Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON...

22
C-A-2016 © 2015 SIMPSON STRONG-TIE COMPANY INC. 64 Adhesive Anchors Simpson Strong-Tie ® Anchoring & Fastening Systems for Concrete and Masonry * See page 12 for an explanation of the load table icons. ET-HP ® Design Information — Concrete ET-HP ® Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete 1 Characteristic Symbol Units Nominal Anchor Diameter (in.) / Rebar Size / #3 / #4 / #5 / #6 / #7 1 / #8 1 / #10 Installation Information Drill Bit Diameter d hole in. 1 1 1 Maximum Tightening Torque T inst ft.-lb. 10 20 30 45 60 80 125 Permitted Embedment Depth Range Minimum h ef in. 2 2 3 3 3 4 5 Maximum h ef in. 4 6 7 9 10 12 15 Minimum Concrete Thickness h min in. h ef + 5d o Critical Edge Distance 2 c ac in. See foonote 2 Minimum Edge Distance c min in. 1 2 Minimum Anchor Spacing s min in. 3 6 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11. 2. c ac = h ef (τ k,uncr /1160) 0.4 x [3.1 – 0.7(h/h ef )], where: [h/h ef ] ≤ 2.4 τ k,uncr = the characteristic bond strength in uncracked concrete, given in the tables that follow ≤ k uncr ((h ef x f ' c ) 0.5 /(x d a )) h = the member thickness (inches) h ef = the embedment depth (inches) *

Transcript of Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON...

Page 1: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

64

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.) / Rebar Size

3/8 / #3 1/2 / #4 5/8 / #5 3/4 / #6 7/8 / #7 1 / #8 1 1/4 / #10

Installation Information

Drill Bit Diameter dhole in. 1⁄2 5⁄8 3⁄4 7⁄8 1 1 1⁄8 1 3/8

Maximum Tightening Torque Tinst ft.-lb. 10 20 30 45 60 80 125

Permitted Embedment Depth RangeMinimum hef in. 2 3/8 2 3⁄4 3 1⁄8 3 1⁄2 3 3⁄4 4 5

Maximum hef in. 4 1⁄2 6 7 1⁄2 9 10 1⁄2 12 15

Minimum Concrete Thickness hmin in. hef+ 5do

Critical Edge Distance2 cac in. See foonote 2

Minimum Edge Distance cmin in. 1 3⁄4 2 3⁄4

Minimum Anchor Spacing smin in. 3 6

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11. 2. cac = hef (τk,uncr /1160)0.4 x [3.1 – 0.7(h/hef)], where:

[h/hef ] ≤ 2.4 τk,uncr = the characteristic bond strength in uncracked concrete, given in the tables that follow ≤ kuncr ((hef x f'c)0.5/(∏ x da)) h = the member thickness (inches) hef = the embedment depth (inches)

*

64

Page 2: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

65

Ad

hesi

ve A

ncho

rs

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.)

3/8 1/2 5/8 3/4 7/5 1 1 1/4

Steel Strength in Tension

Threaded Rod

Minimum Tensile Stress Area Ase in.2 0.078 0.142 0.226 0.334 0.462 0.606 0.969

Tension Resistance of Steel — ASTM F1554, Grade 36

Nsa lb.

4,525 8,235 13,110 19,370 26,795 35,150 56,200

Tension Resistance of Steel — ASTM A193, Grade B7 9,750 17,750 28,250 41,750 57,750 75,750 121,125

Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6) 8,580 15,620 24,860 36,740 50,820 66,660 106,590

Tension Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M) 4,445 8,095 12,880 19,040 26,335 34,540 55,235

Strength Reduction Factor — Steel Failure φ — 0.756

Concrete Breakout Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)12

Effectiveness Factor — Uncracked Concrete kuncr — 24

Effectiveness Factor — Cracked Concrete kcr — 17

Strength Reduction Factor — Breakout Failure φ — 0.658

Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)12

Uncracked Concrete

2,3,4

Characteristic Bond Strength5,13 τk,uncr psi 390 380 370 360 350 335 315

Permitted Embedment Depth RangeMinimum

hef in.2 3/8 2 3⁄4 3 1⁄8 3 1⁄2 3 3⁄4 4 5

Maximum 4 1⁄2 6 7 1⁄2 9 10 1⁄2 12 15

Cracked Concrete

2,3,4

Characteristic Bond Strength5,9,10,11,12,13 τk,cr psi 160 200 160 205 190 165 140

Permitted Embedment Depth RangeMinimum

hef in.2 3/8 2 3⁄4 3 1⁄8 3 1⁄2 3 3⁄4 4 5

Maximum 4 1⁄2 6 7 1⁄2 9 10 1⁄2 12 15

Bond Strength in Tension — Bond Strength Reduction Factors for Periodic Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.657

Strength Reduction Factor — Water-Saturated Concrete φsat — 0.457

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. Temperature Range: Maximum short-term temperature of 150°F (66ºC). Maximum long-term temperature of 110°F (43°C).

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term concrete temperatures are constant temperatures over a significant time period.

5. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.70.

6. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

7. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

8. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 3/8" and 1 1⁄4" anchors must be multiplied by αN,seis = 0.78.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1⁄2", 5⁄8" and 3⁄4" anchors must be multiplied by αN,seis = 0.85.

11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7⁄8" anchors must be multiplied by αN,seis = 0.82.

12. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by αN,seis = 0.70.

13. For applications where maximum short-term temperature is 110ºF (43ºC) and the maximum long-term temperature is 75°F (24°C), bond strengths may be multiplied by 3.50. No additional increase is permitted for anchors that only resist wind or seismic loads.

IBC *

65

Page 3: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

66

Ad

hesi

ve A

ncho

rs

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Tension Strength Design Data for Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsRebar Size

#3 #4 #5 #6 #7 #8 #10

Steel Strength in Tension

Rebar

Minimum Tensile Stress Area Ase in2 0.11 0.2 0.31 0.44 0.6 0.79 1.23

Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) Nsa lb. 9,900 18,000 27,900 39,600 54,000 71,100 110,700

Strength Reduction Factor – Steel Failure φ — 0.656

Concrete Breakout Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Effectiveness Factor — Uncracked Concrete kuncr — 24

Effectiveness Factor — Cracked Concrete kcr — 17

Strength Reduction Factor — Breakout Failure φ — 0.658

Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Uncracked Concrete 2,3,4

Characteristic Bond Strength5,9 τk,uncr psi 370 360 350 335 325 315 295

Permitted Embedment Depth RangeMinimum

hef in.2 3/8 2 3⁄4 3 1⁄8 3 1⁄2 3 3⁄4 4 5

Maximum 4 1⁄2 6 7 1⁄2 9 10 1⁄2 12 15

Cracked Concrete 2,3,4

Characteristic Bond Strength5,9 τk,cr psi 130 140 155 165 180 190 215

Permitted Embedment Depth RangeMinimum

hef in.2 3/8 2 3⁄4 3 1⁄8 3 1⁄2 3 3⁄4 4 5

Maximum 4 1⁄2 6 7 1⁄2 9 10 1⁄2 12 15

Bond Strength in Tension - Bond Strength Reduction Factors for Periodic and Continuous Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.657

Strength Reduction Factor — Water-saturated Concrete φsat — 0.457

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11. 2. Temperature Range: Maximum short-term temperature of 150°F (66ºC). Maximum long-term temperature of 110°F (43ºC). 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). 4. Long-term concrete temperatures are constant temperatures over a significant time period. 5. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.70.6. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section

D.4.5 to determine the appropriate value of φ. 7. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the

load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ. 8. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If

the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

9. For applications where maximum short-term temperature is 110ºF (43ºC) and the maximum long-term temperature is 75ºF (24ºC), bond strengths may be multiplied by 3.50. No additional increase is permitted for anchors that only resist wind or seismic loads.

ET-HP® Design Information — Concrete

IBC *

66

Page 4: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

67

Ad

hesi

ve A

ncho

rsSD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.)

3/8 1/2 5/8 3/4 7/8 1 1 1/4

Steel Strength in Shear

Threaded Rod

Minimum Shear Stress Area Ase in.2 0.078 0.142 0.226 0.334 0.462 0.606 0.969Shear Resistance of Steel — ASTM F1554, Grade 36

Vsa lb.

