CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … ·...

36
COLUMBUS STATE UNIVERSITY CELLULAR UPTAKE OF POLYPHENOLS IN A BACTERIAL PROTEIN EXPRESSION SYSTEM A THESIS SUBMITTED TO HONORS COLLEGE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE HONORS IN THE DEGREE OF BACHELOR OF SCIENCE DEPARTMENT OF CHEMISTRY COLLEGE OF LETTERS AND SCIENCES BY B. KAMERON GRIFFIN

Transcript of CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … ·...

Page 1: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

COLUMBUS  STATE  UNIVERSITY  

 

 

 

CELLULAR  UPTAKE  OF  POLYPHENOLS  IN  A  BACTERIAL    PROTEIN  EXPRESSION  SYSTEM  

 

 

A  THESIS  SUBMITTED  TO    

HONORS  COLLEGE  

IN  PARTIAL  FULFILLMENT  OF  THE  

REQUIREMENTS  FOR  THE  HONORS  IN  THE  DEGREE  OF  

 

 

BACHELOR  OF  SCIENCE    

DEPARTMENT  OF  CHEMISTRY    

COLLEGE  OF  LETTERS  AND  SCIENCES  

 

 

BY  

B.  KAMERON  GRIFFIN  

Page 2: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

 

 

 

 

 

 

 

Copyright©  B.  Kameron  Griffin  

All  Right  Reserved.  

 

   

Page 3: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

ABSTRACT  

 

The  biosynthesis  of  single  chain  insulin  analogs  is  prohibitively  inefficient  due  to  

their  propensity  to  form  non-­‐specific  aggregates  and  ordered  fibrils.  It  is  well  recognized  

that  certain  polyphenol  compounds  are  inhibitors  of  fibril  formation  in  vitro  and  in  

eukaryotic  cells.  However,  there  has  been  no  systematic  exploration  of  their  effect  in  

bacterial  expression  systems.  It  was  determined  that  Escherichia  coli  (BL21)  cells  do  not  

absorb  phenol  red  (PR)  under  normal  culture  conditions.  Additionally,  it  was  observed  that  

both  heat  shocking  competent  cells  in  the  presence  of  PR,  and  treatment  of  bacterial  cell  

pellets  with  a  dimethyl  sulfoxide  (DMSO)/PR  solution  produced  cell  lysates  that  strongly  

absorbed  light  at  555  nm.  This  is  indicative  of  PR  uptake.  

 

   

Page 4: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

DEDICATION  

 

 

To  Miss  P.  Griffin-­‐  for  your  love  and  support.

Page 5: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  v    

ACKNOWLEDMENTS  

I  would  like  to  thank  Dr.  Jonathan  Meyers  for  your  mentorship,  the  development  of  

the  project,  and  commitment  to  the  research.    Additionally,  thank  you  for  your  motivation  

and  willingness  to  answer  my  many  questions.  Thank  you  to  my  other  committee  

members,  Dr.  Monica  Frazier  and  Dr.  Daniel  Holley,  for  your  time,  knowledge  and  input.    

I  would  also  like  to  thank  the  other  student  members  of  the  Meyers  lab-­‐both  

undergraduate  and  graduate,  with  special  thanks  to  Emily  Fairchild,  for  help  with  data  

collection.  Additionally  I  would  like  to  thank  the  Department  of  Chemistry  for  funding  and  

laboratory  space,  and  the  Columbus  State  University  SRACE  grant  for  additional  funding.  

Finally,  I  would  like  to  thank  my  friends  and  family  for  your  love  and  support.

Page 6: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  vi    

TABLE  OF  CONTENTS  

Abstract  .......................................................................................................................................................  iii  

Dedication  ...................................................................................................................................................  iv  

Acknowledments  .........................................................................................................................................  v  

Tables  and  Figures  .....................................................................................................................................  viii  

Introduction  and  background  ......................................................................................................................  1  

Diabetes  ..................................................................................................................................................  2  

Insulin  and  fibril  formation  ...................................................................................................................  3  

Eukaryotic  and  prokaryotic  cells  ..............................................................................................................  6  

Polyphenols  ............................................................................................................................................  6  

Proposal  ..................................................................................................................................................  8  

Uptake  of  phenol  red  ..................................................................................................................................  9  

Introduction  ..........................................................................................................................................  10  

Methods  and  Materials  ..........................................................................................................................  10  

Transformed  E.  coli  ..........................................................................................................................  10  

Isosbestic  point  of  phenol  red  .........................................................................................................  11  

Stability  of  phenol  red  in  Luria  broth  .............................................................................................  11  

Baseline  optical  density  measurements  of  e.  coli  BL21  .................................................................  11  

Antibiotic  effect  of  phenol  red  .........................................................................................................  11  

Cellular  uptake  of  phenol  red  ..........................................................................................................  12  

Preparation  of  lysis  buffers  .............................................................................................................  12  

EDTA  assay  .......................................................................................................................................  12  

DMSO  assay  .......................................................................................................................................  14  

Results  and  discussion  .........................................................................................................................  15  

Predicted  changes  in  the  absorbance  of  phenol  red  in  E.  coli  culture  ..........................................  15  

Concentration  of  phenol  red  ............................................................................................................  16  

Isosbestic  point  of  phenol  red  .........................................................................................................  16  

Stability  of  phenol  red  in  Luria  broth  .............................................................................................  18  

Baseline  optical  density  measurements  of  phenol  red  ..................................................................  18  

Antibiotic  effect  of  phenol  red  .........................................................................................................  21  

Page 7: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  vii    

Cellular  uptake  of  phenol  red  ............................................................................................................  21  

EDTA  assay  .........................................................................................................................................  22  

DMSO  assay  .......................................................................................................................................  24  

Conclusion  and  future  work  ...................................................................................................................  25  

Bibliography  ...........................................................................................................................................  26  

 

   

Page 8: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  viii    

TABLES  AND  FIGURES  

Figure  1:  The  primary  structure  of  proinsulin..............................................................................................................3  

Figure  2:  Insulin  family  hormones  and  receptors........................................................................................................4  

Figure  3:  Examples  of  commercially  available  polyphenol  compounds  that  have  been  shown  to  inhibit  fibril  formation  in  vitro.............................................................................................................................................6  

Figure  4:  Thin  section  of  the  cell  envelope  of  E.  Coli  K-­‐12  after  conventional  embedding........................7  

Figure  5:  Structure  of  phenol  red……………………………………………………………………………………………….10  

Figure  6:  Concentrations  of  phenol  red  and  EDTA  used  in  EDTA  assay..........................................................13  

Table  1:  PR  and  EDTA  solutions  .......................................................................................................................................14  

