cellular Transport and Signalling Student_s Copy

6
SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA SAN BEDA COLLEGE OF MEDICINE Page 1 of 6 Cellular Transport and Signaling by Julianne Lopez, MDMBA [email protected] 09178520849 Cellular Transport and Signaling EDUCATIONAL OBJECTIVES At the end of the 4hour lecture, the future Bedan Doctor must be able to: Illustrate the fluidmosaic model of cell membranes Describe the types of membrane transport. o Differentiate between active and passive transport. o Describe features of the types of passive transport and give their mechanisms. ! Simple diffusion ! Facilitated diffusion ! Osmosis o Name and give features of the types of active transport. ! Primary active transport ! Secondary active transport o Explain, using specific examples, the difference between primary and secondary active transport. o Explain the importance and characteristics of carrier mediated transport. ! Stereospecificity ! Competition ! Saturation Describe the modes of cell communication and signaling. o Describe the mechanisms of cellular communication and regulation. ! Endocrine ! Neurocrine ! Paracrine ! Autocrine ! Juxtacrine o Discuss the role of receptor proteins in cell signaling. o Name the types of signal transduction pathways. ! GProtein mediated ! Second Messenger – dependent ion channels ! Second Messenger – dependent protein kinases Calmodulin dependent protein kinases Cyclic AMP – dependent protein kinases Atrial Natriuretic Peptide Receptor – guanylyl cyclases Cellular Membranes Cellular membranes (structure and composition) also called plasma membrane a thin, pliable, elastic structure that envelops the cell 7.5 to 10 nm thick composition: FLUID MOSAIC MODEL: primarily composed of a ___________ and ___________ phospholipid BILAYER Mosaic " within the phospholipid bilayer are many different types of embedded proteins and cholesterol molecules Fluid "the embedded molecules can move sideways throughout the membrane, meaning the membrane is not solid, but more like fluid o Fluidity of the membrane is determined by temperature and lipid composition ! Temperature: the higher the temperature, the more fluid the membrane ! Lipid composition: presence of unsaturated fatty acyl chains (double bond " “kink”) increases membrane fuidity LIPID component of cell membrane: lipid bilayer composed of phospholipid molecules (major lipids of the plasma membrane) phospholipids = ______________ backbone (hydrophilic, charged, polar head) + 2 ___________ (hydrophobic, uncharged, nonpolar tail) o because it has a hydrophilic and hydrophobic end, a phospholipid molecule is considered ___________ impermeable to water soluble substances (_________________________________) permeable to lipid soluble substances (_________________________________) cholesterol molecules is a critical component of the bilayer o also amphipathic o contribute to the fluidity of the membrane o prevents the hydrophobic chains from packing too closely together o stabilize the membrane at normal body temperature glycolipids o 2 fatty acyl chains linked to polar head groups that consist of carbohydrates o also amphiphatic 55% 25% 13% 4% 3% protein phospholipids cholesterol other lipids carbohydrates

description

BIOCHEM

Transcript of cellular Transport and Signalling Student_s Copy

Page 1: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 1 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

 Cellular  Transport  and  Signaling  by  Julianne  Lopez,  MD-­‐MBA  [email protected]  09178520849    

Cellular  Transport  and  Signaling    EDUCATIONAL  OBJECTIVES  At  the  end  of  the  4-­‐hour  lecture,  the  future  Bedan  Doctor  must  be  able  to:  • Illustrate  the  fluid-­‐mosaic  model  of  cell  membranes  • Describe  the  types  of  membrane  transport.  

o Differentiate  between  active  and  passive  transport.  o Describe  features  of  the  types  of  passive  transport  and  

give  their  mechanisms.  ! Simple  diffusion  ! Facilitated  diffusion  ! Osmosis  

o Name  and  give  features  of  the  types  of  active  transport.  ! Primary  active  transport  ! Secondary  active  transport    

o Explain,  using  specific  examples,  the  difference  between  primary  and  secondary  active  transport.  

o Explain  the  importance  and  characteristics  of  carrier-­‐mediated  transport.  ! Stereospecificity  ! Competition  ! Saturation  

• Describe  the  modes  of  cell  communication  and  signaling.  o Describe  the  mechanisms  of  cellular  communication  

and  regulation.  ! Endocrine  ! Neurocrine  ! Paracrine  ! Autocrine  ! Juxtacrine      

o Discuss  the  role  of  receptor  proteins  in  cell  signaling.  o Name  the  types  of  signal  transduction  pathways.  