2,260 4,940 7,865 11,625 16,080 21,090 33,720Shear Resistance of Steel — ASTM A193, Grade B7 4,875 10,650 16,950 25,050 34,650 45,450 72,675Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6) 4,290 9,370 14,910 22,040 30,490 40,000 63,955

Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M) 2,225 4,855 7,730 11,420 15,800 20,725 33,140

Reduction for Seismic Shear — ASTM F1554, Grade 36

αV,seis5 —

0.63 0.85 0.75Reduction for Seismic Shear — ASTM A193, Grade B7 0.63 0.85 0.75Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6) 0.60 0.85 0.75Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M) 0.60 0.85 0.75Strength Reduction Factor — Steel Failure φ — 0.652

Concrete Breakout Strength in Shear

Outside Diameter of Anchor do in. 0.375 0.5 0.625 0.75 0.875 1 1.25Load Bearing Length of Anchor in Shear ℓe in. hef

Strength Reduction Factor — Breakout Failure φ — 0.703

Concrete Pryout Strength in Shear

Coefficient for Pryout Strength kcp — 1.0 for hef < 2.50"; 2.0 for hef ≥ 2.50"Strength Reduction Factor — Pryout Failure φ — 0.704

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.2. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to

Section D.4.4 to determine the appropriate value of φ. 3. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met.

If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

4. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

5. The values of Vsa are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, Vsa must be multiplied by αV,seis for the corresponding anchor steel type.

IBC *

67

Page 5: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

68

Ad

hesi

ve A

ncho

rs SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Shear Strength Design Data for Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsRebar Size

#3 #4 #5 #6 #7 #8 #10

Steel Strength in Shear

Rebar

Minimum Shear Stress Area Ase in.2 0.11 0.2 0.31 0.44 0.6 0.79 1.23Shear Resistance of Steel — Rebar (ASTM A615 Grade 60) Vsa lb. 4,950 10,800 16,740 23,760 32,400 42,660 66,420

Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60) αV,seis5 — 0.6 0.8 0.75

Strength Reduction Factor — Steel Failure φ — 0.602

Concrete Breakout Strength in Shear

Outside Diameter of Anchor do in. 0.375 0.5 0.625 0.75 0.875 1 1.25Load-Bearing Length of Anchor in Shear ℓe in. hef

Strength Reduction Factor — Breakout Failure φ — 0.703

Concrete Pryout Strength in Shear

Coefficient for Pryout Strength kcp — 1.0 for hef < 2.50"; 2.0 for hef ≥ 2.50"Strength Reduction Factor — Pryout Failure φ — 0.704

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11. 2. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section

D.4.4 to determine the appropriate value of φ.3. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If

the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

4. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

5. The values of Vsa are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, Vsa must be multiplied by αV,seis.

IBC *

68

Page 6: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

69

Ad

hesi

ve A

ncho

rs

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Tension Design Strengths for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi)

Rod Dia. (in.)

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Tension Design Strength Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides Edge Distances = 1 3/4" on one side and cac on three sides

SDC A-B 6 SDC C-F 7,8 SDC A-B 6 SDC C-F 7,8

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

3/8

2 3/8 4 1⁄4 3 5⁄8 — — 710 — 415 — 465 — 270 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 895 365 525 215 440 305 255 180

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 1,345 550 785 320 410 455 240 265

1⁄2

2 3⁄4 5 1⁄4 4 1⁄8 — — 1,065 — 680 — 705 — 450 —

4 6 1⁄2 6 6 1⁄2 3 1,550 810 985 515 635 565 405 360

6 8 1⁄2 9 8 1⁄2 3 2,320 1,215 1,480 775 590 850 375 540

5⁄8

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 1,475 635 940 405 925 395 590 255

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 2,360 1,015 1,505 645 865 635 550 405

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 3,540 1,520 2,260 970 805 955 510 610

3⁄4

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 3/8 1,925 1,110 1,225 705 1,115 645 710 410

6 9 3⁄4 9 9 3⁄4 4 3/8 3,300 1,900 2,105 1,215 1,110 1,100 710 700

9 12 3⁄4 13 1⁄2 12 3⁄4 4 5⁄8 4,950 2,855 3,155 1,820 1,035 1,655 660 1,055

7⁄8

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 5 2,330 1,285 1,435 790 1,275 705 785 435

7 11 3/8 10 1⁄2 11 3/8 5 4,355 2,400 2,675 1,475 1,380 1,315 850 805

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 3/8 6,530 3,600 4,015 2,215 1,285 1,970 790 1,210

1

4 9 6 9 5 5⁄8 2,755 1,350 1,445 710 1,440 705 755 370

8 13 12 13 5 5⁄8 5,505 2,695 2,890 1,415 1,665 1,410 875 740

12 17 18 17 5 3⁄4 8,260 4,045 4,335 2,125 1,550 2,115 815 1,110

1 1⁄4

5 11 1⁄4 7 1⁄2 11 1⁄4 6 3⁄4 4,020 1,775 2,350 1,040 — — — —

10 16 1⁄4 15 16 1⁄4 6 3⁄4 8,040 3,550 4,705 2,075 — — — —

15 21 1⁄4 22 1⁄2 21 1⁄4 6 7⁄8 12,060 5,320 7,055 3,115 — — — —

Threaded Rod Dia.

(in.)

Tension Design Strength of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

3/8 3,370 4,360 7,270 6,395 7,270 3,310

1⁄2 6,175 7,990 13,315 11,715 13,315 6,070

5⁄8 9,835 12,715 21,190 18,645 21,190 9,660

3⁄4 14,530 18,790 31,315 27,555 31,315 14,280

7⁄8 20,095 25,990 43,315 38,115 43,315 19,750

1 26,365 34,090 56,815 49,995 56,815 25,905

1 1⁄4 42,150 54,505 90,845 79,945 90,845 41,425

1. Tension design strength must be the lesser of the concrete, bond or threaded rod steel design strength.2. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term

temperature of 150°F and long-term temperature of 110°F.3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.5. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.6. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level

seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. Design strengths in Bold indicate

that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisfied when using ASTM F1554 Grade 36 threaded rod. Any other ductility requirements must be satisfied.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

IBC *

69

Page 7: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

70

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Static Load

Rod Dia. (in.)

Nominal Embed. Depth

(in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Allowable Tension Load Based on Concrete or Bond (lb.)Edge Distances =

cac on all sidesEdge Distances = 1 3/4" on one

side and cac on three sidesha cac ha cac Uncracked Cracked Uncracked Cracked

3/8

2 3/8 4 1⁄4 3 5⁄8 — — 505 — 330 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 640 260 315 220

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 960 395 295 325

1⁄2

2 3⁄4 5 1⁄4 4 1⁄8 — — 760 — 505 —

4 6 1⁄2 6 6 1⁄2 3 1,105 580 455 405

6 8 1⁄2 9 8 1⁄2 3 1,655 870 420 605

5⁄8

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 1,055 455 660 280

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,685 725 620 455

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,530 1,085 575 680

3⁄4

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 3/8 1,375 795 795 460

6 9 3⁄4 9 9 3⁄4 4 3/8 2,355 1,355 795 785

9 12 3⁄4 13 1⁄2 12 3⁄4 4 5⁄8 3,535 2,040 740 1,180

7⁄8

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 5 1,665 920 910 505

7 11 3/8 10 1⁄2 11 3/8 5 3,110 1,715 985 940

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 3/8 4,665 2,570 920 1,405

1

4 9 6 9 5 5⁄8 1,970 965 1,030 505

8 13 12 13 5 5⁄8 3,930 1,925 1,190 1,005

12 17 18 17 5 3⁄4 5,900 2,890 1,105 1,510

1 1⁄4

5 11 1⁄4 7 1⁄2 11 1⁄4 6 3⁄4 2,870 1,270 — —

10 16 1⁄4 15 16 1⁄4 6 3⁄4 5,745 2,535 — —

15 21 1⁄4 22 1⁄2 21 1⁄4 6 7⁄8 8,615 3,800 — —

Threaded Rod Dia.

(in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

3/8 2,405 3,115 5,195 4,570 5,195 2,365

1⁄2 4,410 5,705 9,510 8,370 9,510 4,335

5⁄8 7,025 9,080 15,135 13,320 15,135 6,900

3⁄4 10,380 13,420 22,370 19,680 22,370 10,200

7⁄8 14,355 18,565 30,940 27,225 30,940 14,105

1 18,830 24,350 40,580 35,710 40,580 18,505

1 1⁄4 30,105 38,930 64,890 57,105 64,890 29,590

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic

inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.