Table  2:  Concentration  of  Phenol  red  data  ..................................................................................................................16  

Figure  7:  Isosbestic  point  of  Phenol  red  .......................................................................................................................18  

Table  3:  Absorbance  data  for  isosbestic  point  ...........................................................................................................19  

Figure  8:  Profile  of  phenol  red  in  Luria  broth.............................................................................................................20  

Figure  9:  Optical  Density  of  early  stage  E.  Coli(BL21).............................................................................................20  

Figure  10:  Optical  density  of  E.  Coli(BL21)  Raw  Data................  ............................................................................21  

Figure  11:  Optical  density  of  early  stage  E.  Coli(BL21)  ..........................................................................................21  

Figure  12:  E.  Coli(BL21)  uptake  of  Phenol  red  in  LB  media..................................................................................23  

Table  4:  EDTA  absorbance  results  ..................................................................................................................................24  

Figure  13:  Change  in  absorbance  of  E.  Coli  with  PR  and  DMSO  vs  Time.........................................................25

Page 9: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  1    

INTRODUCTION  AND  BACKGROUND  

Page 10: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  2    

DIABETES  

Diabetes  Mellitus  is  currently  the  seventh  leading  cause  of  death  in  the  United  

States,  and  comes  with  a  shocking  financial  burden.  In  2010,  over  230,000  death  

certificates  listed  diabetes  as  a  contributor  to  mortality.  This  number  is  assumed  to  be  

severely  under  reported  however,  as  only  about  35%  of  people  with  diabetes  who  died  had  

diabetes  listed  as  a  cause  of  death.  Additionally,  the  financial  burden  of  diabetes  is  

astounding,  with  $176  billion  in  direct  medical  costs  in  2012,  and  $69  billion  in  indirect  

costs  (1,2).  

The  two  most  common  forms  of  Diabetes  Mellitus  are  type  I  and  type  II.  Type  I  

diabetes  is  typically  diagnosed  in  children  and  occurs  when  the  pancreas  does  not  

synthesize  enough  insulin  to  properly  regulate  blood  glucose  levels.  This  form  of  diabetes  

requires  treatment  with  exogenous  insulin,  and  is  sometimes  called  insulin-­‐dependent  

diabetes.    

Type  II  diabetes  accounts  for  over  90%  of  all  diagnosed  cases.  There  are  two  

primary  causes  of  Type  II  diabetes.  The  first  occurs  when  the  body  does  not  use  insulin  

properly,  which  is  known  as  insulin  resistance.  At  the  onset  of  type  II  diabetes,  the  

pancreas  synthesizes  and  secretes  enough  insulin  to  overcome  the  body’s  inability  to  use  it  

properly.  However,  as  the  disease  progresses  and  the  need  for  insulin  rises,  beta  cells  lose  

the  ability  to  produce  sufficient  amounts  of  insulin  to  compensate.  This  causes  glucose  

levels  to  rise  and  leads  to  systemic  complications  and  other  health  problems  (3).  

   

Page 11: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  3    

INSULIN  AND  FIBRIL  FORMATION  

  Insulin  was  discovered  in  1921  and  was  the  first  peptide-­‐based  therapeutic  

approved  by  the  FDA.  Insulin  is  a  globular  protein  that  is  rich  in  secondary  and  tertiary  

structure  and  is  derived  from  a  single  chain  proinsulin  precursor.  Active  insulin  is  created  

by  excision  of  the  c-­‐peptide  from  proinsulin,  and  is  composed  of  two  chains:  a  21  amino  

acid  A  chain  attached  by  two  disulfide  bonds  to  a  30  amino  acid  B  chain  (Figure  1).      

 

FIGURE   1:   THE   PRIMARY   STRUCTURE   OF   PROINSULIN.   The   residues   of   the   active   two-­‐chain  hormone  are   in  black.  The  dibasic   cleavage   recognition   sites   are   in   yellow.  The  excised   c-­‐peptide  is  in  white,  and  the  red  arrows  show  the  cleavage  location  (4).  

 

There  are  many  therapeutics  used  to  treat  type  II  diabetes;  however,  most  patients  

eventually  become  insulin  dependent  (3).  The  progressive  nature  of  the  disease  and  its  

increasing  prevalence  generated  global  insulin  sales  approaching  $17  billion  in  2011  (5).  

Although  insulin  is  a  lifesaving  drug  of  incalculable  value,  it  does  have  one  major  drawback  

as  a  therapeutic.  Studies  show  that  insulin  therapy  can  cause  an  increased  risk  of  a  variety  

of  cancers,  including  pancreatic,  kidney  and  stomach  (6).  While  the  underlying  factors  are  

Page 12: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  4    

still  unclear,  there  is  strong  support  that  the  off  target  activation  of  growth  factor  receptors  

by  exogenous  insulin  may  be  a  contributing  factor  (7).    

The  members  of  the  insulin  superfamily  of  peptide  hormones,  including  insulin,  

insulin-­‐like  growth  factor-­‐1  (IGF-­‐1)  and  insulin-­‐like  growth  factor-­‐2  (IGF-­‐2),  have  different  

roles  in  the  body;  however,  they  are  able  to  activate  each  other’s  receptors.  The  presence  of  

insulin  can  activate  the  insulin  receptor,  but  it  can  also  activate  the  growth  factor  receptor.  

If  the  growth  factor  receptor  becomes  too  active,  it  can  stimulate  cell  growth,  which  in  turn  

may  cause  cancer  (Figure  2).  Some  insulin  analogs  have  a  greater  affinity  for  the  IGF-­‐1  

receptor  than  for  the  insulin  receptor,  and  have  been  shown  to  cause  cancer  in  rats.  

 

FIGURE   2:   INSULIN   FAMILY   HORMONES   AND   RECEPTORS.   Native   insulin   mediates   mitogenic  effects   by   weakly   activating   several   growth   factor   receptors.   Some   insulin   analogs   have   been  shown  to  be  carcinogenic  due  to  increased  activation  of  the  IGF-­‐1R  (Red  arrow).  

Page 13: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  5    

It  has  been  proposed  that  insulin  analogs  with  novel  c-­‐peptide  connecters  (single  

chain  insulin,  SCI)  could  reduce  or  eliminate  this  risk  by  increasing  the  selectivity  for  the  

insulin  receptor  over  the  associated  growth  factor  receptors.  Unfortunately,  SCI  with  

connecting  peptides  longer  than  eight  residues  are  very  difficult  to  synthesize  by  chemical  

methods  due  to  their  unfavorable  physical  properties  and  increased  length.  As  a  result,  SCI  

have  been  traditionally  been  biosynthesized  in  bacterial  expression  systems.  However,  this  

has  also  proven  to  be  very  inefficient  due  to  irreversible  non-­‐specific  aggregation  and  fibril  

formation  in  the  cellular  environment  (8).  Native  insulin  is  prone  to  fibril  formation,  and  

this  propensity  is  most  likely  exacerbated  by  unfavorable  changes  in  the  secondary  

structure  of  the  insulin  backbone  caused  by  the  introduction  of  a  nonnative  c-­‐peptide  and  

the  high  intracellular  concentrations  associated  with  biosynthesis.  These  factors  greatly  

reduce  the  ability  to  isolate  the  active  monomeric  forms  of  SCI,  and  have  been  identified  as  

a  major  hurdle  in  the  exploration  of  SCI  as  superior  therapeutics.    

