科技部專題研究計畫成果報告撰寫格式b007.w2.dlit.edu.tw/ezfiles/7/1007/img/146/8.pdf ·...

31
一、說明 科技部基於學術公開之立場,鼓勵一般專題研究計畫主持人發表其研究成果,但主持 人對於研究成果之內容應負完全責任。計畫內容及研究成果如涉及專利或其他智慧財產 權、違異現行醫藥衛生規範、影響公序良俗或政治社會安定等顧慮者,應事先通知科技部 不宜將所繳交之成果報告蒐錄於學門成果報告彙編或公開查詢,以免造成無謂之困擾。另 外,各學門在製作成果報告彙編時,將直接使用主持人提供的成果報告,因此主持人在繳 交報告之前,應對內容詳細校對,以確定其正確性。 成果報告繳交之期限及種類(期中進度報告及期末報告),應依本部補助專題研究計 畫作業要點及專題研究計畫經費核定清單之規定辦理。至報告內容之篇幅,期中進度報告 4 10 頁為原則,並應忠實呈現截至繳交時之研究成果,期末報告不得少於 10 頁。 二、報告格式:依序為封面、目錄、中英文摘要及關鍵詞、報告內容、參考文獻、計畫成果自 評、可供推廣之研發成果資料表、附錄。 ()報告封面:請至本部網站(http//web1.most.gov.tw)線上製作(格式如附件一)。 ()中、英文摘要及關鍵詞 (keywords)()報告內容:包括前言、研究目的、文獻探討、研究方法、結果與討論(含結論與建議)等。 ()計畫成果自評部分:請就研究內容與原計畫相符程度、達成預期目標情況、研究成果 之學術或應用價值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)是否適合在學術期刊發表或申請專利、主要發現(簡要敘述成果是否有嚴重損及公共 利益之發現)或其他有關價值等,作一綜合評估,並請至本部網站線上製作(格式如 附件二)。 ()頁碼編寫:請對摘要及目錄部分用羅馬字 I IIIII……標在每頁下方中央;報告內 容至附錄部分請以阿拉伯數字 1.2.3.……順序標在每頁下方中央。 ()附表及附圖可列在文中或參考文獻之後,各表、圖請說明內容。 ()可供推廣之研發成果資料表: 1.研究計畫所產生之研發成果,應至科技部科技研發成果資訊系統(STRIKE 系統, http://ap0569.most.gov.tw/strike/homepageIndex.do)填列研發成果資料表(如附件三), 循執行機構行政程序,由研發成果推廣單位(如技轉中心)線上繳交送出。 2.每項研發成果填寫一份。 ()若該計畫已有論文發表者(須於論文致謝部分註明補助計畫編號),得作為成果報告內 容或附錄,並請註明發表刊物名稱、卷期及出版日期。若有與執行本計畫相關之著作、 專利、技術報告、或學生畢業論文等,請在參考文獻內註明之。 ()該計畫若列屬國際合作研究,應將雙方互訪及合作研究情況、共同研究成果及是否持 續雙方合作等,於報告中重點式敘明。

Transcript of 科技部專題研究計畫成果報告撰寫格式b007.w2.dlit.edu.tw/ezfiles/7/1007/img/146/8.pdf ·...

  • 4 10 10

    ()http//web1.most.gov.tw

    () (keywords)

    ()

    ()

    ()

    () I II III

    1.2.3.

    ()

    ()

    1.STRIKE

    http://ap0569.most.gov.tw/strike/homepageIndex.do

    2.

    ()()

    ()

  • ()A4 29.7 21

    () Single Space

    () Times New Roman Font

    12

  • /

    The optimization and annealing process of solidly mounted resonator

    (SMR) filters for 4G mobile communication system

    MOST 103-2221-E-237 -006 -MY2

    103 08 01 105 07 31

    _2_

    1.

    2.

    3.

    105 09 01

  • I

    ............................................................................................................ I

    ........................................................................................... II

    Abstract .............................................................................................. II

    ................................................................................ 3

    ............................................................................................ 4

    ........................................................................................ 7

    .................................................................................. 14

    .......................................................................................... 15

  • II

    LTE

    4G 4G

    c

    English Abstract

    This project entitled The optimization and annealing process of solidly mounted resonator filter for

    4G mobile communication system. The purpose of this project is to optimize SMR filters for 4G mobile

    communication system. SMR filters should be optimized in accordance with the specifications of LTE

    communication system. The key annealing technology of device for 4G communication system will be

    developed.