IBC *

70

Page 8: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

71

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Wind Load

Rod Dia. (in.)

Nominal Embed. Depth

(in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)Edge Distances =

cac on all sidesEdge Distances = 1 3/4" on one

side and cac on three sidesha cac ha cac Uncracked Cracked Uncracked Cracked

3/8

2 3/8 4 1⁄4 3 5⁄8 — — 425 — 280 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 535 220 265 185

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 805 330 245 275

1⁄2

2 3⁄4 5 1⁄4 4 1⁄8 — — 640 — 425 —

4 6 1⁄2 6 6 1⁄2 3 930 485 380 340

6 8 1⁄2 9 8 1⁄2 3 1,390 730 355 510

5⁄8

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 885 380 555 235

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,415 610 520 380

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,125 910 485 575

3⁄4

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 3/8 1,155 665 670 385

6 9 3⁄4 9 9 3⁄4 4 3/8 1,980 1,140 665 660

9 12 3⁄4 13 1⁄2 12 3⁄4 4 5⁄8 2,970 1,715 620 995

7⁄8

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 5 1,400 770 765 425

7 11 3/8 10 1⁄2 11 3/8 5 2,615 1,440 830 790

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 3/8 3,920 2,160 770 1,180

1

4 9 6 9 5 5⁄8 1,655 810 865 425

8 13 12 13 5 5⁄8 3,305 1,615 1,000 845

12 17 18 17 5 3⁄4 4,955 2,425 930 1,270

1 1⁄4

5 11 1⁄4 7 1⁄2 11 1⁄4 6 3⁄4 2,410 1,065 — —

10 16 1⁄4 15 16 1⁄4 6 3⁄4 4,825 2,130 — —

15 21 1⁄4 22 1⁄2 21 1⁄4 6 7⁄8 7,235 3,190 — —

Threaded Rod Dia.

(in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

3/8 2,020 2,615 4,360 3,835 4,360 1,985

1⁄2 3,705 4,795 7,990 7,030 7,990 3,640

5⁄8 5,900 7,630 12,715 11,185 12,715 5,795

3⁄4 8,720 11,275 18,790 16,535 18,790 8,570

7⁄8 12,055 15,595 25,990 22,870 25,990 11,850

1 15,820 20,455 34,090 29,995 34,090 15,545

1 1⁄4 25,290 32,705 54,505 47,965 54,505 24,855

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D

assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.6 = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.

IBC *

71

Page 9: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

72

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Seismic Load

Rod Dia. (in.)

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides Edge Distances = 1 3/4" on one side and cac on three sides

SDC A-B 5 SDC C-F 6,7 SDC A-B 5 SDC C-F 6,7

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

3/8

2 3/8 4 1⁄4 3 5⁄8 — — 495 — 290 — 325 — 190 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 625 255 370 150 310 215 180 125

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 940 385 550 225 285 320 170 185

1⁄2

2 3⁄4 5 1⁄4 4 1⁄8 — — 745 — 475 — 495 — 315 —

4 6 1⁄2 6 6 1⁄2 3 1,085 565 690 360 445 395 285 250

6 8 1⁄2 9 8 1⁄2 3 1,625 850 1,035 545 415 595 265 380

5⁄8

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 1,035 445 660 285 650 275 415 180

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,650 710 1,055 450 605 445 385 285

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,480 1,065 1,580 680 565 670 355 425

3⁄4

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 3/8 1,350 775 860 495 780 450 495 285

6 9 3⁄4 9 9 3⁄4 4 3/8 2,310 1,330 1,475 850 775 770 495 490

9 12 3⁄4 13 1⁄2 12 3⁄4 4 5⁄8 3,465 2,000 2,210 1,275 725 1,160 460 740

7⁄8

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 5 1,630 900 1,005 555 895 495 550 305

7 11 3/8 10 1⁄2 11 3/8 5 3,050 1,680 1,875 1,035 965 920 595 565

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 3/8 4,570 2,520 2,810 1,550 900 1,380 555 845

1

4 9 6 9 5 5⁄8 1,930 945 1,010 495 1,010 495 530 260

8 13 12 13 5 5⁄8 3,855 1,885 2,025 990 1,165 985 615 520

12 17 18 17 5 3⁄4 5,780 2,830 3,035 1,490 1,085 1,480 570 775

1 1⁄4

5 11 1⁄4 7 1⁄2 11 1⁄4 6 3⁄4 2,815 1,245 1,645 730 — — — —

10 16 1⁄4 15 16 1⁄4 6 3⁄4 5,630 2,485 3,295 1,455 — — — —

15 21 1⁄4 22 1⁄2 21 1⁄4 6 7⁄8 8,440 3,725 4,940 2,180 — — — —

Threaded Rod Dia.

(in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

3/8 2,360 3,050 5,090 4,475 5,090 2,315

1⁄2 4,325 5,595 9,320 8,200 9,320 4,250

5⁄8 6,885 8,900 14,835 13,050 14,835 6,760

3⁄4 10,170 13,155 21,920 19,290 21,920 9,995

7⁄8 14,065 18,195 30,320 26,680 30,320 13,825

1 18,455 23,865 39,770 34,995 39,770 18,135

1 1⁄4 29,505 38,155 63,590 55,960 63,590 29,000

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection,

short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level

seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. 7. Design strengths in Bold indicate that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisfied when using ASTM F1554 Grade 36 threaded rod.

Any other ductility requirements must be satisfied.8. Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

IBC *

72

Page 10: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

73

Ad

hesi

ve A

ncho

rs

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Tension Design Strengths for Rebar in Normal-Weight Concrete (f'c = 2,500 psi)

Rebar Size

Nominal Embed.

Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Tension Design Strength Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides Edge Distances = 1 3/4" on one side and cac on three sides

SDC A-B6 SDC C-F7,8 SDC A-B6 SDC C-F7,8

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

#3

2 3/8 4 1/4 3 5/8 — — 670 — 500 — 445 — 335 —

3 4 7/8 4 1/2 4 7/8 2 1/4 845 295 635 220 420 250 315 190

4 1/2 6 3/8 6 3/4 6 3/8 2 1/4 1,270 440 950 330 390 375 295 280

#4

2 3/4 5 1/4 4 1/8 — — 1,010 — 755 — 675 — 505 —

4 6 1/2 6 6 1/2 3 1,465 575 1,100 430 610 410 455 310

6 8 1/2 9 8 1/2 3 2,200 865 1,650 650 565 615 425 460

#5

3 1/8 6 1/4 4 3/4 6 1/4 3 5/8 1,390 615 1,040 460 885 390 660 295

5 8 1/8 7 1/2 8 1/8 3 5/8 2,220 985 1,665 735 820 625 615 470

7 1/2 10 5/8 11 1/4 10 5/8 3 5/8 3,330 1,475 2,500 1,105 760 940 570 705

#6

3 1/2 7 1/4 5 1/4 7 1/4 4 1/4 1,805 895 1,355 670 1,060 525 795 395

6 9 3/4 9 9 3/4 4 1/4 3,095 1,535 2,325 1,150 1,050 900 790 675

9 12 3/4 13 1/2 12 3/4 4 1/4 4,645 2,300 3,485 1,725 980 1,350 735 1,015

#7

3 3/4 8 1/8 5 5/8 8 1/8 4 7/8 2,190 1,195 1,645 895 1,215 660 910 495

7 11 3/8 10 1/2 11 3/8 4 7/8 4,090 2,225 3,065 1,670 1,305 1,230 980 925

10 1/2 14 7/8 15 3/4 14 7/8 5 1/8 6,135 3,340 4,600 2,505 1,215 1,850 910 1,385

#8

4 9 6 9 5 3/8 2,580 1,560 1,935 1,170 1,365 825 1,025 620

8 13 12 13 5 3/8 5,160 3,120 3,870 2,340 1,570 1,650 1,175 1,240

12 17 18 17 6 5/8 7,745 4,680 5,810 3,510 1,460 2,475 1,095 1,860

#10

5 11 1/4 7 1/2 11 1/4 6 1/2 3,780 2,745 2,835 2,060 — — — —

10 16 1/4 15 16 1/4 7 7,555 5,490 5,665 4,115 — — — —

15 21 1/4 22 1/2 21 1/4 9 1/8 11,335 8,230 8,500 6,175 — — — —

Rebar Size

Tension Design Strength of Rebar Steel (lb.)