In  addition  to  being  problematic  for  biosynthesis,  fibril  formation  plays  an  active  

role  in  diseases,  such  as  Type  II  Diabetes.  The  formation  of  fibrils  in  diabetes  produces  an  

islet  of  amyloid,  a  name  given  due  to  the  formation’s  appearance.  The  amyloid  is  a  solid,  

insoluble  complex  that  consists  of  proteins  in  β-­‐pleated  sheets.  In  Type  II  Diabetes,  the  

existence  of  these  amyloid  aggregations  is  associated  with  cell  death  (9).  Additionally,  Islet  

amyloid  polypeptide  (IAPP)  is  a  37-­‐residue  hormone  peptide  that  is  secreted  with  insulin,  

and  has  recently  been  shown  to  have  a  connection  with  inhibition  of  insulin  action  and  the  

loss  of  β-­‐cells  in  Type  II  Diabetes  (10).  

 

Page 14: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  6    

POLYPHENOLS  

There  is  previous  research  that  shows  the  naturally  occurring  class  of  compounds,  

known  as  polyphenols  (Figure  3),  is  effective  at  inhibiting  the  formation  of  higher  order  

aggregates.  Research  shows  that  many  polyphenols  inhibit  fibril  formation  of  various  

proteins.  However,  the  polyphenol  of  specific  interest  here  is  phenol  red,  as  the  dye  was  

shown  to  inhibit  aggregation  of  insulin.  Phenol  red  was  also  used  in  vitro  in  eukaryotic  cells  

and  decreased  the  formation  of  aggregates  and  later  fibrils  (11).    

 

FIGURE   3:   EXAMPLES   OF   COMMERCIALLY   AVAILABLE   POLYPHENOL   COMPOUNDS   THAT   HAVE  BEEN  SHOWN  TO  INHIBIT  FIBRIL  FORMATION  IN  VITRO.  A:  The  synthetic  dye  Congo  red.        B:  The  naturally  derived  compound  curcumin.  

 

Another  polyphenol,  Congo  red,  has  been  shown  to  absorb  in  gram  negative  

bacteria.  Upon  overnight  incubation,  the  cytosol  of  the  bacteria  appeared  to  be  pale  pink  

instead  of  deep  red  upon  visual  examination,  suggesting  the  cellular  uptake  of  the  dye  (12).    

Page 15: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  7    

EUKARYOTIC  AND  PROKARYOTIC  CELLS  

Eukaryotic  and  prokaryotic  cells  each  contain  a  plasma  membrane  that  regulates  

the  passage  of  materials  into  and  out  of  the  cell.  Each  type  of  membrane  is  composed  of  a  

phospholipid  bilayer  and  proteins.  The  primary  membrane  function  is  the  same  in  both  

prokaryotic  and  eukaryotic  cells.  Small,  nonpolar  molecules  can  diffuse  freely  through  

plasma  membranes  to  an  area  of  lower  concentration  through  simple  diffusion.  Conversely,  

large  or  polar  molecules  cannot  typically  participate  in  simple  diffusion  across  the  plasma  

membrane,  and  therefore,  must  undergo  facilitated  diffusion  with  the  assistance  of  

transport  proteins  (13).    

 

FIGURE   4:   THIN   SECTION   OF   THE   CELL   ENVELOPE   OF   E.   COLI   K-­‐12   AFTER   CONVENTIONAL  EMBEDDING.   The   periplasmic   space   is   empty   of   substance,   and   the   peptidoglycan   layer   (PG),  outer  membrane  (OM),  and  plasma  membrane  (PM)  can  be  seen.  Bar  5  100  nm.  (14)  

 

In  addition  to  a  plasma  membrane,  prokaryotic  cells  also  contain  a  cell  wall-­‐  a  rigid  

structural  layer.  In  bacterial  cells,  the  cell  wall  is  composed  of  cross-­‐linked  peptidoglycan,  

which  can  increase  the  vulnerability  of  the  cell  to  certain  antibiotics.  There  are  two  broad  

classes  of  bacterial  cells,  as  determined  by  the  structure  of  their  cell  walls.  Gram-­‐positive  

bacteria,  such  as  Staphylococcus  aureus,  consist  of  one  plasma  membrane  that  is  

surrounded  by  a  thick  cell  wall.  Whereas,  gram-­‐negative  bacteria,  such  as  E.  coli,  have  a  

Page 16: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  8    

dual  membrane  system,  in  which  there  are  two  plasma  membranes  with  a  much  thinner  

cell  wall  in  between  (Figure  4).    This  extra  cell  wall  acts  as  an  addition  layer  through  which  

large  molecules  must  undergo  facilitated  diffusion.    

 

PROPOSAL  

While  polyphenols  have  been  shown  to  inhibit  development  of  fibrils  in  vitro  and  in  

eukaryotic  cells,  the  use  of  polyphenols  as  an  aggregation  inhibitor  in  bacteria  remains  

unexplored.    However,  a  paper  published  in  1989  shows  minor  proof  that  gram-­‐negative  

bacteria  will  absorb  Congo  red  (15).  In  addition  to  incubation,  heat  shock  and  membrane-­‐

modifying  agents  will  be  explored  as  a  method  of  facilitating  diffusion.  If  bacteria  can  

absorb  the  polyphenols,  then  it  seems  reasonable  that  the  polyphenols  could  effectively  

inhibit  the  formation  of  insulin  aggregates  in  the  bacterium.  However,  the  amount  of  

polyphenol  that  can  successfully  be  absorbed  has  not  previously  been  reported.  Therefore  

the  main  question  to  be  answered  is,  “Is  the  intercellular  concentration  of  polyphenol  high  

enough  to  inhibit  the  formation  of  aggregates?”  

Page 17: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  9    

UPTAKE  OF  PHENOL  RED

Page 18: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  10    

INTRODUCTION  

Phenolsulfonphthalein,  also  known  as  Phenol  red,  is  a  synthetic  polyphenol  

consisting  of  two  phenol  groups  (Figure  5).    This  dye  is  typically  used  in  laboratories  as  a  

pH  indicator,  due  to  its  gradual  transition  from  yellow  to  red  in  the  pH  range  of  6.8  to  8.2.  