! G-­‐Protein  mediated  ! Second  Messenger  –  dependent  ion  channels  ! Second  Messenger  –  dependent  protein  kinases  

• Calmodulin  dependent  protein  kinases  • Cyclic  AMP  –  dependent  protein  kinases  • Atrial  Natriuretic  Peptide  Receptor  –  guanylyl  

cyclases    

Cellular  Membranes    Cellular  membranes  (structure  and  composition)  -­‐ also  called  plasma  membrane  -­‐ a  thin,  pliable,  elastic  structure  that  envelops  the  cell  -­‐ 7.5  to  10  nm  thick  -­‐ composition:  

                     

FLUID  MOSAIC  MODEL:    

 -­‐ primarily  composed  of  a  ___________  and  ___________  -­‐ phospholipid  BILAYER  

 -­‐ Mosaic  "  within  the  phospholipid  bilayer  are  many  

different  types  of  embedded  proteins  and  cholesterol  molecules  

-­‐ Fluid  "the  embedded  molecules  can  move  sideways  throughout  the  membrane,  meaning  the  membrane  is  not  solid,  but  more  like  fluid  o Fluidity  of  the  membrane  is  determined  by  

temperature  and  lipid  composition  ! Temperature:  the  higher  the  temperature,  the  

more  fluid  the  membrane  ! Lipid  composition:  presence  of  unsaturated  

fatty  acyl  chains  (double  bond  "  “kink”)  increases  membrane  fuidity  

 LIPID  component  of  cell  membrane:  -­‐ lipid  bilayer  -­‐ composed  of  phospholipid  molecules  (major  lipids  of  the  

plasma  membrane)  -­‐ phospholipids  =  ______________  backbone  (hydrophilic,  

charged,  polar  head)  +  2  ___________  (hydrophobic,  uncharged,  nonpolar  tail)  o because  it  has  a  hydrophilic  and  hydrophobic  end,  a  

phospholipid  molecule  is  considered  ___________    -­‐ impermeable  to  water  soluble  substances  

(_________________________________)  -­‐ permeable  to  lipid  soluble  substances  

(_________________________________)  -­‐ cholesterol  molecules  is  a  critical  component  of  the  bilayer  

o also  amphipathic  o contribute  to  the  fluidity  of  the  membrane  o prevents  the  hydrophobic  chains  from  packing  too  

closely  together  o stabilize  the  membrane  at  normal  body  temperature    

 -­‐ glycolipids  

o 2  fatty  acyl  chains  linked  to  polar  head  groups  that  consist  of  carbohydrates  

o also  amphiphatic  

55%  25%  

13%  4%  3%   protein  

phospholipids  

cholesterol  

other  lipids  

carbohydrates  

Page 2: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 2 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

   Protein  Component  of  Cell  membranes  -­‐ may  either  be  integral  or  peripheral    Integral  membrane  proteins  -­‐ embedded  in,  and  anchored  to,  the  cell  membrane  by  

hydrophobic  interactions  -­‐ some  integral  proteins  are  ______________________  (span  the  

lipid  bilayer  one  or  more  times),  thus  are  in  contact  with  both  ECF  and  ICF  

-­‐ some  integral  proteins  are  embedded  but  do  not  span  it  -­‐ examples:  ligand-­‐binding  receptors  (for  hormones  or  

neurotransmitters),  transport  proteins  (i.e.  Na+-­‐K+  ATPase),  pores,  ion  channels,  G  protein-­‐coupled  receptors  

 Peripheral  membrane  proteins  -­‐ are  not  embedded  in  the  membrane    -­‐ are  not  covalently  bound  to  cell  membrane  components  

(loosely  attached  by  _________________________________)  -­‐ attached  to  either  the  intracellular  or  extracellular  side  of  

the  cell  membrane    -­‐ example:  ankyrin  –  a  peripheral  membrane  protein  that  

anchors  the  sytoskeleton  of  red  blood  cells  to  an  integral  membrane  transport  protein,  the  CL-­‐HCO3  exchanger  

 

Transport  Across  Membranes    General  Overview:    

 

 Notes:            

Simple  diffusion:  