1. Tension design strength must be the lesser of the concrete, bond or rebar steel design strength.2. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D

assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.5. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.6. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F

when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

ASTM A615GR 60

ASTM A706GR 60

#3 6,435 5,720

#4 11,700 10,400

#5 18,135 16,120

#6 25,740 22,880

#7 35,100 31,200

#8 46,215 41,080

#10 74,100 66,040

IBC *

73

Page 11: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

74

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Static Load

Rebar SizeNominal

Embed. Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides

Edge Distances = 1 3/4" on one side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

#3

2 3/8 4 1⁄4 3 5⁄8 — — 480 — 320 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 605 210 300 180

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 905 315 280 270

#4

2 3⁄4 5 1⁄4 4 1⁄8 — — 720 — 480 —

4 6 1⁄2 6 6 1⁄2 3 1,045 410 435 295

6 8 1⁄2 9 8 1⁄2 3 1,570 620 405 440

#5

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 995 440 630 280

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,585 705 585 445

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,380 1,055 545 670

#6

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 1⁄4 1,290 640 755 375

6 9 3⁄4 9 9 3⁄4 4 1⁄4 2,210 1,095 750 645

9 12 3⁄4 13 1⁄2 12 3⁄4 4 1⁄4 3,320 1,645 700 965

#7

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 4 7⁄8 1,565 855 870 470

7 11 3/8 10 1⁄2 11 3/8 4 7⁄8 2,920 1,590 930 880

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 1⁄8 4,380 2,385 870 1,320

#8

4 9 6 9 5 3/8 1,845 1,115 975 590

8 13 12 13 5 3/8 3,685 2,230 1,120 1,180

12 17 18 17 6 5⁄8 5,530 3,345 1,045 1,770

#10

5 11 1⁄4 7 1⁄2 11 1⁄4 6 1⁄2 2,700 1,960 — —

10 16 1⁄4 15 16 1⁄4 7 5,395 3,920 — —

15 21 1⁄4 22 1⁄2 21 1⁄4 9 1⁄8 8,095 5,880 — —

Rebar Size

Allowable Tension Load of Rebar Steel (lb.)

1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11

Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.

ASTM A615GR 60

ASTM A706GR 60

#3 4,595 4,085

#4 8,355 7,430

#5 12,955 11,515

#6 18,385 16,345

#7 25,070 22,285

#8 33,010 29,345

#10 52,930 47,170

IBC *

74

Page 12: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

75

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Wind Load

Rebar SizeNominal

Embed. Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides

Edge Distances = 1 3/4" on one side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

#3

2 3/8 4 1⁄4 3 5⁄8 — — 400 — 265 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 505 175 250 150

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 760 265 235 225

#4

2 3⁄4 5 1⁄4 4 1⁄8 — — 605 — 405 —

4 6 1⁄2 6 6 1⁄2 3 880 345 365 245

6 8 1⁄2 9 8 1⁄2 3 1,320 520 340 370

#5

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 835 370 530 235

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,330 590 490 375

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,000 885 455 565

#6

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 1⁄4 1,085 535 635 315

6 9 3⁄4 9 9 3⁄4 4 1⁄4 1,855 920 630 540

9 12 3⁄4 13 1⁄2 12 3⁄4 4 1⁄4 2,785 1,380 590 810

#7

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 4 7⁄8 1,315 715 730 395

7 11 3/8 10 1⁄2 11 3/8 4 7⁄8 2,455 1,335 785 740

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 1⁄8 3,680 2,005 730 1,110

#8

4 9 6 9 5 3/8 1,550 935 820 495

8 13 12 13 5 3/8 3,095 1,870 940 990

12 17 18 17 6 5⁄8 4,645 2,810 875 1,485

#10

5 11 1⁄4 7 1⁄2 11 1⁄4 6 1⁄2 2,270 1,645 — —

10 16 1⁄4 15 16 1⁄4 7 4,535 3,295 — —

15 21 1⁄4 22 1⁄2 21 1⁄4 9 1⁄8 6,800 4,940 — —

Rebar Size

Allowable Tension Load of Rebar Steel (lb.)

1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11

Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.6 = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.

ASTM A615GR 60

ASTM A706GR 60

#3 3,860 3,430

#4 7,020 6,240

#5 10,880 9,670

#6 15,445 13,730

#7 21,060 18,720

#8 27,730 24,650

#10 44,460 39,625

IBC *

75

Page 13: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

76

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Seismic Load

Rebar Size

Nominal Embed.

Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides Edge Distances = 1 3/4" on one side and cac on three sides

SDC A-B5 SDC C-F6,7 SDC A-B5 SDC C-F6,7

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

#3

2 3/8 4 1⁄4 3 5⁄8 — — 470 — 350 — 310 — 235 —

3 4 7⁄8 4 1⁄2 4 7⁄8 2 1⁄4 590 205 445 155 295 175 220 135

4 1⁄2 6 3/8 6 3⁄4 6 3/8 2 1⁄4 890 310 665 230 275 265 205 195

#4

2 3⁄4 5 1⁄4 4 1⁄8 — — 705 — 530 — 475 — 355 —

4 6 1⁄2 6 6 1⁄2 3 1,025 405 770 300 425 285 320 215

6 8 1⁄2 9 8 1⁄2 3 1,540 605 1,155 455 395 430 300 320

#5

3 1⁄8 6 1⁄4 4 3⁄4 6 1⁄4 3 5⁄8 975 430 730 320 620 275 460 205

5 8 1⁄8 7 1⁄2 8 1⁄8 3 5⁄8 1,555 690 1,165 515 575 440 430 330

7 1⁄2 10 5⁄8 11 1⁄4 10 5⁄8 3 5⁄8 2,330 1,035 1,750 775 530 660 400 495

#6

3 1⁄2 7 1⁄4 5 1⁄4 7 1⁄4 4 1⁄4 1,265 625 950 470 740 370 555 275

6 9 3⁄4 9 9 3⁄4 4 1⁄4 2,165 1,075 1,630 805 735 630 555 475

9 12 3⁄4 13 1⁄2 12 3⁄4 4 1⁄4 3,250 1,610 2,440 1,210 685 945 515 710

#7

3 3⁄4 8 1⁄8 5 5⁄8 8 1⁄8 4 7⁄8 1,535 835 1,150 625 850 460 635 345

7 11 3/8 10 1⁄2 11 3/8 4 7⁄8 2,865 1,560 2,145 1,170 915 860 685 650

10 1⁄2 14 7⁄8 15 3⁄4 14 7⁄8 5 1⁄8 4,295 2,340 3,220 1,755 850 1,295 635 970

#8

4 9 6 9 5 3/8 1,805 1,090 1,355 820 955 580 720 435

8 13 12 13 5 3/8 3,610 2,185 2,710 1,640 1,100 1,155 825 870

12 17 18 17 6 5⁄8 5,420 3,275 4,065 2,455 1,020 1,735 765 1,300

#10

5 11 1⁄4 7 1⁄2 11 1⁄4 6 1⁄2 2,645 1,920 1,985 1,440 — — — —

10 16 1⁄4 15 16 1⁄4 7 5,290 3,845 3,965 2,880 — — — —

15 21 1⁄4 22 1⁄2 21 1⁄4 9 1⁄8 7,935 5,760 5,950 4,325 — — — —

Rebar Size

Allowable Tension Load of Rebar Steel (lb.) 1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

3. Tabulated values are for a single anchor with no influence of another anchor.4. Interpolation between embedment depths is not permitted.5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F

when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

ASTM A615GR 60

ASTM A706GR 60

#3 4,505 4,005

#4 8,190 7,280

#5 12,695 11,285

#6 18,020 16,015

#7 24,570 21,840

#8 32,350 28,755

#10 51,870 46,230

IBC *

76

Page 14: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

77

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete

Rod Dia. in.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Critical Edge Dist. in.

(mm)

Critical Spacing

Dist. in.