Phenol  red  has  been  shown  to  inhibit  the  formation  of  fibrils  by  insulin  and  islet  amyloid  

polypeptide  (IAPP)  in  vitro.  Additionally,  the  dye  has  been  shown  to  decrease  IAPP  

cytotoxicity  toward  mammalian  β-­‐cells  (10).    

 

 

METHODS  AND  MATERIALS  

Transformed  E.  coli  

  In  order  to  replicate  conditions  that  exist  during  recombinant  protein  biosynthesis,  

all  experiments  were  conducted  using  E.  coli  BL21  (donated  by  Dr.  Rachel  Whitaker,  

Coastal  Carolina  University)  transformed  with  a  custom  expression  vector  encoding  for  the  

rat  hormone  preptin.  The  pD444-­‐NHT  plasmid  (DNA  2.0)  imparts  resistance  to  the  

antibiotic  kanamycin  and  allowed  cells  to  be  grown  under  selection.  

FIGURE  5:  STRUCTURE  OF  PHENOL  RED.  

Page 19: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  11    

Isosbestic  point  of  phenol  red  

Three  solutions  of  phenol  red  were  made  by  diluting  a  stock  solution  of  phenol  red  

in  PBS  (0.02  mM,  pH  7.66)  with  equal  volumes  of  strong  acid  (HCl),  strong  base  (NaOH),  or  

buffer  (PBS)  to  produce  a  set  of  samples  with  a  range  of  pH  values  and  colors.  The  

absorbance  spectrum  from  400  nm  to  600  nm,  in  1  nm  increments,  was  taken  for  each  

solution  on  a  Thermo  Fisher  Genesys  10s  UV-­‐Vis  spectrophotometer  using  a  700-­‐μL  quartz  

cuvette  (Thor  Labs).  The  spectra  were  compared  and  the  actual  isosbestic  point  was  

determined  by  repeated  measurements  at  478  and  479  nm.    

Stability  of  phenol  red  in  Luria  broth  

Varying  concentrations  of  phenol  red  were  incubated  in  LB  with  shaking  at  37℃.  

The  absorbance  of  the  LB/Phenol  red  solution  was  monitored  at  479  nm  for  up  to  24  hours.  

Baseline  optical  density  measurements  of  e.  coli  BL21  

Starter  cultures  of  transformed  E.  coli(BL21)  were  grown  overnight  in  LB  with  

shaking  at  37℃.  Overnight  starter  cultures  were  used  to  inoculate  larger  cultures.  Cell  

growth  was  monitored  at  750  nm  and  478  nm.  LB  was  used  for  all  dilutions  and  to  blank  

the  spectrophotometer.    

Antibiotic  effect  of  phenol  red  

In  order  to  determine  the  suitability  of  phenol  red  for  use  with  E.  coli,  transformed  

cells  were  cultured  in  LB  spiked  with  various  concentrations  of  polyphenol.  Bacterial  

growth  was  monitored  at  750  nm  instead  of  the  traditional  600  nm  to  avoid  complications  

caused  by  the  strong  absorbance  of  phenol  red  at  wavelengths  below  650  nm.  

Page 20: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  12    

Cellular  uptake  of  phenol  red  

Starter  cultures  (4mL)  of  E.  coli(BL21)    were  incubated  overnight  in  the  presence  of  

kanamycin.  Aliquots  of  the  overnight  culture  were  used  to  inoculate  multiple  fresh  4  mL  

cultures  spiked  with  various  concentrations  of  phenol  red.  Cultures  were  incubated  at  37℃  

with  shaking.  Cell  growth  was  monitored  at  478  nm  and  750  nm  using  fresh  LB  media  as  a  

blank.    

Preparation  of  lysis  buffers  

Two  lysis  buffers  were  prepared  for  use  in  EDTA  and  DMSO  assays.  The  first  lysis  

buffer  was  prepared  with  50mM  glucose,  25mM  Tris-­‐HCl  (pH  8.0,  Sigma)  and  10mM  EDTA  

(pH  8.0,  Sigma).  The  second  lysis  buffer  was  prepared  0.2  N  NaOH  (freshly  diluted  from  a  

10  N  stock)  and  1%  (w/v)  SDS  (Sigma).  The  buffers  were  then  autoclaved  and  stored  at  

room  temperature.  

EDTA  assay  

A  50  mL  culture  was  inoculated  with  E.Coli(BL21)  cells  and  incubated  until  it  

reached  early  exponential  stage  (OD600=  0.355).  The  cells  were  aliquoted  (1  mL)  into  

microcentrifuge  tubes  and  centrifuged  (17,000xg)  for  10  minutes  at  4℃  to  collect  the  cells.  

The  cell  pellets  were  resuspended  in  calcium  chloride  (100mM,  Sigma  Aldrich),  and  

incubated  on  ice  for  10  minutes.  The  cells  were  pelleted,  resuspended  in  calcium  chloride  

(100mM),  and  incubated  on  ice  for  one  hour.  After  incubation  the  cells  were  collected  by  

centrifugation  (17,000xg)  at  4℃  for  10  minutes.  The  cells  were  then  resuspended  in  a  

combination  of  ice-­‐cold  glycerol  (10mM,  Sigma)  and  Tris-­‐HCl  (pH  8,  Sigma).  The  competent  

cells  were  collected  by  centrifugation  (5,000xg)  for  ten  minutes  at  4℃.    

Page 21: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  13    

Luria  broth  was  added  to  each  microcentrifuge  tube.  At  a  steady  pace,  PR  (5.3  mM  in  

PBS)  was  added  to  each  tube  prior  to  the  addition  of  varying  concentrations  of  EDTA  

(Figure  6  &  Table  1).  The  tubes  were  then  heat  shocked  at  45℃  for  approximately  one  

minute  and  incubated  on  ice  for  five  minutes.  The  samples  were  then  centrifuged  (9,000xg)  

at  4℃  for  5  minutes.  The  absorbance  of  each  sample’s  supernatant  was  taken  at  478  and  

750nm.      

The  cell  pellets  were  then  washed  with  PBS  and  treated  with  equal  amounts  of  the  

two  lysis  buffers  (200μL  each),  incubated  at  room  temperature  for  15  minutes  and  frozen.  

After  one  week  at  -­‐20℃,  the  samples  were  thawed  and  centrifuged  (13,000xg)  at  4℃  for  10  

minutes  to  remove  the  cellular  debris.  Absorbance  of  the  supernatant  was  taken  at  555nm  

with  water  used  as  a  blank.  