 -­‐ process  by  which  molecules  move  spontaneously  from  an  

area  of  high  concentration  to  one  of  low  concentration  -­‐ occurs  as  a  result  of  random  thermal  motion  of  molecules      

 -­‐ only  form  of  transport  that  is  NOT  carrier-­‐mediated  -­‐ occurs  down  an  electrochemical  gradient  (“_________________”)  

(meaning  no  energy  expenditure),  therefore,  does  NOT  require  metabolic  energy  and  is  considered  PASSIVE  

-­‐ can  be  measured  using  the  following  equation  (assuming  a  nonelectrolyte  it  is  uncharged):    

J  =  -­‐PA  (C1  –  C2)    

Where:  J  =  flux  (flow)  (mmol/sec)  P  =  permeability  (cm/sec)  

A  =  area  (cm2)    C1=  concentration1  (mmol/L)  C2=  concentration2  (mmol/L)  

 -­‐ Concentration  Gradient  (C1  –  C2)  

o The  __________________________________  across  the  membrane  is  the  DRIVING  FORCE  for  net  diffusion  

 o The  larger  the  difference  in  solute  concentration  

between  the  2,  the  greater  the  driving  force,  greater  net  diffusion  

o What  happens  if  2  solutions  are  equal?  Answer:          

-­‐ Permeability:  describes  the  ease  with  which  a  solute  diffuses  through  a  membrane    

P  =  KD   Δx  

 Where:  

transport  across  

membranes  

simple  diffusion  

carrier-­‐mediated  transport  

facilitated  diffusion  

active  transport  

primary   secondary  

Page 3: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 3 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

P  =  permeability  K  =  partition  coefficient  D  =  Diffusion  coefficient  X  =  membrane  thickness  

 Factors  affecting  permeability:  

 Partition  coefficient  (K)  o by  definition,  describes  the  solubility  of  a  solute  in  oil  

relative  to  its  solubility  in  water  ! the  greater  the  relative  solubility  in  oil,  the  higher  

the  partition  coefficient,  the  more  easily  the  solute  can  dissolve  in  the  cell  membrane’s  lipid  bilayer  

o Predict:  ! Non  polar  solutes:  soluble  in  oil  "  _________________  

_________________  ! Polar  solutes:  insoluble  in  oil  

__________________________________  o Can  be  measured  by  adding  the  solute  to  a  mixture  of  

olive  oil  and  water  then  measuring  its  concentration  in  the  oil  phase  relative  to  its  concentration  in  water    

K  =  concentration  in  olive  oil        concentration  in  water  

 Diffusion  coefficient  (D)  o it  is  defined  by  the  stokes-­‐einstein  equation  

D  =  KT                  6πrη  

 Where:  

D  =  diffusion  coefficient  K  =  Boltzmann’s  constant  

o it  correlates  _________________with  the  molecular  radius  of  the  solute  and  viscosity  of  the  medium  ! Predict:  

Small  solutes  "  _________________diffusion  coefficients  "  __________________________________    Viscous  solutions  "  _________________  diffusion  coefficients  "  __________________________________  

Membrane  thickness  (x)  o the  thicker  the  cell  membrane,  the  greater  the  distance  

the  solute  must  diffuse  and  the  lower  the  rate  of  diffusion,  therefore,  membrane  thickness  and  rate  of  diffusion  is  _________________________________________________    

-­‐ Surface  Area  (A)  o The  greater  the  SA,  the  _________________  the  rate  of  

diffusion,  therefore,  it  is  _________________  proportional  to  one  another  

 Diffusion  of  electrolytes  -­‐ implications:  

1. The  potential  difference  across  the  membrane  will  alter  the  rate  of  diffusion  of  a  charged  solute  /  electrolyte    

2. When  a  charged  solute  diffuses  down  a  concentration  gradient  (from  higher  concentration  to  lower  concentration)  that  diffusion  can  itself  generate  a  potential  difference  across  a  membrane  called  __________________________________    

Carrier  Mediated  Transport  -­‐ facilitated  diffusion,  primary  active  transport  and  secondary  

active  transport  all  involve  integral  membrane  proteins  and  are  considered  carrier-­‐mediated  