    In the first year, the SMR devices with high performance are accomplished. The physical properties of

    piezoelectric layer and Bragg reflector are optimized by rapid thermal annealing (RTA) and conventional

    thermal annealing (CTA), respectively. The ideal properties of SMR devices for 4G applications are uniform

    surface morphology, little acoustic loss, well adhesion, little parasitic effect and strongly c-axis orientated.

    Therefore, this project investigates various commercial considerations to optimize the high-performance

    SMR devices, including process time, procedures, cost, and efficiency. In the second year, in order to reduce

    the insertion loss, ripples, and expand bandwidth, laser annealing processes and laser trimming processes

    will be used to make the better electrical contact for 4G mobile communication system.

    KeywordSolidly mounted resonatorsFiltersAnnealingLaser trimming

  • 3

    RF MEMS

    (GPS) PDA

    (WLAN)

    2012 MEMS

    22 2018 MEMS 60 MEMS

    TriQuint Semiconductor 2010 MEMS

    iSuppli TriQuint Semiconductor MEMS

    MEMS TriQuint (RF amplifiers)

    (surface acoustic waveSAW)(bulk acoustic waveBAW)

    (4G)

    (4G)

    4G 3 GHz

    RF Filter

    (

    )

    4G SMR

    4G SMR (rapid thermal annealing, RTA)

    (conventional thermal annealing, CTA)

    c

  • 4

    4G SMR WiMAX/LTE

    4G SMR (RTA)(CTA)

    1.

    2.

    3.

    RTA CTA

    SMR

    CTA RTA 400C 500C SiO2

    350C Mo 350C

    350C 3-1

    3-1 CTA RTA

    CTA RTA

    (C/sec) 0.1 5

    (C) 400, 500 400, 500

    (min) 10 10

    Air Vacuum, Air, N2

  • 5

    SMR AlN AlN

    AlN C AlN

    AlN RTA AlN

    AlN

    AlN AlN AlN

    RTA N2 400C 500C AlN

    300C 300C

    AlN AlN 3-2

    3-2 AlN RTA

    RTA

    (C/sec) 5

    (C) 400, 500

    (min) 10

    Vacuum, N2

    (Atomic Force Microscopy, AFM)

    AlN X (X-ray diffraction, XRD)

    EDAX

  • 6

    AlN AlN

    AlN C

    (1064 nm)(532 nm)(355 nm)

    3-3

    3-3

    (nm) 1064 532 355

    (m) 41 50 16

    (kHz) 100 30 40

    (W) 0.1~0.75 0.05~0.5 0.01~0.1

    AlN X (X-ray diffraction, XRD) AlN

  • 7

    Mo ( 0.5

    ) 1 2 3 4

    4-1

    Mo Si SiO2 Mo

    SMR

    4-1

    CTA

    400C 500C

    0.1 C/sec 10 min 4-2 4-3

    CTA 400C 500C 4

    0.5

    0.5 EDAX 4-4 4-5

    4-1 4-2 CTA 400C 500C

    4-2 CTA 400C

    4-3 CTA500C

  • 8

    4-4 0.5 CTA 400C EDAX

    4-5 0.5 CTA 500C EDAX

    4-1 0.5CTA 400CEDAX

    Element Weight % Atomic %

    O K 17.27 55.59

    Mo L 82.73 44.41

    Totals 100.00 100.00

    4-2 0.5CTA 500CEDAX

    Element Weight % Atomic %

    O K 30.42 72.39

    Mo L 69.58 27.61

    Totals 100.00 100.00

    RTA

    RTA

    ()

    4

    4-6 4-7 400C 500C

    0.5 400C 500C

    4-8 4-9 EDAX

    4-3 4-4

    4-6 RTA 400C

    4-7 RTA 500C

    4-8 0.5 RTA 400C 4-9 0.5 RTA 500C

  • 9

    EDAX EDAX

    4-3 0.5 RTA 400C

    EDAX Element Weight % Atomic %

    O K 17.06 55.23

    Mo L 82.94 44.77

    Totals 100.00 100.00

    4-4 0.5 RTA 500C

    EDAX Element Weight % Atomic %

    O K 29.11 71.12

    Mo L 70.89 28.88

    Totals 100.00 100.00

    400C 500C AFM

    4-10 4-11

    4-10 RTA400C

    4-11 RTA 500C

    400C 500C AFM

    4-12 4-13 0.5~2

    3

    4-12 RTA 400C

    4-13 RTA 500C

  • 10

    0.5~2

    3~4

    RTA

    RTA AlN

    4-14 AlN 400C

    AlN 500C AlN

    AlN 400C 500C AlN

    AlN

    4-14 XRD 4-14 XRD

    CTA RTA

    AlN AlN

    4-15

    AlN (002)