An  aliquot  (100  µL)  of  each  culture  was  removed  prior  to  cell  lysis  and  spread  on  

kanamycin  plates  to  assure  that  EDTA  treatment  did  not  kill  the  cells.    

 

FIGURE   6:   CONCENTRATION   OF   PR   AND   EDTA   USED   IN   EDTA   EXPERIMENT.   The   concentration   of   EDTA  (blue)  was  held   constant  while   concentration  of  PR   (red)  was   increased   in   samples  B,C,&D.   In   samples  E,F,  G,&  H  the  concentration  of  PR  was  held  constant  while  the  concentration  of  EDTA  was  decreased.  

Page 22: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  14    

 

 

TABLE   1:   PR  AND  EDTA   SOLUTIONS.   Eight   trials  were   run  with   varying   concentrations   of   PR   and   EDTA   as  shown.  Trial  A  acted  as  a  control-­‐  with  only  PBS  and  LB.  

Trial   PR  (mM)   EDTA  (mM)  

A   0   0  

B   0.03   2  

C   0.3   2  

D   3   2  

E   3   1  

F   3   2  

G   3   3  

H   3   4  

 

DMSO  assay  

A  50  mL  culture  was  inoculated  with  E.Coli  (BL21)  cells  and  incubated  until  the  cells  

were  aliquoted  (1  mL)  into  microcentrifuge  tubes.  Cells  were  collected  by  centrifugation  at  

8,000xg  for  10  minutes  at  4℃.  The  cell  pellets  were  resuspended  in  PR/DMSO  solution  (0.5  

mL,  97μM).  One  sample  of  cells  was  resuspended  in  PBS  to  serve  as  a  control.  The  tubes  

were  then  incubated  for  various  times  (15,  30,  45,  60mins).  After  incubation  the  cells  were  

spun  down  at  8,000xg  for  10mins  at  4℃.  The  pellets  were  then  washed  with  ice  cold  PBS  

three  times.  The  pellets  were  then  treated  with  equal  amounts  of  the  two  lysis  buffers  

(200μL),  incubated  at  room  temperature  for  15  minutes  and  then  frozen  at  -­‐20℃  for  two  

days.  The  samples  thawed  and  centrifuged  (8,000xg)  at  4℃  for  10  minutes.  Absorbance  of  

the  supernatant  was  taken  at  both  555  and  750nm,  with  PBS  used  as  a  blank.  

Page 23: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  15    

 

RESULTS  AND  DISCUSSION  

Predicted  changes  in  the  absorbance  of  phenol  red  in  E.  coli  culture  

Precise  quantification  of  chromophore  concentration  in  a  growing  cell  culture  is  

extremely  difficult  due  to  a  number  of  complicating  factors  including  variable  total  volume,  

the  rapid  increase  and  variable  nature  of  cellular  volumes,  attenuation  of  chromophore  

absorbance  by  interaction  with  cellular  components,  and  nonspecific  light  scattering  by  

cellular  membranes.  

Previous  publications  have  attempted  to  quantify  intracellular  concentrations  of  

chromophores  by  taking  into  account  nonspecific  light  scattering  by  cellular  membranes.  

However,  these  publications  did  not  address  the  changes  that  result  from  increasing  cell  

density  in  an  active  culture.  

Using  approximate  values  from  BioNumbers,  a  database  of  useful  biological  

numbers  hosted  by  the  Systems  Biology  department  in  Harvard,  the  approximate  changes  

in  absorbance  were  calculated  (16).  It  is  universally  accepted  that  an  𝑂𝐷!""  !"  of  1  

represents  a  cellular  concentration  of    8𝑥10!  -­‐  1𝑥10!  cells/mL  of  culture.  Additionally,  the  

predicated  average  volume  of  an  E.  coli  cell  is  1𝑥10!!"  mL.  Using  these  values,  a  culture  

with  an  𝑂𝐷!""  !" = 1  would  have  approximately  0.001  mL  of  cell  volume  per  1  mL  of  

culture  volume.  Using  an  initial  concentration  of  500  mM  in  the  culture  media,  a  target  

intracellular  concentration  of  100  𝜇𝑀,  and  accounting  for  changes  to  the  culture  media  

volume  caused  by  increasing  cellular  concentrations,  the  calculated  change  in  

chromophore  concentration  would  be  undetectable  using  a  UV-­‐Vis  spectrophotometer.  

Page 24: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  16    

However,  the  target  chromophore  concentration  in  the  cell  lysate  would  be  in  the  

detectable  range  after  processing.  

Concentration  of  phenol  red  

The  phenol  red  stock  solution  concentration  was  determined  by  taking  the  

absorbance  at  555nm  (Table  2)  using  the  published  molar  absorption  coefficient  of  31.62  

mM-­‐1cm-­‐1.  This  resulted  in  an  average  phenol  red  concentration  of  0.022  ±  0.003  mM.  

 

TABLE  2:CONCENTRATION  OF  PHENOL  RED  DATA:  Recorded  at  555nm.  All  absorbances  were  corrected  to  include  the  dilution  factor  shown.  

Stock  Solution  (mL)  

PBS  (mL)   Abs555  nm  

Measured  Conc.  (mM)  

Dilution  Factor  

Corrected  Conc.  (mM)  

1.000   0.000   0.700   0.022   1.000   0.022  0.500   0.500   0.356   0.011   2.000   0.023  0.400   0.600   0.273   0.009   2.500   0.022  0.300   0.700   0.207   0.007   3.333   0.022  

 

Isosbestic  point  of  phenol  red  

Phenol  red  is  used  as  an  indicator  due  to  its  ability  to  change  color  as  a  result  of  

varying  pH.  While  useful  for  visually  assessing  the  pH  of  cell  culture  media,  this  

characteristic  of  phenol  red  complicates  absorbance  based  concentration  measurements.  In  

spectroscopy,  an  isosbestic  point  refers  to  the  wavelength  at  which  the  absorbance  by  a  

mixed  solution  remains  unchanged  as  the  equilibrium  of  the  two  components  changes.  The  

isosbestic  point  of  a  substance  does  not  depend  on  the  physical  characteristics,  such  as  

color.  Therefore,  at  the  isosbestic  point  the  absorbance  of  the  dye  does  not  change  simply  

as  an  effect  of  the  color  change  due  to  pH  differences  (Figure  7).  

Page 25: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  17    

Brown  and  Campbell  (17)  found  the  isosbestic  point  of  phenol  red  to  be  478  nm.  

After  repeated  measurements  within  a  narrow  range  of  470,  478  and  479  nm,  it  was  

determined  that  there  was  also  less  variance  on  our  instrument  at  a  wavelength  of  478  nm  

(Table  3).  

