Cavitation of spherical bubbles with =1=surface tension ...

40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Rayleigh-Plesset with no surface tension Rayleigh-Plesset with surface tension via Abel Rayleigh-Plesset equation with viscosity Conclusion Old Nonlinear Waves Lab New Nonlinear Waves Lab . . Cavitation of spherical bubbles with surface tension and viscosity: theory and experiments Stefan C. Mancas [email protected] Center of Nonlinear Waves, Department of Mathematics Embry-Riddle Aeronautical University Daytona Beach, FL. 32114 A topical conference on elementary particles astrophysics, and cosmology U. of Miami, 2015 FRW–RP

Transcript of Cavitation of spherical bubbles with =1=surface tension ...

Page 1: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.

......

Cavitation of spherical bubbles with surface tensionand viscosity: theory and experiments

Stefan C. [email protected]

Center of Nonlinear Waves, Department of MathematicsEmbry-Riddle Aeronautical University

Daytona Beach, FL. 32114

A topical conference on elementary particles astrophysics, andcosmology

U. of Miami, 2015 FRW–RP

Page 2: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 3: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Summary

to obtain exact solutions nonlinear ODEs via Abel eq.we apply the derivation to Rayleigh-Plesset (RP) eq. via reductionsto 1st kind Abel eq.we present the connection with barotropic FRW eqs.we present graphs of hypergeometric solutions to RP eq. and ℘solutions in presence of surface tensionwhen viscozity is present we present numerical results

U. of Miami, 2015 FRW–RP

Page 4: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 5: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Introduction of RP eq.

RP for a 3D vacuous bubble in watereffects of surface tension are neglected → radius and time of theevolution as parametric closed-form solutions in terms ofhypergeometric functions.including capillarity, via Abel → parametric rational Weierstrassperiodic solutionswith viscosity → numerical solutions only

U. of Miami, 2015 FRW–RP

Page 6: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.Rayleigh-Plesset eq...

......ρw

(RR +

32

R2)= p − P∞ − 2

R

(σ + 2µw R

)(1)

ρw is the density of the water, R(t) is the radius of bubblep and P∞ are respectively the pressures inside the bubble and atlarge distanceσ is the surface tension of the bubble, µw the dynamic viscosity ofwater1917 with only the pressure difference in the right hand side wasfirst derived by Rayleigh, [7]1949 that Plesset developed the full form of the equation andapplied it to the problem of traveling cavitation bubbles, [8]

U. of Miami, 2015 FRW–RP

Page 7: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 8: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Barotropic FRW eqs. with cosmological constant

Einstein’s field eqs. for spatialy curved FRW cosmology with perfectfluid matter

aa = −4πG

3 (ρ+ 3p) + Λ3

H2 =(

aa

)2= 8πGρ

3 − κa2 + Λ

3(2)

energy-momentum cons. , a(t) scale factor of the univ. in comovingtime, H- Hubble exp. paramρ,p - energy density/ pressure, G gravit. const. Λ cosmologicalconst.using barotropic eq. of state p = (γ − 1)ρ

U. of Miami, 2015 FRW–RP

Page 9: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Rayleigh-Plesset equationConnection with cosmology

.. Comparison

.FRW..

......aa + γa2 + γκ =

Λ

3(γ + 1)a2, (3)

.RP eq...

......ρw

(RR +

32

R2)= p − P∞ − 2

R

(σ + 2µw R

)(4)

U. of Miami, 2015 FRW–RP

Page 10: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Hypergeometric solutions

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 11: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Hypergeometric solutions

.. No surface tension (no capillarity)

2RR + 3R2 = −2P∞ρw

(5)

R2R is int. fact.