(mm)

Tension Load Based on Bond Strength

Tension Load Based on Steel Strength

f'c ≥ 2,000 psi (13.8 MPa) Concrete

F1554 Grade 36 A193 GR B7 F593

304SS

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

3/8 (9.5) 1⁄2

3 1/2 (89)

5 1/4 (133)

14 (356)

8,777 (39.0)

324 (1.4)

2,195 (9.8)

2,105 (9.4)

4,535 (20.2)

3,630 (16.1)

1/2 (12.7) 5⁄8

4 1/4 (108)

6 3/8 (162)

17 (432)

15,368 (68.4)

605 (2.7)

3,840 (17.1)

3,750 (16.7)

8,080 (35.9)

6,470 (28.8)

5/8 (15.9) 3⁄4

5 (127)

7 1/2 (191)

20 (508)

22,877 (101.8)

718 (3.2)

5,720 (25.4)

5,875 (26.1)

12,660 (56.3)

10,120 (45.0)

3/4 (19.1) 7⁄8

6 3/4 (171)

10 1⁄8 (257)

27 (686)

35,459 (157.7)

4,940 (22.0)

8,865 (39.4)

8,460 (37.6)

18,230 (81.1)

12,400 (55.2)

7/8 (22.2) 1 7 3/4

(197)11 5/8 (295)

31 (787)

43,596 (193.9)

1,130 (5.0)

10,900 (48.5)

11,500 (51.2)

24,785 (110.2)

16,860 (75.0)

1 (25.4) 1 1⁄8 9

(229)13 1/2 (343)

36 (914)

47,333 (210.5)

1,243 (5.5)

11,835 (52.6)

15,025 (66.8)

32,380 (144.0)

22,020 (97.9)

1 1⁄8 (28.6) 1 1⁄4 10 1⁄8

(257)15 1/4 (387)

40 1/2 (1029)

61,840 (275.1) — 15,460

(68.8)19,025 (84.6)

41,000 (182.4)

27,880 (124.0)

1 1/4 (31.8) 1 3/8 11 1/4

(286)16 7/8 (429)

45 (1143)

78,748 (350.3)

4,738 (21.1)

19,685 (87.6)

23,490 (104.5)

50,620 (225.2)

34,420 (153.1)

ET-HP® Design Information — Concrete

IBC *

1. Allowable load must the lesser of the bond or steel strength.2. The allowable loads listed under allowable bond are based on a

safety factor of 4.0.3. Refer to allowable load-adjustment factors for spacing and edge

distance on pages 84 and 85.4. Refer to in-service temperature sensitivity chart below for

allowable load adjustment for temperature.

5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

6. Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

In-Service Temperature SensitivityBase Material Temperature

Percent Allowable

Load°F °C40 4 100%

70 21 100%

110 43 100%

135 57 85%

150 66 69%

1. Refer to temperature-sensitivity chart for allowable bond strength reduction for temperature. See page 319 for more information.

2. Percent allowable load may be linearly interpolated for intermediate base material temperatures.

3. °C = (°F-32) / 1.8

77

Page 15: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

78

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete

Rod Dia. in.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Critical Edge Dist. in.

(mm)

Critical Spacing

Dist. in.

(mm)

Shear Load Based on Concrete Edge Distance

Shear Load Based on Steel Strength

f'c ≥ 2,000 psi (13.8 MPa) Concrete

F1554 Grade 36 A193 GR B7 F593

304SS

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

3/8 (9.5) 1⁄2

3 1/2 (89)

5 1/4 (133)

5 1/4 (133)

7,615 (33.9)

591 (2.6)

1,905 (8.5)

1,085 (4.8)

2,340 (10.4)

1,870 (8.3)

1/2 (12.7) 5⁄8

4 1/4 (108)

6 3/8 (162)

6 3/8 (162)

11,273 (50.1)

1,502 (6.7)

2,820 (12.5)

1,930 (8.6)

4,160 (18.5)

3,330 (14.8)

5/8 (15.9) 3⁄4

5 (127)

7 1/2 (191)

7 1/2 (191)

19,559 (87.0)

1,289 (5.7)

4,890 (21.8)

3,025 (13.5)

6,520 (29.0)

5,220 (23.2)

3/4 (19.1) 7⁄8

6 3/4 (171)

10 1⁄8 (257)

10 1⁄8 (257)

27,696 (123.2)

2,263 (10.1)

6,925 (30.8)

4,360 (19.4)

9,390 (41.8)

6,385 (28.4)

7/8 (22.2) 1 7 3/4

(197)11 5/8 (295)

11 5/8 (295) — — 6,925

(30.8)5,925 (26.4)

12,770 (56.8)

8,685 (38.6)

1 (25.4) 1 1⁄8 9

(229)13 1/2 (343)

13 1/2 (343)

53,960 (240.0)

3,821 (17.0)

13,490 (60.0)

7,740 (34.4)

16,680 (74.2)

11,345 (50.5)

1 1⁄8 (28.6) 1 1⁄4 10 1⁄8

(257)15 1/4 (387)

15 1/4 (387)

59,280 (263.7) — 14,820

(65.9)9,800 (43.6)

21,125 (94.0)

14,365 (63.9)

1 1/4 (31.8) 1 3/8 11 1/4

(286)16 7/8 (429)

16 7/8 (429)

64,572 (287.2)

3,503 (15.6)

16,145 (71.8)

12,100 (53.8)

26,075 (116.0)

17,730 (78.9)

ET-HP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete Stemwall

Rod Dia. in.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Stemwall Width

in. (mm)

Min. Edge Dist. in.

(mm)

Min. End Dist. in.

(mm)

Tension Load Based on Bond Strength

Tension Load Based on Steel Strength

f'c ≥ 2,000 psi (13.8 MPa) Concrete

F1554 Grade 36

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

5/8 (15.9) 3⁄4

9 1/2 (241.3)

6 (152.4)

1 3/4 (44.5)

5 (127.0)

10,720 (47.7)

1,559 (6.9)

2,680 (11.9)

5,875 (26.1)

5/8 (15.9) 3⁄4

12 (304.8)

6 (152.4)

1 3/4 (44.5)

5 (127.0)

16,150 (71.8)

260 (1.2)

4,040 (18.0)

5,875 (26.1)

7/8 (22.2) 1 12 1/2

(317.5)8

(203.2)1 3/4

(44.5)5

(127.0)17,000 (75.6)

303 (1.3)

4,250 (18.9)

11,500 (51.2)

7/8 (22.2) 1 15 1/2

(393.7)8

(203.2)1 3/4

(44.5)5

(127.0)23,340 (103.8)

762 (3.4)

5,835 (26.0)

11,500 (51.2)

1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 84 and 85.4. Refer to in-service temperature sensitivity chart on page 77 for allowable load adjustment for temperature.5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic

loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

1. Allowable load must be the lesser of the bond or steel strength.2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.3. Refer to in-service temperature sensitivity chart on page 77 for allowable load adjustment for temperature.4. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or

seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Edge and end distances for threaded rod in

concrete foundation stemwall corner

installation

IBC *

IBC *

W=6" or 8"

End5"

Edge13⁄4"

78

Page 16: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

79

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Allowable Tension Loads for Rebar Dowels in Normal-Weight Concrete

Rebar Size No.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Critical Edge Dist. in.

(mm)

Critical Spacing

Dist. in.

(mm)

Tension Load Based on Bond Strength Tension Load Based on Steel Strength

f'c ≥ 2,000 psi (13.8 MPa) Concrete

f'c ≥ 4,000 psi (27.6 MPa) Concrete

ASTM A615 Grade 60 Rebar

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

#4 (12.7) 5⁄8

4 1/4 (108)

6 3/8 (162)

17 (432)

17,596 (78.3)

533 (2.4)

4,400 (19.6) — — 4,400

(19.6) 4,800 (21.4)6

(152)9

(229)24

(610) — — — 20,250 (90.1)

263 (1.2)

5,060 (22.5)

#5 (15.9) 3⁄4

5 (127)

7 1/2 (191)

20 (508)

25,427 (113.1)

1,899 (8.4)

6,355 (28.3) — — 6,355

(28.3) 7,440 (33.1)9 3/8

(238)14 1⁄8 (359)

37 1/2 (953) — — — 29,510

(131.3)2,270 (10.1)

7,375 (32.8)

#6 (19.1) 7⁄8

6 3/4 (171)

10 1⁄8 (257)

27 (686)

41,812 (186.0)

595 (2.6)

10,455 (46.5) — — 10,455

(46.5) 10,560 (47.0)11 1/4

(286)16 7/8 (429)

45 (1,143) — — — 44,210

(196.7)1,227 (5.5)

11,050 (49.2)

#7 (22.2) 1

7 3/4 (197)

11 5/8 (295)

31 (787)

50,241 (223.5)