-­‐ characteristics  of  carrier-­‐mediated  transport:  1. Saturation  o based  on  the  concept  that  carrier  proteins  have  a  

limited  number  of  binding  sites  for  the  solute  

 o ex:  glucose  transport  in  the  proximal  tubule  of  kidney  2. Stereospecific  o binding  sites  for  solute  on  the  transport  proteins  are  

stereospecific  o can  distinguish  between  isomers  o in  contrast,  simple  diffusion,  does  not  distinguish  

between  isomers  3. Competition    o can  recognize,  bind,  and  transport  chemically  related  

solutes  o ex:  D-­‐glucose  vs  D-­‐galactose  (competitive  inhibitor  of  

D-­‐glucose)    Facilitated  Diffusion:  -­‐ characteristics:  

o occurs  down  an  electrochemical  gradient  (downhill),  similar  to  simple  diffusion  

o no  input  of  metabolic  energy,  therefore  is  passive  

 o at  low  solute  concentration  "  more  rapid  than  simple  

diffusion  o at  high  solute  concentration  "  carriers  can  become  

saturated  and  facilitated  diffusion  will  level  off    (the  rate  of  diffusion  approaches  a  maximum,  Vmax.  It  cannot  rise  greater  than  Vmax  level)  

o is  carrier-­‐mediated,  therefore,  exhibits  stereospecificity,  saturation  and  competition    

-­‐ example:    GLUT  4  transporter  o responsible  for  the  insulin-­‐mediated  transport  of  D-­‐

glucose  from  the  bloodstream  to  the  skeletal  muscles  and  adipose  tissue  

o competitive  inhibitors:  D-­‐galactose,  3-­‐O-­‐methyl  glucose,  phlorizin    

o L-­‐glucose  (non-­‐physiologic  stereoisomer)  is  NOT  recognized  by  GLUT-­‐4  

 Primary  Active  transport:  -­‐ moved  against  an  electrochemical  potential  gradient  (uphill)  

"  solute  is  moved  from  an  area  of  low  concentration  to  an  area  of  high  contentration  

-­‐ there  is  input  of  metabolic  energy  in  the  form  of  ATP    -­‐ when  directly  coupled  to  the  transport  process  "  primary  

active  transport  -­‐ examples:  

 

Page 4: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 4 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

__________________________________  o main  function:  maintaining  concentration  gradients  for  

Na  and  K  across  cell  membranes  (goal:  low  intracellular  Na  and  high  intracellular  K)  

o present  in  the  membranes  of  ALL  cells  o 3  Na+    out  (ICF  "  ECF)  &  2  K+    in  (ECF  "  ICF)  o because  of  this  stoichiometry,  more  positive  charge  is  

pumped  out  of  the  cell  than  is  pumped  into  the  cell  (making  ICF  more  negative)  ! sub-­‐units:  

• alpha  sub-­‐units  o contains  ATPase  activity  and  binding  

sites  of  transported  ions  • beta-­‐sub  units  

o has  2  states:  ! E1  state:  binding  site  for  Na  and  K  face  the  ICF;  

enzyme  has  high  affinity  for  Na  ! E2  state:  binding  site  for  Na  and  K  face  the  ECF;  

enzyme  has  high  affinity  for  K  ! The  cycling  between  the  2  states  is  powered  by  

ATP  hydrolysis  

 check  p.  9  for  words    ★ Clinical  correlation:    _________________________________  (i.e.  ouabain  /  digitalis)  are  a  class  of  drugs  that  inhibits  Na+-­‐K+  ATPase  by  binding  to  the  E2  ~  P  form  near  the  K  binding  site  on  ECF  side  (preventing  conversion  back  to  E1)    Result:  _________________  intracellular  Na  and  _________________  intracellular  K      __________________________________  

o Main  function:  extrude  1  Ca2+  (for  1  ATP)  from  the  cell  (ICF  "  ECF)  against  an  electrochemical  gradient,  which  is  responsible  for  maintaining  a  low  intracellular  Ca2+  

o Present  in  the  membrane  of  MOST  cells  o SERCA  (___________________________________________________)  

! Is  a  variant  of  Ca2+  ATPase  found  in  sarcoplasmic  reticulum  of  muscles  and  endoplasmic  reticulum  of  other  cells  

! Function:  2  ions  Ca2+  (for  1  ATP)  from  ICF  to  the  interior  of  sarcoplasmic  or  endoplasmic  reticulum  