R2 =23

P∞ρw

[(R0

R

)3

− 1

]. (6)

susbst. (6) into (5) we obtain Emden-Fowler eq. R = AtnRm with

part. sol. Rp(t) =5

√256

P∞R30

ρwt

25

for general sol. we use Kudryashov’s [9] subst. R = Sϵ,dt = Rδdτ ,ϵ, δ are constants that depend on the dimension of the bubble

U. of Miami, 2015 FRW–RP

Page 12: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Hypergeometric solutions

.. Ansatz

S2τ =

23

P∞ρw

1ϵ2 (R

30 S−3ϵ − 1)S2+2ϵδ−2ϵ . (7)

set ϵ = 13 , δ = 4

Sτ =

√6P∞ρw

S√

R30 S − S2 . (8)

with rational solution

S(τ) =R3

0Bτ2 + 1

, (9)

where B = 32

P∞ρw

R60 .

U. of Miami, 2015 FRW–RP

Page 13: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Hypergeometric solutions

.. Parametric solutions

R(τ) =R0

(Bτ2 + 1)13

,

t(τ) = R40

∫ τ

0

(Bξ2 + 1)43

.

(10)

t(R) = R0

√ρw

6P∞

(R0

R

) 32

[3(R0

R

)−1− 2F1

(13,12;32;

√1 −

( RR0

)3)](11)

see Fig. 1.

U. of Miami, 2015 FRW–RP

Page 14: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

Hypergeometric solutions

Figure: Radius of the bubble from equation (11) without surface tension.

U. of Miami, 2015 FRW–RP

Page 15: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 16: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Abel.ODEs..

...... R + f2(R)R + f3(R) + f1(R)R2 + f0(R)R3 = 0 (12)

letting R = η(R(t)), we obtain a 2nd kind Abel’s equation

ηη + f3(R) + f2(R)η + f1(R)η2 + f0(R)η3 = 0 . (13)

2nd kind to a 1st kind via η(R(t)) = 1y(R(t))

dydR

= f0(R) + f1(R)y + f2(R)y2 + f3(R)y3 (14)

it is still not known how to integrate it for general fi(R), for specialcases, see Kamke [2] (canonical form) and Lemke [4] (normal form).

U. of Miami, 2015 FRW–RP

Page 17: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Kamke’s transformation

see [2] : y(R) = ω(R)η(ξ)− f23f3

where ω(R) = exp∫ (

f1 −f 22

3f3

)dR

and ξ(R) =∫ω2f3dR

dηdξ

= η3 +Φ(R), (15)

where the invariant is

Φ(R) = f0f 23 +

13

(df2dR

f3 − f2df3dR

− f1f2f3 +29

f 32

)(16)

so when Φ ≡ const . then (26) is separable

U. of Miami, 2015 FRW–RP

Page 18: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 19: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Abel’s eq. for surface tension

R + f1(R)R2 + f3(R) = 0, (17)

where f1(R) = 32R , f2 = f0 = 0, f3 = K1

R + K2R2

and K1 = P∞−Pρw

and K2 = 2σρw

thus, (12) becomes.Bernoulli..

......dydR

= f1(R)y + f3(R)y3 (18)

U. of Miami, 2015 FRW–RP

Page 20: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Weierstrass

R2 =2K1(R3

0 − R3) + 3K2(R20 − R2)

3R3 . (19)

R = Sϵ,dt = Rδdτ

S2τ =

S2+2ϵδ

ϵ2 (a0S−2ϵ + a1S−3ϵ + a3S−5ϵ) , (20)

with ϵ = −1, δ = 2, and a3 = R20

(K2 +

2K13 R0

), a1 = −K2, and

a0 = −2K13 we obtain the Weierstrass elliptic equation

S2τ = a0 + a1S + a3S3 . (21)

U. of Miami, 2015 FRW–RP

Page 21: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Weierstrass - solutions

standard form using scale transformation S(τ) = 4a3℘(τ ;g2,g3)

℘τ2 = 4℘3 − g2℘− g3 (22)

and germs

g2 = −a1a3

4=

K2R20

4(K2 +

2K1R0

3)

g3 = −a0a2

316

=K1R4

024

(K2 +

2K1R0

3)2

(23)