    4-16 4-16 0.25 W AlN

    0.25 W AlN

    0.75 W AlN

    AlN

  • 11

    0.25 W AlN

    (a) 0.1 W (b) 0.25 W

    (c) 0.5 W (d) 0.75 W

    4-15 XRD

    4-16 AlN AlN (002)

    AlN AlN

    AlN 4-17

    AlN (002)

    4-18 4-18 0.15 W AlN

    0.15 W AlN

    AlN 0.15 W

  • 12

    (a) 0.05 W (b) 0.15 W

    (c) 0.25 W (d) 0.5 W

    4-17 XRD

    4-18 AlN AlN (002)

    AlN AlN

    AlN

    4-19 AlN (002)

    4-20 4-20 0.025 W

    AlN 0.05 W AlN

    0.025 W 0.05W

    AlN 0.025

    W

  • 13

    (a) 0.01 W (b) 0.025 W

    (c) 0.05 W (d) 0.075 W

    4-19 XRD

    4-20 AlN AlN (002)

    4-21

    112 nm SMR 1.3 W 1.4 W

    4-22

    1.3 W 1.4 W

  • 14

    4-21 Pt/Ti Si

    (a) 1.3W

    (b) 1.4W

    4-22 Pt/Ti

    CTA RTA

    (AlN ) RTA

    AlN AlN

    0.25 W AlN AlN

    0.15 W AlN AlN

    0.025 W AlN AlN AlN

    AlN

  • 15

    [1]. Susan Hong Yole2018 MEMS 60 EET

    /MEMS2013 08 01

    [2]. Judith Cheng MEMS Top10 TriQuint EET

    /MEMS2011 02 14

    [3]. K. W. Tay, Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film

    Bulk Acoustic-Wave Resonators, Jpn. J. Appl. Phys., vol.43, No.8A, pp.5510-5515, 2004.

    [4]. R. C. Ruby, P. Bradley, Y. Oshmyansky, Thin film bulk acoustic resonators for wireless applications,

    IEEE Ultrason. Symp, pp.813-821, 2001.

    [5]. D. H. Kim, M. Yim, D. Chai, G. Yoon, Improvements of resonance characteristics due to thermal

    annealing of Bragg reflectors in ZnO-based FBAR devices, Electronics Letters, vol.39, No.13,

    pp.962-964, June 2003.

    [6]. J. Larson, Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900 MHz

    PCS Band, IEEE Ultrasonics Symposium, pp.869-874, 2000.

    [7]. M. Hara, J. Kuypers, M. Esashi, Surface micromachined AlN thinfilm 2 GHz resonator for CMOS

    integration, Sensors and Actuators, A117, pp.211-216, 2005.

    [8]. R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner, Advancement of MEMS into

    RF-Filter Applications, IEEE IEDM, pp.897-900, 2000.

    [9]. R. B. Stokes and J. D. Crawfold. X-Band Thin-Film Acoustic Filter on GaAs, IEEE Tans. Microwave

    Theory Tech., vol.41, pp.1075-1080, July 1993.

    [10]. V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore Film Bulk Acoustic Wave

    Resonator and Filter Technology, IEEE Trans. MTT-S Dig., pp.153-155, 1992.

    [11]. M. Schmid, E. Benes, W. Burger, and V. Kravchenko, Motional capacitance of layered piezoelectric

    thickness-mode resonators, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.38, pp.199-206, 1991.

    [12]. K. M. Lakin and J. S. Wang, Acoustic bulk wave composite resonators, Appl. Phys. Lett., vol.38,

    pp.125, 1981.

    [13]. K. M. Lakin, Thin film resonators and filters, IEEE Ultrasonics Sympium Proc., vol.2, pp.895-906,

    1999.

    [14]. J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, Effects of bottom electrodes on the orientation of AlN

    films and the frequency responses of resonators in AlN-based FBARs, Thin Solid Films, vol.447-448,

    pp.610-614, 2004.

    [15].

    (2008)

    [16].