 __________________________________  

o Found  in  the  _________________  of  gastric  mucosa  ! Pumps  H+  from  ICF  of  pariental  cells  into  the  

lumen  of  stomach  "  acidifies  gastric  contents  o  Also  found  in  the  ______________________________  of  renal  

collecting  duct    

★ Clinical  correlation:    ___________________________________________________,  an  inhibitor  of  gastric  H+–K+  ATPase  can  be  used  therapeutically  to  reduce  the  secretion  of  H+  in  the  treatment  of  peptic  ulcer  disease      Secondary  Active  Transport  -­‐ transport  of  2  or  more  solutes  is  coupled  

o one  of  the  solutes,  usually  _________________moves  _________________  its  electrochemical  gradient,  and  the  other  solute  moves  _________________  its  electrochemical  gradient  

o downhill  movement  of  Na+  provides  the  energy  for  the  uphill  movement  of  the  other  solute  

o indirect  input  of  metabolic  energy     Physio  Pearl:    Inhibition  of  _________________  (i.e.  by  treatment  of  _________________),  diminished  the  transport  of  Na+  from  ICF  to  ECF,  causing  the  intracellular  Na+  concentration  to  increase  "  _________________  the  size  of  the  transmembrane  gradient    Implication:  indirectly,  all  secondary  active  transport  processes  are  diminished  by  inhibitors  of  the  Na+-­‐K+  ATPase  because  their  energy  source,  the  Na+  gradient,  is  diminished.      -­‐ 2  types  of  secondary  active  transport:  

o Cotransport  or  symport  o Countertransport,  antiport  or  exchange  

 Cotransport  -­‐ form  of  secondary  active  transport  in  which  all  solutes  are  

transported  in  the_________________  direction  across  the  cell  membrane  

-­‐ examples:    

__________________________________  

 o found  in  the  absorbing  epithelia  of  small  intestine  and  

renal  proximal  tubule  o both  solutes  are  required  for  transport  

 __________________________________  -­‐ present  in  the  luminal  membrane  of  epithelial  cells  of  the  

thick  ascending  limb  of  the  Loop  of  Henle    -­‐  Countertransport  (antiport  or  exchange)  -­‐ form  of  active  transport  in  which  solutes  move  in  

_________________  direction  across  the  cell  membrane  -­‐ example:  

 __________________________________          __________________________________            Type  of  transport  

Active  or  Passive  

Carrier-­‐Mediated  

Uses  metabolic  energy  

Dependent  on  Na+  gradient  

Simple  diffusion   Passive;  downhill  

No   No   No  

Facilitated  diffusion  

Passive;  downhill  

Yes   No   No  

Primary  Active  Transport  

Active;  uphill  

Yes   Yes;  direct   No  

Cotransport   Secondary  Active*  

Yes   Yes;  indirect  

Yes  (solutes  move  in  SAME  direction  as  Na  across  cell  

Page 5: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 5 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

membrane)  Countertransport   Secondary  

Active*  Yes   Yes;  

indirect  Yes  (solutes  move  in  OPPOSITE  direction  as  Na  across  cell  membrane)  

*Na+  is  transported  downhill  and  one  or  more  solutes  are  transported  uphill  

 Osmosis  -­‐ The  process  of  net  movement  of  water  through  a  selective  

membrane  caused  by  a  concentration      

                     Basic  Concepts  in  Osmosis    SOLUTION  -­‐ homogeneous  mixture  composed  of  two  or  more  substances  

o homogenous  means  that  components  and  properties  of  the  mixture  are  uniform  throughout  its  entire  volume  

-­‐ solute  is  the  substance  dissolved  -­‐ solvent  is  the  substance  that  dissolves  the  solute    OSMOLARITY  -­‐ concentration  of  all  osmotically  active  particles  (osmoles)  

per  liter  of  solution  (osmol/L)  -­‐ colligative  property  that  can  be  measured  by  freezing  point  

depression    

OSMOLALITY  -­‐ concentration  of  all  osmotically  active  particles  (osmoles)  

per  kilogram  of  solvent  (osmol/kg)  -­‐ determines  osmotic  pressure  between  solutions    ISOSMOTIC  -­‐ two  solutions  that  have  the  same  osmolarity    HYPEROSMOTIC  -­‐ solution  with  the  higher  osmolarity      HYPOSMOTIC  -­‐ solution  with  the  lower  osmolarity  

