifin, J.P., Greeson, J.M., et al. Action Spectrum for Melatonin Regulation inHumans (2001): Evidence for a Novel Circadian Photoreceptor. The Journal of Neuroscience,21(16):64056412

    [3] Kavita Thapan, Josephine Arendt and Debra J. Skene (2001): An action spectrum for melatoninsuppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Journal ofPhysiology 535.1: 261267.

    [4] Gall, Dietrich (2002): Circadiane Lichtgren und deren messtechnische Ermittlung, Licht 54 (2002)11/12, S. 1292 - 1297

    [5] Steven W. Lockley, George C. Brainard, Charles. A. Czeisler (2003): High Sensitivity of the HumanCircadian Melatonin Rhythm to Resetting by Short Wavelength Light. The Journal of ClinicalEndocrinology & Metabolism 88(9):45024505

    [6] Christian Cajochen, Mirjam Mnch, Szymon Kobialka, Kurt Kruchi, Roland Steiner, Peter Oelhafen,Selim Orgl, Anna Wirz-Justice (2006): High Sensitivity of Human Melatonin, Alertness,Thermoregulation, and Heart Rate to Short Wavelength Light. The Journal of Clinical Endocrinology &Metabolism 90(3):13111316

    [7] G.C. Brainard, D. Sherry, R.G. Skwerer, M. Waxler, K. Kelly, N.E. Rosenthal (1990): Effects of differentwavelengths in seasonal affective disorder. Journal of Affective Disorders, 20: 209-216.

    [8] Peter Paul A. Mersch, Hermine M. Middendorp, Antoinette L. Bouhuys, Domien G.M. Beersma, RutgerH. van den Hoofdakker: Seasonal affective disorder and latitude: a review of the literature. Journal of

    Affective Disorders V53 (1999) P3548.

    [9] Van de Kraats J., van Norren D.: Optical density of the aging human ocular media in the visible and theUV. J. Opt. Soc. Am. A, V24 N7 (July 2007) P18421857.

    [10] Winn B., Whitaker D., Elliott D.B. Phillip N.J.: Factors affecting light-adapted pupil size in normal humansubjects. Invest Ophthalmol Vis Sci. V35 (1994) P1132-1137.

    [11] Kasper S, Wehr TA, Bartko JJ, Gaist PA, Rosenthal NE.: Epidemiological findings of seasonal changesin mood and behavior. A telephone survey of Montgomery County, Maryland.

    [12] Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci 2008;31(1):27-36.