    (2008)

  • 16

    [17]. R.C. Lin, Y.C. Chen, W.T. Chang, C.C. Cheng, and K.S. Kao, 2008, Highly sensitive mass sensor using

    film bulk acoustic resonator, Sensors and Actuators A: Physical, 147, pp. 425429.

  • 1.

    100

    2.

    100

  • 3.

    500

    CTA RTA

    AlN

    RTA AlN AlN

    0.25 W

    0.15 W 0.025 W AlN AlN

    AlN

    AlN

    ICIAE2015ICASI 2015IEDMS2015 104

    [1] W. C. Shih, Y. C. Chen, W. T. Chang, C. C. Cheng*, K. S. Kao, K. H. Cheng, C. M. Wang, C. Y. Wen,

    J. Y. Chang and P. W. Ting, The Bragg Reflector Layer of Low Surface Roughness Based on Solidly

    Mounted Resonators, in Proc the 3rd

    International Conference on Industrial Application Engineering

    2015 (ICIAE 2015), PS-16, Kitakyushu, Japan, Mar. 28-31, 2015.

    [2] W. C. Shih, Y. C. Chen, W. T. Chang, C. Y. Wen, K. S. Kao, C. C. Cheng*, P. W. Ting and J. Y. Chang,

    Dual mode frequency response using solidly mounted resonators, in Proc 2015 International

    Conference on Applied System Innovation (ICASI 2015), ICASI-1044, Osaka, Japan, May 22-26, 2015.

    [3] W. C. Shih, Y. C. Chen, P. W. Ting, K. S. Kao, C. C. Cheng* and W. T. Chang, Development of

    dual-mode SMR using off-axis deposition AlN thin films, in Proc International Electron Devices and

    Materials Symposium 2015 (IEDMS 2015), P267, Tainan, Taiwan, Nov. 19-20, 2015.

    [4]

    104 204Nov.

    20~212015

  • 104 4 08

    2015 (The 3rd International Conference on Industrial Application

    Engineering 2015, ICIAE2015) 104 3 28 3 31

    (Kitakyushu International Conference Center, Kitakyushu, Japan)

    (Institute of Industrial Applications Engineers, IIAE) 9

    (Topics) Electrical technologyElectronic technology, Mechanical technologyControl

    technologySensing technologyInformation technology Network technologyImage processing

    Others 90 (oral

    presentations) 3 keynote speech

    27 28

    MOST 1032221E237006MY2

    -

    104 3 28

    104 3 31

    () 2015

    () The 3rd International Conference on Industrial Application

    Engineering 2015 (ICIAE2015)

    ()

    () The Bragg Reflector Layer of Low Surface Roughness Based on

    Solidly Mounted Resonators

  • ()

    (The Bragg Reflector Layer of Low Surface Roughness Based on Solidly Mounted

    Resonators)(DC)(RF) Si SiO2/Mo

    (DC) Ti Pt

    (RF)(AlN) X (XRD)

    (SEM)(AFM)

    (HP8720)(SMR) return loss

    ()

    SMR

    1. ()

    2. (Program)

    3.

  • ICIAE 2015

  • 105 7 11

    Control, IS3C2016) 105 7 4 7 6

    (Tanglong International Hotel, Xian, China) (National Chin-Yi

    University of Technology)IEEE Computer Society IEEE Industrial Electronics Society

    (Xi'an University of Science and Technology)IS3C

    110 (oral

    presentations) 5 keynote speeches

    IEEE Xplore EI

    SCI

    SensorsMaterials

    MOST 1032221E237006MY2

    --

    ( 2 )

    105 7 4 105 7 6

    ()2016

    () The Third International Symposium on Computer, Consumer and Control

    (IS3C2016)

    ()

    () Fabrication of SAW devices with dual mode frequency response using AlN and

    ZnO thin films

  • Fabrication of SAW devices with

    dual mode frequency response using AlN and ZnO thin films (

    )(RF) Si3N4/Si

    (AlN)(ZnO)(acoustic wave velocity)

    (electromechanical coupling coefficient)

    (Surface Acoustic Wave, SAW) (Interdigital transducer electrodes, IDTs)

    (DC)(Photolithography)(Al)

    IDT/ZnO/AlN/Si3N4/Si SAW 146.3

    MHz(Rayleigh mode) 265.7 MHz(Sezawa mode)(Insertion loss, IL)-14.2 dB

    (Rayleigh mode)-17.4 dB (Sezawa mode)

  • SAW

    1. ()

    2. (Program)

    3.

    4.