2,995 (13.3)

12,560 (55.9) — — 12,560

(55.9) 14,400 (64.1)13 1⁄8

(333)19 3/4 (502)

52 1/2 (1,334) — — — 59,325

(263.9)3,444 (15.3)

14,830 (66.0)

#8 (25.4) 1 1⁄8

9 (229)

13 1/2 (343)

36 (914)

60,145 (267.5)

5,493 (24.4)

15,035 (66.9) — — 15,035

(66.9)

18,960 (84.3)

12 (305)

18 (457)

48 (1,219) — — — — — 18,260

(81.2)

15 (381)

22 1/2 (572)

60 (1,524) — — — 85,970

(382.4)17,965 (79.9)

21,490 (95.6)

#9 (28.6) 1 1⁄4

9 (229)

13 1/2 (343)

36 (914) — — 15,035

(66.9) — — 15,035 (66.9)

24,000 (106.8)

13 (330)

19 1/2 (495)

52 (1,321) — — — — — 21,310

(94.8)

16 7/8 (429)

25 3/8 (645)

67 1/2 (1,715) — — — 110,370

(491.0)4,768 (21.2)

27,590 (122.7)

#10 (31.8) 1 1⁄2

11 1/4 (286)

16 7/8 (429)

45 (1,143)

70,685 (314.4)

1,112 (4.9)

17,670 (78.6) — — 17,670

(78.6)

30,480 (135.6)

15 (381)

22 1/2 (572)

60 (1,524) — — — — — 23,960

(106.6)

18 3/4 (476)

28 1⁄8 (714)

75 (1,905) — — — 120,976

(538.1)6,706 (29.8)

30,245 (134.5)

#11 (34.9) 1 5⁄8

12 3/8 (314)

18 5/8 (473)

49 1/2 (1,257)

78,422 (348.8)

4,603 (20.5)

19,605 (87.2) — — 19,605

(87.2)

37,440 (166.5)

16 1/2 (419)

24 3/4 (629)

66 (1,676) — — — — — 28,605

(127.2)

20 5/8 (524)

31 (787)

82 1/2 (2,096) — — — 150,415

(669.1)8,287 (36.9)

37,605 (167.3)

#14 (44.5) 2 15 3/4

(400)23 5/8 (600)

63 (1,600)

91,518 (407.1)

3,797 (16.9)

22,880 (101.8) — — 22,880

(101.8)54,000 (240.2)

1. Allowable load must be the lesser of the bond or steel strength.2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 84 and 85.4. Refer to in-service temperature sensitivity chart on page 77 for allowable load adjustment for temperature.5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only.

For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

6. Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

ET-HP® Design Information — Concrete

IBC *

79

Page 17: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

80

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Allowable Shear Loads for Rebar Dowels in Normal-Weight Concrete

Rebar Size No.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Critical Edge Dist. in.

(mm)

Critical Spacing

Dist. in.

(mm)

Shear Load Based on Concrete Edge Distance

Shear Load Based on Steel Strength

f'c ≥ 2,500 psi (17.2 MPa) Concrete

ASTM A615 Grade 60 Rebar

Ultimate lb. (kN)

Std. Dev. lb. (kN)

Allowable lb. (kN)

Allowable lb. (kN)

#4 (12.7) 5⁄8

4 1/4 (108)

8 (203)

6 3/8 (162)

13,564 (60.3)

971 (4.3)

3,390 (15.1)

3,060 (13.6)

#5 (15.9) 3⁄4

5 (127)

10 (254)

7 1/2 (191)

20,914 (93.0)

3,034 (13.5)

5,230 (23.3)

4,740 (21.1)

#6 (19.1) 7⁄8

6 3/4 (171)

12 (305)

10 1⁄8 (257)

30,148 (134.1)

1,322 (5.9)

7,535 (33.5)

6,730 (29.9)

#7 (22.2) 1 7 3/4

(197)14

(356)11 5/8 (295)

39,838 (177.2)

1,854 (8.2)

9,960 (44.3)

9,180 (40.8)

#8 (25.4) 1 1⁄8 9

(229)16

(406)13 1/2 (343)

53,090 (236.2)

3,562 (15.8)

13,270 (59.0)

12,085 (53.8)

#9 (28.7) 1 1⁄4 10 1⁄8

(257)18

(457)15 1/4 (387)

63,818 (148.7)

3,671 (16.3)

15,955 (71.0)

15,300 (68.1)

#10 (32.3) 1 1⁄2 11 1/4

(286)20

(508)16 7/8 (429)

82,782 (368.2)

2,245 (10.0)

20,695 (92.1)

19,430 (86.4)

#11 (35.8) 1 5⁄8 12 3/8

(314)22

(559)18 5/8 (473)

96,056 (427.3)

3,671 (16.3)

24,015 (106.8)

23,865 (106.2)

#14 (43.0) 2 12 3/8

(314)22

(559)18 5/8 (473) — — 24,015

(106.8)34,425 (153.1)

1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 84 and 85.4. Refer to in-service temperature sensitivity chart on page 77 for allowable load adjustment for temperature.5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in

fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

ET-HP® Design Information — Concrete

IBC *

80

Page 18: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

81

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Masonry

ET-HP® Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction1, 3, 4, 5, 6, 8, 9, 10, 11, 12

Diameter (in.) or Rebar Size No.

Drill Bit Diameter (in.)

Minimum Embedment2 (in.)

Allowable Load Based on Bond Strength7 (lb.)

Tension Load Shear Load

Threaded Rod Installed in the Face of CMU Wall

3/8 1⁄2 3 3/8 1,425 845

1⁄2 5⁄8 4 1⁄2 1,425 1,470

5⁄8 3⁄4 5 5⁄8 1,560 1,835

3⁄4 7⁄8 6 1⁄2 1,560 2,050

Rebar Installed in the Face of CMU Wall

#3 1⁄2 3 3/8 1,275 1,335

#4 5⁄8 4 1⁄2 1,435 1,355

#5 3⁄4 5 5⁄8 1,550 1,355

1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on page 83.2. Embedment depth shall be measured from the outside face of masonry wall. 3. Critical and minimum edge distance and spacing shall comply with the information on page 82. Figure 2 on page 82 illustrates

critical and minimum edge and end distances. 4. Minimum allowable nominal width of CMU wall shall be 8 inches. The minimum allowable member thickness shall be no less than 1 1⁄2

times the actual anchor embedment.5. No more than one anchor shall be permitted per masonry cell. 6. Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint),

except anchors shall not be installed within 1 1⁄2 inches of the head joint, as show in Figure 2 on page 82.7. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.8. Tabulated allowable loads are based on a safety factor of 5.0.9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below,

as applicable.10. Threaded rod and rebar installed in fully grouted masonry walls with ET-HP® are permitted to resist dead, live, seismic and wind loads.11. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable

tension loads shall be multiplied by 0.80.

IBC *

0

10

20

30

40

50

60

70

80

90

100

110

120

160140120100806040

100%@50°F

100%@70°F

84%@110°F 71%

@135°F

53%@150°F

Base Material Temperature (˚F )

Perc

ent o

f Allo

wab

le L

oad

Valu

es (%

)

Figure 1. Load capacity based on in-service temperature for ET-HP® epoxy adhesive in the face of fully grouted CMU wall construction

81

Page 19: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

82

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Masonry

ET-HP® Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction2,7

Rod Dia.(in.) or

Rebar Size No.

Minimum Embed. Depth (in.)

Edge or End Distance1,8 Spacing2,9

Critical (Full Anchor Capacity)3 Minimum (Reduced Anchor Capacity)4 Critical

(Full Anchor Capacity)5Minimum

(Reduced Anchor Capacity)6

Critical Edge or End

Distance, Ccr (in.)

Allowable Load

Reduction Factor

Minimum Edge or

End Distance, Cmin (in.)

Allowable Load Reduction Factor

Critical Spacing, Scr (in.)

Allowable Load

Reduction Factor

Minimum Spacing, Smin (in.)