 

FIGURE  7:  ISOSBESTIC  POINT  OF  PHENOL  RED.  The  isosbestic  point  occurs  around  478nm,  the  point  where  all  the  data  lines  intersect.  

 

TABLE  3:  ABSORBANCE  DATA  FOR  ISOSBESTIC  POINT:  Absorbance  recorded  at  varying  wavelengths  and  pH  values  to  determine  isosbestic  point  of  478nm.  

 Abs  at  470nm   Abs  at  478nm   Abs  at  479nm  

Low  pH   0.355   0.329   0.305  pH=  7.66   0.325   0.296   0.291  High  pH   0.22   0.288   0.297  

Average  STD   0.31±0.06   0.30±0.02   0.30±0.003    

 

 

Page 26: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  18    

Stability  of  phenol  red  in  Luria  broth  

Phenol  red  has  long  been  used  as  a  pH  indicator  in  cell  culture  media.  However,  its  

stability  in  LB  media  used  for  bacterial  culture  was  unknown.  No  significant  change  in  the  

absorbance  spectrum  was  noted  (Figure  8)  confirming  phenol  red’s  stability  in  LB.  

 

FIGURE  8:  PROFILE  OF  PHENOL  RED  INCUBATED  IN  LURIA  BROTH  AT  37℃.  The  small  deviations  are  consistent  with  error  introduced  during  dilution  of  the  samples  for  absorbance  measurements.  The  absorbance  profile  was  stable  beyond  24  hrs.  (data  not  shown).  

 

Baseline  optical  density  measurements  of  phenol  red  

Phenol  red  has  a  strong  absorbance  spectrum  centered  at  555  nm.  This  spectrum  

overlaps  with  the  traditional  wavelength  for  monitoring  bacterial  cell  growth  (600  nm).  

Previous  work  has  shown  that  there  is  a  linear  relationship  between  light  scattering  and  E.  

coli  cell  density  at  low  concentrations  across  a  wide  range  of  wavelengths  (Figure  9).  This  

allows  for  correlation  of  optical  density  values  measured  at  various  wavelengths.  However,  

concentrations  resulting  in  an  absorbance  above  0.4  results  in  nonlinear  graphs,  due  to  

Page 27: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  19    

deviations  from  ideal  at  both  wavelengths  (Figure  10).  Therefore,  it  was  important  to  

maintain  an  absorbance  below  0.4,  with  dilutions  if  necessary.      

 

 A  correlation  factor  (OD  478  nm  =  1.8085  *  OD  750  nm  +  0.0313)  was  determined  

(Figure  11).  

 

 

FIGURE  9:  OPTICAL  DENSITY  OF  EARLY  STAGE  E.  COLI  (BL21).  The  light  scattering  by  E.  coli  is  linear  at  low  concentrations  across  the  spectrum.  A  culture  of  transformed  E.  Coli  (BL21)  was  monitored  at  478nm  (yellow),  600nm  (blue),  and  750nm  (red).    

 

 

 

 

 

 

 

 

Page 28: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  20    

 

 

 

 

y = 1.6056x + 0.0643 R² = 0.991

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

0   0.1   0.2   0.3   0.4   0.5   0.6   0.7  

Absorbance  (478  nm)  

Absorbance  (750  nm)  

Optical  Density  of  E.coli  (BL21)  at  478  nm  vs  750  nm  (Raw  Data)  

FIGURE  10:  OPTICAL  DENSITY  OF  E.COLI  (BL21)  RAW  DATA.  Absorbance  above  0.4  results  in  nonlinear  graphs,  so  dilutions  were  used  in  subsequent  experiments.  

FIGURE  11:  OPTICAL  DENSITY  OF  E.  COLI  (BL21).  A  strong  linear  relationship  was  determined  for  OD  values  less  than  0.4  for  750nm  and  0.8  at  478  nm.  This  correlation  factor  was  used  in  subsequent  experiments.  

Page 29: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  21    

Antibiotic  effect  of  phenol  red  

Although  polyphenol  compounds  have  been  found  to  prevent  aggregation  in  

eukaryotic  cells,  many  of  these  have  documented  antibiotic  effects.  This  limits  their  utility  

in  bacterial  cells  used  for  protein  expression.  Therefore,  phenol  red  was  tested  for  

antibiotic  effects  by  growing  E.  coli  (BL21)  cells  in  LB  media  spiked  with  varying  

concentrations  of  phenol  red.  Growth  curves  were  similar  for  cultures  with  and  without  

phenol  red.  Phenol  red  failed  to  exhibit  antibiotic  effects  for  up  to  24  hours  and  

concentration  up  to  200  μM  (data  not  shown).    

Cellular  uptake  of  phenol  red  

 Eqn  1:          𝑶𝑫𝟒𝟕𝟖  𝒏𝒎,𝑬.𝒄𝒐𝒍𝒊 = 𝟏.𝟖𝟎𝟖𝟓   𝑶𝑫𝟕𝟓𝟎  𝒏𝒎,𝑬.𝒄𝒐𝒍𝒊 + 𝟎.𝟎𝟑𝟏𝟑  

 Eqn  2:          𝑨𝒃𝒔𝟒𝟕𝟖  𝒏𝒎,𝑷𝒉𝒆𝒏𝒐𝒍  𝑹𝒆𝒅 =  𝑨𝒃𝒔𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅  @  𝟒𝟕𝟖  𝒏𝒎 −  𝑶𝑫𝟒𝟕𝟖  𝒏𝒎,𝑬.𝒄𝒐𝒍𝒊  

   

After  it  was  determined  that  phenol  red  exhibited  no  apparent  antibiotic  effects,  E  coli’s  

ability  to  absorb  phenol  red  was  explored.  Cells  were  grown  in  LB  spiked  with  phenol  red  and  

the  absorbance  at  750  and  478nm  were  monitored  to  account  for  the  increase  in  light  

scattering  as  a  result  of  the  increasing  cell  concentration.  The  absorbance  of  phenol  red  in  the  

growth  media  was  determined  by  using  Equations  1  and  2.  No  uptake  of  phenol  red  was  

detected  (Figure  12).  Furthermore,  the  absorbance  at  478  nm  of  the  phenol  red  spiked  LB  

media  after  centrifugation  was  unchanged  after  incubation,  which  indicates  that  the  phenol  red  

concentration  also  remained  unchanged.      Additionally,  cells  grown  in  the  presence  of  phenol  

red  gave  a  cell  pellet  identical  in  color  to  cells  grown  in  LB  only.  This  is  a  strong  indicator  that  

Page 30: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  22    

the  cells  did  not  absorb  an  appreciable  amount  of  the  dye  because  concentrations  as  low  as  25  

µM  have  a  red  color  detectable  by  the  naked  eye.  After  multiple  trials,  it  was  determined  that  a  

cell  membrane  modifier  or  competent  cells  should  be  explored.  