U. of Miami, 2015 FRW–RP

Page 22: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Weierstrass - solutions

S(τ) =6ρw

R20(P∞R0 + 3σ)

℘(τ ;g2,g3), (24)

R(τ) =R2

0(P∞R0 + 3σ)6ρw

1

(τ ;

R20σ

3ρ2w(P∞R0 + 3σ),

R40P∞

54ρ3w(P∞R0 + 3σ)2

)t(τ) =

R40(P∞R0 + 3σ)2

36ρ2w

∫ τ

0

(ξ;

R20σ

3ρ2w(P∞R0 + 3σ),

R40P∞

54ρ3w(P∞R0 + 3σ)2

)2

(25)see Fig. 2.

U. of Miami, 2015 FRW–RP

Page 23: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

ODE → Abel’s equationCapillarity included

.. Weierstrass - solutions..

Figure: Parametric solutions for parametric time (left), parametric radius (center), andradius vs time (right) from eq. (25) when surface tension is present.

U. of Miami, 2015 FRW–RP

Page 24: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

General approach - Lemke/Kamke

.. Outline...1 Introduction

Rayleigh-Plesset equationConnection with cosmology

...2 Rayleigh-Plesset with no surface tensionHypergeometric solutions

...3 Rayleigh-Plesset with surface tension via AbelODE → Abel’s equationCapillarity included

...4 Rayleigh-Plesset equation with viscosityGeneral approach - Lemke/Kamke

...5 Conclusion

...6 Old Nonlinear Waves Lab

...7 New Nonlinear Waves LabU. of Miami, 2015 FRW–RP

Page 25: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

General approach - Lemke/Kamke

.. Lemke’s transformation f0 = 0

progress of integration of Abel’s eq. (12) is based on Lemke’stransformations, see [4] : y(R) = η(ξ)u(R) whereu(R) = exp

∫f1(R)dR and ξ =

∫uf2dR

dηdξ

= η2 + g(ξ)η3, (26)

where g(ξ) = u f3f2

is the Appell invariant

letting η = −1ρ

dρdξ , we obtain the 2nd order non-autonomous system

ρ2 d2ξ

dρ2 + g(ξ) = 0 (27)

to integrate the above (for special g’s) see Poincare [5], Ince [1]

U. of Miami, 2015 FRW–RP

Page 26: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

General approach - Lemke/Kamke

.. Abel’s eq. with viscosity

R + f2(R)R + f1(R)R2 + f3(R) = 0, (28)

where f2(R) = K3R2 , K3 = 4µw

ρw

thus, (26) becomesdηdξ

= η2 + ξ3(b3 + b5ξ2)η3, (29)

b3 =K2

8K 43=

σρ3w

210µ4w,

b5 =K1

32K 63=

P∞ρ5w

217µ6w

(30)

U. of Miami, 2015 FRW–RP

Page 27: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

General approach - Lemke/Kamke

.. Abel’s eq. with viscosity solution

the invariant is

Φ(R) =2µw [64µ2

w − 9ρwR(6σ + 5P∞R)]

27ρ3wR6

(31)

thus, we resort to numerics only, see Fig. 3.

Figure: Numerical solution for RP eq. with surface tension

U. of Miami, 2015 FRW–RP

Page 28: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Conclusion.proposed FRW..

......aa + γa2 + γκ =

Λ

3(γ + 1)a2 − σ

1a− µ

aa, (32)

.proposed RP..