Allowable Load Reduction Factor

Load Direction Load Direction Load Direction Load Direction

Tension or Shear

Tension or Shear

Tension or Shear Tension

Shear10Tension or

ShearTension or

ShearTension or

Shear Tension ShearPerp. Parallel

3/8 3 3/8 12 1.00 4 0.76 1.00 1.00 8 1.00 4 0.47 0.94

1⁄2 4 1⁄2 12 1.00 4 1.00 0.92 0.9 8 1.00 4 0.60 0.96

5⁄8 5 5⁄8 12 1.00 4 1.00 0.55 0.86 8 1.00 4 0.72 0.98

3⁄4 6 1⁄2 12 1.00 4 1.00 0.55 0.86 8 1.00 4 0.85 1.00

#3 3 3/8 12 1.00 4 0.96 0.86 1.00 8 1.00 4 0.37 0.92

#4 4 1⁄2 12 1.00 4 1.00 0.71 1.00 8 1.00 4 0.69 0.96

#5 5 5⁄8 12 1.00 4 1.00 0.71 1.00 8 1.00 4 1.00 1.00

1. Edge distance (Ccr or Cmin) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.

2. Anchor spacing (Scr or Smin) is the distance measured from centerline to centerline of two anchors.3. Critical edge distance, Ccr, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load

reduction).4. Minimum edge distance, Cmin, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable

loads assigned to anchors installed at critical edge distance, Ccr, by the load reduction factors shown above.5. Critical spacing, Scr, is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by

adjacent anchors. 6. Minimum spacing, Smin, is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads

assigned to anchors installed at critical spacing distance, Scr, by the load reduction factors shown above.7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear

load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

Installations in this area forfull allowable load capacity

Installationin this areafor reducedallowableload capacity

4" minimumend distance

Critical enddistance(see load table)

No installationwithin 1½" ofhead joint

4" minimumedge distance

Critical edge distance(see load table)

Shear Load A1

End of Wall

Edge of Wall

ShearLoad B2

Figure 2. Allowable anchor placement in grouted CMU face shell

Figure 3. Anchor placement in grouted CMU mortar “T” joint

1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.

2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

IBC *

82

Page 20: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

83

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Masonry

ET-HP® Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength1

Threaded Rod

Diameter (in.)

Tensile Stress Area (in.2)

Tension Load Based on Steel Strength2 (lb.) Shear Load Based on Steel Strength3 (lb.)

ASTM F1554 Grade 364

ASTM A193 Grade B76

Stainless SteelASTM F1554

Grade 364

ASTMA 193

Grade B76

Stainless Steel

ASTM A193 Grade B65

ASTM A193 Grades B8 and B8M7

ASTM A193

Grade B65

ASTM A193 Grades B8 and B8M7

3/8 0.078 1,495 3,220 2,830 1,930 770 1,660 1,460 9951⁄2 0.142 2,720 5,860 5,155 3,515 1,400 3,020 2,655 1,8105⁄8 0.226 4,325 9,325 8,205 5,595 2,230 4,805 4,225 2,8803⁄4 0.334 6,395 13,780 12,125 8,265 3,295 7,100 6,245 4,260

ET-HP® Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength1

Rebar SizeTensile

Stress Area (in.2)

Tension Load (lb.) Shear Load (lb.)Based on Steel Strength Based on Steel Strength

ASTM A615 Grade 402

ASTM A615 Grade 603

ASTM A615 Grade 404,5

ASTM A615 Grade 604,6

#3 0.11 2,200 2,640 1,310 1,685#4 0.20 4,000 4,800 2,380 3,060#5 0.31 6,200 7,400 3,690 4,745

IBC *

IBC *

IBC *

Installation Instructions for Configuration C1. Drill hole perpendicular to the

wall to a depth of 8" with a 1"-diameter carbide-tipped drill bit (rotation-only mode).

2. Clean hole with oil-free compressed air and a nylon brush.

3. Fill 8" steel screen tube with mixed adhesive and insert into hole.

4. Insert steel sleeve slowly into screen tube (adhesive will displace).

5. Allow adhesive to cure (see cure schedule).6. Drill through plastic plug in (inside) end

of steel sleeve with 5⁄8" bit.Drill completely through the wall with

5⁄8" carbide-tipped concrete drill bit (rotation-only mode).

7. Insert 5⁄8" rod through hole and attach metal plate and nut.

ET-HP® Allowable Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls — Minimum URM Wall Thickness is 13" (3 wythes thick)

Rod Dia. in.

(mm)

Drill Bit Dia. in.

Embed. Depth

in. (mm)

Min. Edge/End

Dist. in.

(mm)

Min. Vertical Spacing

Dist. in.

(mm)

Min. Horiz.

Spacing Dist. in.

(mm)

Tension Load Based on URM Strength

Shear Load Based on URM Strength

Minimum Net Mortar Strength = 50 psi

Minimum Net Mortar Strength = 50 psi

Allowable lb. (kN) Allowable lb. (kN)Configuration A (Simpson Strong-Tie® ETS or ETSP Screen Tube Required)

3/4 (19.1) 1 8

(203)24

(610)18

(457)18

(457) — 1,000 (4.4)

Configuration B (Simpson Strong-Tie® ETS or ETSP Screen Tube Required)3/4

(19.1) 1 13 (330)

16 (406)

18 (457)

24 (610)

1,200 (5.3)

1,000 (4.4)

Configuration C (Simpson Strong-Tie® ETS Screen Tube and AST Steel Sleeve Required)5/8

(15.9) 1 ** 24 (610)

18 (457)

18 (457)

1,200 (5.3)

750 (3.3)

1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.

2. All holes are drilled with a 1"-diameter carbide-tipped drill bit with the drill set in the rotation-only mode.

3. The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).

4. The allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 50 psi.

5. The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear.

6. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.

7. Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a 31/32"-diameter by 8-inch-long screen tube (part # ETS758 or ETS758P). This configuration is designed to resist shear loads only.

8. Configuration B has a 3⁄4" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a 31/32" diameter by 13-inch-long screen tube (part # ETS7513 or ETS7513P).

9. Configuration C is designed to resist tension and shear forces. It consists of a 5⁄8"-diameter, ASTM F1554 Grade 36 threaded rod and an 8"-long sleeve (part # AST800) and a 31/32"-diameter by 8-inch-long screen tube (part # ETS758). The steel sleeve has a plastic plug in one end. A 6" by 6" by 3/8" thick ASTM A 36 steel plate is located on the back face of the wall.

10. Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.

11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

1. Allowable load shall be the lesser of bond values given on page 81 and steel values in the table above.

2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.

3. Allowable Tension Steel Strength is based on AC58

Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 (Fv = 0.17 x Fu x Tensile Stress Area).

5. Fu = 70,000 psi for Grade 40 rebar.6. Fu = 90,000 psi for Grade 60 rebar.

1. Allowable load shall be the lesser of bond values given on page 81 and steel values in the table above.

2. Allowable Tension Steel Strength is based on the following equation: Fv = 0.33 x Fu x Tensile Stress Area.

3. Allowable Shear Steel Strength is based on the following equation: Fv = 0.17 x Fu x Tensile Stress Area.

4. Minimum specified tensile strength (Fu = 58,000 psi) of ASTM F1554, Grade 36 used to calculate allowable steel strength.

5. Minimum specified tensile strength (Fu = 110,000 psi) of ASTM A193, Grade B6 used to calculate allowable steel strength.

6. Minimum specified tensile strength (Fu = 125,000 psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.

7. Minimum specified tensile strength (Fu = 75,000 psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

SCREEN TUBE

Configuration A (Shear)

SCREEN TUBE

3⁄4" DIA.BENT

THREADEDROD

1" MAX.

22.5º

Configuration B (Tension & Shear)

Configuration C (Tension & Shear)

STEELSCREEN TUBE

6"x6"x3⁄8"STEELPLATE

STEEL SLEEVE

HEXNUT

5⁄8" DIA.ROD

83

Page 21: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

84

Ad

hesi

ve A

ncho

rsSimpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Load-Adjustment Factors in Normal-Weight Concrete: Edge Distance, Tension and Shear LoadsHow to use these charts1. The following tables are for reduced edge distance. 2. Locate the anchor size to be used for either a tension and/or shear

load application. 3. Locate the embedment (E) at which the anchor is to be installed. 4. Locate the edge distance (cact) at which the anchor is to be installed.

5. The load-adjustment factor (fc) is the intersection of the row and column. 6. Multiply the allowable load by the applicable load-adjustment factor. 7. Reduction factors for multiple edges are multiplied together. 8. Adjustment factors do not apply to allowable steel strength values. 9. Adjustment factors are to be applied to allowable tension load based

on bond strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Edge Distance Tension (fc)

Edge Dist. cact (in.)