 

   

EDTA  assay  

A  common  method  for  introducing  foreign  materials  into  bacterial  cells  is  to  make  

the  outer  membrane  more  permeable  by  treating  them  with  high  salt  concentrations  and  

cells  treated  in  this  manner  are  said  to  be  competent.  Additionally,  EDTA  has  been  shown  

to  further  increase  bacterial  cell  permeability  by  a  poorly  understood  mechanism.  EDTA  is  

also  known  to  initiate  the  release  of  some  membrane  lipids  in  a  dose  dependent  manner.  

y  =  0.0029x  +  0.3196  R²  =  0.9868  

y  =  0.0029x  +  0.223  R²  =  0.971  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  

0   20   40   60   80   100   120   140   160   180  

Absorbance  at  478nm

 

Time  (mins)  

E.  Coli(BL21)  Uptake  of  Phenol  Red  in  LB  Media  

E.  coli,  Phenol  Red  and  LB   E.  coli  and  LB   Corrected  Phenol  Red  Absorbance  

FIGURE  12:  E.  COLI  (BL21)  UPTAKE  OF  PHENOL  RED  IN  LB  MEDIA.  A  representative  growth  curve  for  transformed  E.  coli(BL21)  cells  grown  under  selection  in  the  presence  of  phenol  red.  The  total  absorbance  of  LB,  Phenol  red,  and  E.  coli  (blue)  shows  an  identical  slope  as  the  absorbance  of  LB  and  E.  Coli  (purple).  The  difference  between  the  two  lines  represents  the  solution  concentration  of  phenol  red,  which  remains  unchanged  (green).  

Page 31: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  23    

Consequently,  prolonged  exposure  to  high  concentrations  of  the  chelating  agent  is  lethal.  

Previous  studies  have  shown  that  treatment  of  competent  cells  with  EDTA  can  increase  the  

cellular  permeability  of  compounds  that  would  not  otherwise  cross  the  membrane  (18,19).    

Transformed  cells  were  treated  following  the  protocol  in  the  methods  and  materials  

section.  These  competent  cells  were  then  treated  with  varying  concentrations  of  PR  and  

EDTA.  An  aliquot  of  each  sample  was  plated  to  determine  if  they  were  still  viable  after  

treatment.  Each  sample  produced  an  overgrown  plate  after  overnight  incubation  at  37℃  on  

LB/kanamyacin  plates  confirming  that  the  EDTA  treatment  does  not  result  in  cell  death.  

Also,  upon  addition  of  the  two  lysis  buffers  to  the  washed  cell  pellets,  some  samples  

showed  a  distinct  pink  color.  Unfortunately,  it  is  unknown  if  this  color  change  is  a  result  of  

remaining  supernatant  or  from  phenol  red  in  the  lysed  cells,  because  the  samples  were  

only  washed  once  with  PBS.  

 

TABLE  4:  EDTA  ABSORBANCE  RESULTS.  There  is  no  significant  change  in  any  of  the  tubes,  suggesting  no  absorption  of  PR.  

Tube   Absorbance  (555  nm)   Tube   Absorbance  (555  nm)  

A   0.0073±0.002   E   0.0620±0.03  

B   0.021±0.02   F   0.0397±0.02  

C   0.0365±0.01   G   0.0527±0.04  

D   0.0176±0.005   H   0.0350±0.03  

 

 

 

Page 32: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  24    

DMSO  assay  

DMSO  is  also  known  to  increase  membrane  permeability  through  another  poorly  

understood  mechanism.  DMSO  is  thought  to  participate  in  three  mechanisms  to  help  

facilitate  diffusion:  membrane  loosening,  the  formation  of  pores,  and  bilayer  collapse  (20).    

Additionally,  there  is  evidence  of  DMSO  creating  transient  water  pores  in  the  cell  

membrane,  which  could  in  turn  facilitate  diffusion  across  the  plasma  membrane  (21).    

In  a  similar  manner  to  the  EDTA  assay,  the  competent  cells  were  treated  with  a  

concentration  of  DMSO  and  Phenol  red.  However,  the  time  of  incubation  was  varied  over  a  

time  of  one  hour.  After  the  three  PBS  washes,  the  cell  pellets  were  all  a  whitish  color.  

However,  upon  addition  of  the  second  lysis  buffer,  the  samples  were  a  bright  fuchsia  in  

color,  suggesting  cellular  uptake  of  phenol  red.  In  addition,  the  absorbance  of  the  samples  

that  were  incubated  for  30  minutes  or  more  show  an  increase  in  absorbance  at  555nm,  

further  suggesting  the  presence  of  phenol  red  in  these  samples  (Figure  13).    

   

FIGURE  13:  CHANGE  IN  ABSORBANCE  OF  E.  COLI  WITH  PR  AND  DMSO  VS  TIME.  Absorbance  at  555nm  (blue)  increases  at  the  30minute  mark  and  beyond.  Absorbance  at  750nm  (purple)  shows  no  significant  increase  over  time.  

Page 33: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  25    

CONCLUSION  AND  FUTURE  WORK  

In  conclusion,  we  are  fairly  positive  that  phenol  red  cannot  permeate  the  cell  

membrane  of  E.  coli  (BL21)  without  some  form  of  facilitator  of  active  transport.  However,  

upon  treatment  of  competent  cells  with  DMSO,  there  shows  an  increase  in  absorbance,  

which  would  suggest  the  cellular  uptake  of  phenol  red.  Furthermore,  the  white  cell  pellets  

turned  a  bright  fuchsia  color  upon  the  addition  of  the  second  lysis  buffer.  

Further  research  is  needed  to  ensure  the  competent  cells  are  still  viable  after  

treatment  with  DMSO.  An  aliquot  of  each  sample  should  be  removed  and  plated  on  an  

LB/Kanamycin  plate  and  cell  growth  must  be  monitored  with  incubation  to  ensure  that  the  

DMSO  treatment  does  not  result  in  cell  death.  

Additionally,  the  absorbance  of  the  cells  treated  with  DMSO  showed  no  significant  

absorbance  difference  upon  incubation  past  the  30-­‐minute  mark.  More  research  is  required  

to  determine  whether  the  dye  goes  directly  into  the  cells  or  if  there  is  some  sort  of  time  

dependence.  

Another  possible  area  of  future  research  includes  the  testing  of  other  polyphenols  to  

determine  if  they  show  an  increase  in  ability  to  transport  into  the  cell.  One  polyphenol  of  

specific  interest  could  be  Congo  red,  as  it  has  been  shown  to  absorb  in  gram-­‐negative  

bacteria  and  to  inhibit  the  formation  of  aggregates  (15).  