   Osmotic  Pressure  -­‐ The  exact  amount  of  pressure  required  to  stop  osmosis  -­‐ pressure  which  needs  to  be  applied  to  a  solution  to  prevent  

the  inward  flow  of  water  across  a  semipermeable  membrane  -­‐ calculated  using  van’t  Hoff’s  law  or  Morse  law    physiologic  implications:  -­‐ osmotic  pressure  is  HIGHER  with  higher  osmolality  -­‐ osmotic  pressure  is  HIGHER  with  higher  temperature  -­‐ the  higher  the  osmotic  pressure  of  a  solution,  the  greater  the  

tendency  for  water  to  flow  into  the  solution    TONICITY  -­‐ measure  of  the  osmotic  pressure  of  two  solutions  separated  

by  a  semipermeable  membrane  -­‐ influenced  only  by  solutes  that  cannot  cross  the  membrane              

   

Cell  Communication  and  Signaling    Signaling  Pathways  

! multiple,  hierarchical  steps  ! amplification  of  the  hormone-­‐receptor  binding  event  ! activation  of  multiple  pathways  and  regulation  of  

multiple  cellular  functions  ! antagonism  by  constitutive  and  regulated  feedback  

mechanisms,  Signaling  Molecules    

! peptides  and  proteins    Iinsulin)  ! catecholamines    (epinephrine  and  norepinephrine)  ! steroid  hormones    (aldosterone,  estrogen)  ! iodothyronines    ! eicosanoids  (prostaglandins,  leukotrienes,  

thromboxanes,  and  prostacyclins)  ! small  molecules  

– amino  acids,  nucleotides,  ions  (e.g.,  Ca++),  and  gases,  such  as  nitric  oxide  (NO)  and  carbon  dioxide  (CO2  

 Mechanisms  of  Cellular  Communication  

! endocrine  ! neurocrine  ! paracrine  ! autocrine  ! juxtacrine  

Endocrine  Signaling  ! transport  of  hormones  along  the  blood  stream  to  a  

distant  target  organ  ! EXAMPLES:  

– thyroid  hormone  – insulin    – glucagon  

Neurocrine  Signaling  ! also  called  synaptic  transmission  ! transport  of  neuro-­‐transmitters  from  a  presynaptic  cell  

to  a  postsynaptic  cell  ! EXAMPLE:  

– neuromuscular  junction  Paracrine  Signaling  

! release  and  diffusion  of  local  hormones  with  regulatory  action  on  neighboring  target  cells  

! EXAMPLE:  – testosterone  in  spermatogenesis  – retinoic  acid  on  retina  

Autocrine  Signaling  ! a  cell  secretes  hormones  or  chemical  messengers  that  

binds  to  the  same  cell    ! EXAMPLE:  

– IL-­‐1  on  monocytes  Juxtacrine  Signaling  

! also  called  contact-­‐dependent  signaling  ! transmitted  via  oligosaccharide,  lipid  or  protein  

components  of  a  cell  membrane  ! occurs  between  adjacent  cells  linked  by  gap  junctions  

 

A SOLVENT (water) undergoes osmosis from an area of low solute concentration to an area of high solute concentration. A SOLUTE undergoes diffusion from an area of high solute concentration to an area of low solute concentration.

OSMOLARITY ≠ TONICITY OSMOLARITY accounts for all solutes.

TONICITY accounts for only non-permeating solutes

Page 6: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 6 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

Receptors  ! Signal  transducers  ! Membrane  receptors  ! Nuclear  receptors  

 Plasma  Membrane  Receptors  

! Ion-­‐channel  linked  ! G-­‐protein  coupled  receptors  ! Catalytic  receptors  ! Transmembrane  receptors    

Nuclear  Receptors  ! Long  biological  half-­‐life  ! Diffuse  across  the  plasma  membrane  ! Bind  to  nuclear  receptors    ! hormone-­‐receptor  complex  binds  to  DNA  and  regulates  

the  transcription  of  specific  genes  ! Early  primary  response  -­‐-­‐"  gene  activation  to  stimulate  

other  genes  "  biological  effect    Signal  Transduction  

! Second  messengers  ! Involves  small  molecules  in  complicated  networks  

within  the  cell  ! Signal  amplification  ! Molecular  switches  

Types  of  Signal  Transduction  Pathways  ! g  proteins  ! ion  channels  ! protein  kinases  