......RR +

32

R2 − p − P∞ρw

=5Λ6

R2 − 2σρw

1R

− 4µw

ρw

RR

(33)

γ = 32 = 3

2γ − 1 → γ = 53 > 4

3 for radiation and κ = 2P∞3ρw

Λ in RP? σ surface tension and µ viscosity in FRW?U. of Miami, 2015 FRW–RP

Page 29: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Small water tank in Engr. building

16′ × 4′ × 4′

3′ water max192ft3 ≈ 5.5l tones1.5 yrs to buildattracted > 120k USDshallow and deep water for UWV research, supercavitation

U. of Miami, 2015 FRW–RP

Page 30: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Tank

Figure: 16’ long wave tank

U. of Miami, 2015 FRW–RP

Page 31: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Longer water tank in COAS

32′ × 4′ × 4′, 3′ water max, 384ft3 ≈ 11 tones3D numerical simulations of waves, small scale earthquake andtsunami formationEco-dolphin project involving a fleet of 10 AUV (autonomousunderwater vehicle)Dissipative 2D vortex solitons of the complex cubic-quinticGinzburg-Landau equation with applications in nonlinear optics,microbial growth, transport and fate of micro-organisms inunsaturated porous media where the flow is governed by Richards’equationHydrodynamics of tornadoes, mixing of two fluids in diversegeometriesFlow in an artificial heart system built in the lab, optimum design ofa ship U. of Miami, 2015 FRW–RP

Page 32: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. COAS

Figure: new COAS buildingU. of Miami, 2015 FRW–RP

Page 33: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Lab

Figure: 32’ long wave tankU. of Miami, 2015 FRW–RP

Page 34: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Lab

Figure: 32’ long wave tankU. of Miami, 2015 FRW–RP

Page 35: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

IntroductionRayleigh-Plesset with no surface tension

Rayleigh-Plesset with surface tension via AbelRayleigh-Plesset equation with viscosity

ConclusionOld Nonlinear Waves Lab

New Nonlinear Waves Lab

.. Experiments : Microcavitation

use microcavitation to control the depth of an immersed submarinecontrol the formation of bubbles via compressed airit can be used to create 0 g so that a submarine can immerse veryfastmanipulate buoyancyarXiv [10]

U. of Miami, 2015 FRW–RP

Page 36: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

Appendix References

.. References I

E. Ince,Ordinary differential equationsDover, N.Y. (1956)

E. KamkeDifferentialgleichungen: Losungsmethoden und LosungenChelsea, N.Y. (1959)

E. Whittaker, G. WatsonModern analysisCambridge, Univ. Press. (1927)

U. of Miami, 2015 FRW–RP

Page 37: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

Appendix References

.. References II

H. LemkeOn a first order differential equation studied by R. LiouvilleSitzungsberichte der berliner math. Ges., 18. (1920)

H. PoincareSur une theorem de M. FuchsActa Math, 7. (1885)

S.C. Mancas, H. C. RosuCavitation of spherical bubbles: closed-form, parametric, andnumerical solutionsarXiv:1508.01157v2. (2015)

U. of Miami, 2015 FRW–RP

Page 38: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

Appendix References

.. References III

M.S. PlessetThe dynamics of cavitation bubblesASME J. Appl. Mech., 16. (1949)

Lord RayleighVIII. On the pressure developed in a liquid during the collapse of aspherical cavityPhilos. Mag. Ser. 6 , 34. (1917)

N. A. Kudryashov, D. I. SinelshchikovAnalytical solutions for problems of bubble dynamicsPhys. Lett. A , 379 (8). (2015)

U. of Miami, 2015 FRW–RP

Page 39: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

Appendix References

.. References IV

S. Mancas, S. Sajjadi, A. Anderson, D. HoffmanMicro cavitation bubbles on the movement of an experimentalsubmarinearXiv:1407.7711v2. (2015)

H.C. Rosu, S. Mancas, P. ChenBarotropic FRW cosmologies with Chiellini dampingPhysics Letters A , 379 (10-11). (2015)

U. of Miami, 2015 FRW–RP

Page 40: Cavitation of spherical bubbles with =1=surface tension ...

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.

Appendix References

.. References V

H.C. Rosu, S. Mancas, P. ChenBarotropic FRW cosmologies with Chiellini damping in comovingtimeModern Physics Letters A , 30 (20). (2015)

U. of Miami, 2015 FRW–RP