CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

24
CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench

Transcript of CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

Page 1: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Vehicle Dynamics

CEE 320Steve Muench

Page 2: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Outline

1. Resistancea. Aerodynamicb. Rollingc. Grade

2. Tractive Effort3. Acceleration4. Braking Force5. Stopping Sight Distance (SSD)

Page 3: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Main Concepts

• Resistance• Tractive effort• Vehicle acceleration• Braking• Stopping distance

grla RRRmaF

Page 4: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Resistance

Resistance is defined as the force impeding vehicle motion1. What is this force?

2. Aerodynamic resistance

3. Rolling resistance

4. Grade resistance

grla RRRmaF

Page 5: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Aerodynamic Resistance Ra

Composed of:1. Turbulent air flow around vehicle body (85%)

2. Friction of air over vehicle body (12%)

3. Vehicle component resistance, from radiators and air vents (3%)

2

2VACR fDa

3

2VACP fDRa

sec5501

lbfthp

from National Research Council Canada

Page 6: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Rolling Resistance Rrl

Composed primarily of

1. Resistance from tire deformation (90%)

2. Tire penetration and surface compression ( 4%)

3. Tire slippage and air circulation around wheel ( 6%)

4. Wide range of factors affect total rolling resistance

5. Simplifying approximation:

WfR rlrl

147101.0

VfrlWVfP rlrlR

sec5501

lbfthp

Page 7: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Grade Resistance Rg

Composed of – Gravitational force acting on the vehicle

gg WR sin

gg tansin

gg WR tanGg tan

WGRg

For small angles,

θg W

θg

Rg

Page 8: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Available Tractive Effort

The minimum of:1. Force generated by the engine, Fe2. Maximum value that is a function of the

vehicle’s weight distribution and road-tire interaction, Fmax

max,mineffort tractiveAvailable FFe

Page 9: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Tractive Effort Relationships

Page 10: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Engine-Generated Tractive Effort

• Force

• Power

r

MF de

e

0

2

minsec

60

rpm engine

550

lbft torque

sec

lbft550 hp

Fe = Engine generated tractive effort reaching wheels (lb)

Me = Engine torque (ft-lb)

ε0 = Gear reduction ratio

ηd = Driveline efficiency

r = Wheel radius (ft)

Page 11: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Vehicle Speed vs. Engine Speed

0

12

irn

V e

V = velocity (ft/s)

r = wheel radius (ft)

ne = crankshaft rps

i = driveline slippage

ε0 = gear reduction ratio

Page 12: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Typical Torque-Power Curves

Page 13: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Maximum Tractive Effort

• Front Wheel Drive Vehicle

• Rear Wheel Drive Vehicle

• What about 4WD?

LhL

hflW

F

rlf

1

max

LhL

hflW

F

rlr

1

max

Page 14: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Diagram

Ra

Rrlf

Rrlr

ma

g

Fbf

Fbr

h

h

lf

lr

L

θg

Wf

Wr

Page 15: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Vehicle Acceleration

• Governing Equation

• Mass Factor (accounts for inertia of vehicle’s rotating parts)

maRF m

200025.004.1 m

Page 16: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Example

A 1989 Ford 5.0L Mustang Convertible starts on a flat grade from a dead stop as fast as possible. What’s the maximum acceleration it can achieve before spinning its wheels? μ = 0.40 (wet, bad pavement)

1989 Ford 5.0L Mustang Convertible

Torque 300 @ 3200 rpm

Curb Weight 3640

Weight Distribution Front 57% Rear 43%

Wheelbase 100.5 in

Tire Size P225/60R15

Gear Reduction Ratio 3.8

Driveline efficiency 90%

Center of Gravity 20 inches high

Page 17: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Braking Force

• Front axle

• Rear axle

L

fhlWF rlr

bf

max

L

fhlWF rlf

br

max

Page 18: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Braking Force

• Ratio

• Efficiency

rear

front

fhl

fhlBFR

rlf

rlr

maxg

b

Page 19: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Braking Distance

• Theoretical– ignoring air resistance

• Practical

• Perception

• Total

grlb

b

fg

VVS

sin2

22

21

Gga

g

VVd

2

22

21

pp tVd 1

ps ddd

a

VVd

2

22

21

For grade = 0

Page 20: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Stopping Sight Distance (SSD)

• Worst-case conditions– Poor driver skills– Low braking efficiency– Wet pavement

• Perception-reaction time = 2.5 seconds• Equation

rtV

Gga

g

VSSD 1

21

2

Page 21: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Stopping Sight Distance (SSD)

from ASSHTO A Policy on Geometric Design of Highways and Streets, 2001

Note: this table assumes level grade (G = 0)

Page 22: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

SSD – Quick and Dirty

a

VVV

V

Ggag

VVd

222

221

22

21 075.1

2.11075.1

2.11

1

2

47.1

02.322.112.322

047.1

2

1. Acceleration due to gravity, g = 32.2 ft/sec2

2. There are 1.47 ft/sec per mph

3. Assume G = 0 (flat grade)

ppp VttVd 47.147.1 1

V = V1 in mpha = deceleration, 11.2 ft/s2 in US customary unitstp = Conservative perception / reaction time = 2.5 seconds

ps Vta

Vd 47.1075.1

2

Page 23: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Page 24: CEE 320 Winter 2006 Vehicle Dynamics CEE 320 Steve Muench.

CE

E 3

20W

inte

r 20

06

Primary References

• Mannering, F.L.; Kilareski, W.P. and Washburn, S.S. (2005). Principles of Highway Engineering and Traffic Analysis, Third Edition). Chapter 2

• American Association of State Highway and Transportation Officals (AASHTO). (2001). A Policy on Geometric Design of Highways and Streets, Fourth Edition. Washington, D.C.