– calmodulin-­‐dependent  protein  kinases  – camp-­‐dependent  protein  kinases  – anp-­‐guanylyl  cyclases  

Ion  Channel  Linked  Signal  Transduction  Pathway  ! mediate  direct  and  rapid  synaptic  signaling  between  

electrically  excitable  cells  ! neurotransmitters  bind  to  the  receptors  and  either  

open  or  close  the  ion  channel  ! Chemical  "electrical  signal"  response  ! Examples:  Voltage  gated-­‐channels  in  NMJ,  ryanodine  

receptor,  Arachidonic  acid,  caffeine    G  Protein-­‐Coupled  Signal  Transduction  Pathways  

! Heterotimeric  complexes  -­‐  α,  β,  and  γ  subunits  ! are  linked  with  more  than  1000  diferent  receptors  ! family  of  integral  transmembrane  proteins  that  possess  

seven  transmembrane  domains    ! EXAMPLES:  

! adrenergic  receptors  ! chemokine  receptors  ! TSH  receptors  

! Active  ! GTP  with  alpha  subunit  ! Activation  via  guanine  nucleotide  exchange  

factors  (GEFs)  [facilitates  the  dissociation  of  GDP  and  binding  of  GTP]  

! Inactive  ! GDP  ! Inactivation  via  GTPase-­‐accelerating  

proteins  (GAPS)  and  RGS  proteins  (regulation  of  G  protein  signaling),    

! Desensitization  and  endocytic  removal  (β-­‐arrestins  )  

! Signals  ! adenylyl  cyclase,  phosphodiesterases,  and  

phospholipases    Catalytic  Receptors  

! Many,  many,  many  types!  ! Receptor  gunaylyl  cyclases  

– Atrial  natriuretic  peptide  and  NO  ! Threonine/serine  kinases  

– Transforming  growth  factor  Beta  ! Tyrosine  kinases  

– insulin    Protein  Kinases  

! kinase  is  an  enzyme  that  modifies  other  proteins  by  phosphorylation  

! phosphorylation  usually  results  in  a  functional  change  of  the  target  protein  

– changing  enzyme  activity  – modifying  cellular  location  – associating  with  other  proteins  

 Calmodulin-­‐dependent  Protein  Kinases  

! calcium  (Ca2+)  binding  causes  conformational  alterations  in  calmodulin  

– binds  to  and  regulates  other  signaling  proteins  (cAMP  phosphodiesterase)  

– binds  to  calmodulin-­‐dependent  protein  kinases    

• phosphorylates  specific  serine  and  threonine  residues  in  many  proteins  (myosin  light-­‐chain  kinase)  

! EXAMPLE:  muscle  cells    cGMP-­‐dependent  Kinases  

! binding  of  ANP  causes  dimerization  and  activation  of  guanylyl  cyclase,  which  metabolizes  GTP  to  cGMP    

! cGMP  activates  cGMP-­‐dependent  protein  kinases    – phosphorylates  proteins  on  specific  serine  and  

threonine  residues  – in  the  kidney,  ANP  inhibits  sodium  and  water  

reabsorption  by  the  collecting  duct  ! EXAMPLES:  ANP,  NO  

     

       SOURCES:  

1. Guyton  &  Hall  Textbook  of  Medical  Physiology  12th  Edition  by  Hall,  John  &,  Guyton,  Arthur  C.  ,  ,  Published  in  Philadelphia,  Pensylvania:  Saunders/Elsevier,  2011  

2. Berne  &  Levy  Physiology  6th  Edition  bby  Berne,  Robert  M.,  1918-­‐2001.,  Koeppen,  Bruce  M.,  Published:  Philadelphia  :  Mosby/Elsevier,  2008  

3. BRS  Physiology  5th  Edition  by  Linda  Constanzo,  2011,  Published:  Lippincott  and  Williams  &  Wilkins  

4. Harper’s  Illustrated  Biochemistry  27th  Edition  by  Murray,  Robert  K.  by  Lange  

5. Basic  and  Clinical  Pharmacology  11th  Edition  by  by  Katzung,  Bertram  G.  ,  Published:  New  York  :  McGraw-­‐Hill  Medical,  2009  

6. Various  Internet  Websites