   

Page 34: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  26    

BIBLIOGRAPHY  

1. Prevention.,  C.f.D.C.a.  National  Diabetes  Fact  Sheet,  2011.  2011;  Available  from:  

http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf.  

2. Skyler,  J.S.,  The  economic  burden  of  diabetes  and  the  benefits  of  improved  glycemic  control:  

the  potential  role  of  a  continuous  glucose  monitoring  system.  Diabetes  Technol  Ther,  2000.  2  

Suppl  1:  p.  S7-­‐12.  

3. The  effect  of  intensive  treatment  of  diabetes  on  the  development  and  progression  of  long-­‐term  

complications  in  insulin-­‐dependent  diabetes  mellitus.  The  Diabetes  Control  and  Complications  

Trial  Research  Group.  N  Engl  J  Med,  1993.  329(14):  p.  977-­‐86.  

4. Bowsher,  R.R.  and  P.F.  Santa,  Application  of  size-­‐exclusion  chromatography  in  the  

investigation  of  the  in  vitro  stability  of  proinsulin  and  its  cleaved  metabolites  in  human  serum  

and  plasma.  J  Chromatogr  B  Analyt  Technol  Biomed  Life  Sci,  2009,  877(8-­‐9):  p.  689-­‐96.  

5. Rotenstein,  L.S.,  Ran,  N.,  Shivers,  J.P.,  Yarchoan,  M.,  and  Close,  K.L.,  Opportunities  and  

Challenges  for  Biosimilars:  What’s  on  the  Horizon  in  the  Global  Insulin  Market,  Clinical  

Diabetes,  2012,  30(4):  p.138-­‐50.  

6. Karlstad,  O.,  Starup-­‐Linde,  J.,  Vestergaard,  P.,  Hjellvik,  V.,  Bazelier,  M.T.,  Schmidt,  

M.K.,  Andersen,  M.,  Auvinen,  A.,  Haukka,  J.,  Furu,  K.,  de  Vries,  F.,  De  Bruin,  M.L.,  Use  of  insulin  

and  insulin  analogs  and  risk  of  cancer  -­‐  systematic  review  and  meta-­‐analysis  of  observational  

studies.  Curr  Drug  Saf,  2013,  8(5):  p.333-­‐48.  

7. Kaaks,  R.,  Nutrition,  insulin,  IGF-­‐1  metabolism  and  cancer  risk:  a  summary  of  epidemiological  

evidence.  Novartis  Found  Symp,  2004,  262:247-­‐60;  discussion  260-­‐68.  

8. Meyers,  J.M.,  Chemistry  Department,  Columbus  State  University.  Columbus,  GA.  Personal  

communication,  August  2014.  

9. Haataja,  L.,  Gurlo,  T.,  Huang,  C.J.,  Butler,  P.C.  Islet  amyloid  in  type  2  diabetes,  and  the  toxic  

oligomer  hypothesis.  Endocrine  Reviews,  2008,  29(3).      

Page 35: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  27    

10. Porat,  Y.,  Abramowitz,  A.,  Gazit,  E.  Inhibition  of  amyloid  fibril  formation  by  polyphenols:  

structural  similarity  and  aromatic  interactions  as  a  common  inhibition  mechanism.  Chem  Biol  

Drug  Des,  2006,  67:  27-­‐37.  

11. Ono,  K.,  Yoshiike,  Y.,  Takashima,  A.,  Hasegawa,  K.,  Naiki,  H.,  Yamada,  M.  Potent  anti-­‐

amyloidogenic  and  fibril-­‐destabilizing  effects  of  polyphenols  in  vitro:  implications  for  the  

prevention  and  therapeutics  of  Alzheimer’s  disease.  Journal  of  Neurochemistry,  2003,  87:  

p.172-­‐181.  

12. Sankaran,  K.,  Pamachandran,  V.,  Subrahmanyam,  Y.V.B.K.,  Rajarathnam,  S.,  Elango,  S.,  Roy,  R.  

Congo  Red-­‐Mediated  Regulation  of  Levels  of  Shigella  flexneri  2a  Membrane  Proteins.  Infection  

and  Immunity,  Aug  1989,  p2364-­‐2371.  

13. Hardin,  J.,  Bertoni  J.,  Kleinsmith,  L.  Becker’s  World  of  the  Cell,  8th  Ed.;  Pearson:  2012.  

14. Terry,  J.  Beveridge  Journal  of  Bacteriology,  Aug  1999,  p.  4725-­‐4733.  

15. Cooper  GM.  The  Cell:  A  Molecular  Approach.  2nd  edition.  Sunderland  (MA):  Sinauer  

Associates;  2000.  Cell  Walls  and  the  Extracellular  Matrix.  Available  from:  

http://www.ncbi.nlm.nih.gov/books/NBK9874/  

16. Mile  et  al.  Nucl.  Acids  Res.  (2010)  38(suppl  1):D750-­‐D753.  Available  at:  

hppt://bionumbers.hmh.harvard.edu/aboutus.aspx  

17. Brown,  W.E.  Campbell,  J.A.  Acid-­‐base  indicators:  an  experiment  in  aqueous  equilibria.  Journal  

of  Chemical  Education,  Oct  1968,  24(10)  

18. Vaara,  M.  Agents  that  increase  the  permeability  of  the  outer  membrane.Microbiol  Rev,  Sep  

1992,  56(3):395-­‐411  

19. Leive,  L.  A  nonspecific  incease  in  permeability  in  Escherichia  coli  produced  by  EDTA.  

Microbology,  Feb  1965,  53:745-­‐750.  

Page 36: CELLULAR(UPTAKE(OFPOLYPHENOLSIN(A(BACTERIAL( … · columbus(state(university((((cellular(uptake(ofpolyphenolsin(a(bacterial(protein(expression(system(((athesis(submittedto((honors(college(in(partial(fulfillment(of(the

P a g e  |  28    

20. Mernorval,  M.,  Mir,  L.M.,  Fernandez,  M.L.,  Reigada,  R.  Effects  of  dimethyl  sulfoxide  in  

cholesterol-­‐containing  lipid  membranes:  a  comparative  study  of  experiments  In  Silico  and  with  

cells.  PLOS  One,  July  2012.  Available  at:  http://dx.doi.org/10.1371/journal.pone.0041733  

21. He  F.,  Liu  W.,  Zheng  S.,  Zhou  L.,  Ye  B.,  Qi  Z.  Ion  transport  through  dimethyl  sulfoxide  (DMSO)  

induced  transient  water  pores  in  cell  membranes.  Molecular  Membrane  Biology,  2012,  29(3-­‐

4):  107-­‐13.