Dia. 3/8 1/2 5/8 3/4 7/8 1 1 1⁄8 1 1/4Rebar #4 #5 #6 #7 #8 #9 #10 #11 #14

E 3 1/2 4 1/4 6 5 9 3/8 6 3/4 11 1/4 7 3/4 13 1⁄8 9 15 9 16 7/8 10 1⁄8 11 1/4 18 3/4 12 3/8 20 5/8 15 3/4ccr 5 1/4 6 3/8 9 7 1/2 14 1⁄8 10 1⁄8 16 7/8 11 5/8 19 3/4 13 1/2 22 1/2 13 1/2 25 3/8 15 1/4 16 7/8 28 1⁄8 18 5/8 31 23 5/8cmin 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4fcmin 0.50 0.50 0.59 0.50 0.64 0.50 0.57 0.50 0.52 0.50 0.47 0.50 0.47 0.58 0.58 0.51 0.58 0.51 0.58

1 3⁄4 0.50 0.50 0.59 0.50 0.64 0.50 0.57 0.50 0.52 0.50 0.472 3⁄4 0.64 0.61 0.65 0.59 0.67 0.56 0.60 0.55 0.55 0.54 0.50 0.50 0.47 0.58 0.58 0.51 0.58 0.51 0.583 0.68 0.64 0.66 0.61 0.68 0.57 0.61 0.56 0.55 0.55 0.50 0.51 0.48 0.59 0.59 0.51 0.59 0.51 0.594 0.82 0.74 0.72 0.70 0.71 0.63 0.63 0.61 0.58 0.60 0.53 0.56 0.50 0.62 0.62 0.53 0.61 0.53 0.615 0.96 0.85 0.77 0.78 0.73 0.69 0.66 0.66 0.61 0.64 0.55 0.60 0.52 0.66 0.65 0.55 0.64 0.55 0.636 1.00 0.96 0.83 0.87 0.76 0.75 0.69 0.72 0.63 0.68 0.58 0.65 0.55 0.69 0.68 0.57 0.67 0.57 0.657 1.00 0.89 0.96 0.79 0.81 0.72 0.77 0.66 0.72 0.60 0.70 0.57 0.72 0.71 0.59 0.69 0.58 0.678 0.94 1.00 0.82 0.87 0.75 0.82 0.69 0.77 0.63 0.74 0.59 0.76 0.74 0.61 0.72 0.60 0.699 1.00 0.85 0.93 0.78 0.87 0.71 0.81 0.66 0.79 0.62 0.79 0.77 0.63 0.75 0.62 0.7110 0.88 0.99 0.80 0.92 0.74 0.85 0.68 0.84 0.64 0.82 0.80 0.65 0.77 0.64 0.7312 0.94 1.00 0.86 1.00 0.79 0.94 0.73 0.93 0.69 0.89 0.86 0.69 0.82 0.67 0.7714 1.00 0.92 0.85 1.00 0.78 1.00 0.73 0.96 0.91 0.73 0.88 0.71 0.8116 0.98 0.90 0.83 0.78 1.00 0.97 0.77 0.93 0.74 0.8518 1.00 0.95 0.89 0.83 1.00 0.80 0.98 0.77 0.8920 1.00 0.94 0.87 0.84 1.00 0.81 0.9322 0.99 0.92 0.88 0.84 0.9724 1.00 0.97 0.92 0.88 1.0026 1.00 0.96 0.9128 1.00 0.9530 0.9832 1.00

See notes below.

Edge Distance Shear (fc)

Edge Dist. cact (in.)

Dia. 3/8 1/2 5/8 3/4 7/8 1 1 1⁄8 1 1/4Rebar #4 #5 #6 #7 #8 #9 #10 #11 #14

E 3 1/2 4 1/4 4 1/4 5 5 6 3/4 6 3/4 7 3/4 7 3/4 9 9 10 1⁄8 10 1⁄8 11 1/4 11 1/4 12 3/8 12 3/8ccr 5 1/4 6 3/8 8 7 1/2 10 10 1⁄8 12 11 5/8 14 13 1/2 16 18 15 1/4 16 7/8 20 22 22cmin 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 1 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4 2 3/4fcmin 0.29 0.20 0.16 0.13 0.10 0.13 0.10 0.13 0.09 0.08 0.08 0.08 0.14 0.14 0.14 0.14 0.14

1 3⁄4 0.29 0.20 0.16 0.13 0.10 0.13 0.10 0.13 0.09 0.08 0.082 3⁄4 0.49 0.37 0.29 0.28 0.21 0.23 0.19 0.22 0.16 0.16 0.14 0.08 0.14 0.14 0.14 0.14 0.143 0.54 0.42 0.33 0.32 0.24 0.26 0.21 0.24 0.18 0.18 0.16 0.10 0.16 0.16 0.15 0.15 0.154 0.75 0.59 0.46 0.47 0.35 0.36 0.30 0.33 0.26 0.26 0.23 0.16 0.23 0.22 0.20 0.20 0.205 0.95 0.76 0.60 0.62 0.45 0.47 0.39 0.42 0.33 0.33 0.29 0.22 0.29 0.28 0.25 0.24 0.246 1.00 0.94 0.73 0.77 0.56 0.57 0.47 0.50 0.41 0.41 0.35 0.28 0.36 0.34 0.30 0.29 0.297 1.00 0.87 0.92 0.67 0.68 0.56 0.59 0.48 0.49 0.42 0.34 0.43 0.40 0.35 0.33 0.338 1.00 1.00 0.78 0.78 0.65 0.68 0.55 0.57 0.48 0.40 0.50 0.46 0.40 0.37 0.379 0.89 0.88 0.74 0.77 0.63 0.65 0.55 0.46 0.57 0.52 0.45 0.42 0.42

10 1.00 0.99 0.82 0.86 0.70 0.73 0.61 0.52 0.64 0.58 0.50 0.46 0.4611 1.00 0.91 0.94 0.78 0.80 0.68 0.58 0.71 0.64 0.55 0.51 0.5112 1.00 1.00 0.85 0.88 0.74 0.64 0.78 0.70 0.60 0.55 0.5513 0.93 0.96 0.81 0.70 0.85 0.76 0.65 0.60 0.6014 1.00 1.00 0.87 0.76 0.91 0.82 0.70 0.64 0.6415 0.94 0.82 0.98 0.89 0.75 0.69 0.6916 1.00 0.88 1.00 0.95 0.80 0.73 0.7318 1.00 1.00 0.90 0.82 0.8220 1.00 0.91 0.9122 1.00 1.00

1. E = Embedment depth (inches).2. cact = actual edge distance at which anchor is installed (inches).3. ccr = critical edge distance for 100% load (inches).4. cmin = minimum edge distance for reduced load (inches).

5. fc = adjustment factor for allowable load at actual edge distance.6. fccr = adjustment factor for allowable load at critical edge distance.

fccr is always = 1.00.7. fcmin = adjustment factor for allowable load at minimum edge distance.8. fc = fcmin + [(1 – fcmin) (cact – cmin) / (ccr – cmin)].

IBC *

IBC *

84

Page 22: Catalog: Anchoring and Fastening Systems for … Applications/Clickstop...C-A-2016 2015 SIMPSON STRONG-TIE COMPANY INC. 66 Adhesive Anchors SD Simpson Strong-Tie ® Anchoring Fastening

C-A

-201

6 ©

201

5 S

IMP

SO

N S

TRO

NG

-TIE

CO

MPA

NY

INC

.

85

Ad

hesi

ve A

ncho

rs

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

ET-HP® Design Information — Concrete

ET-HP® Allowable Load-Adjustment Factors in Normal-Weight Concrete: Spacing, Tension and Shear LoadsHow to use these charts1. The following tables are for reduced spacing. 2. Locate the anchor size to be used for either a tension and/or shear

load application. 3. Locate the embedment (E) at which the anchor is to be installed. 4. Locate the spacing (sact) at which the anchor is to be installed. 5. The load-adjustment factor (fs) is the intersection of the row and column. 6. Multiply the allowable load by the applicable load-adjustment factor.

7. Reduction factors for multiple spacings are multiplied together. 8. Adjustment factors do not apply to allowable steel strength values. 9. Adjustment factors are to be applied to allowable Tension Load

Based on Bond Strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Spacing Tension (fs)

sact (in.)

Dia. 3/8 1/2 5/8 3/4 7/8 1 1 1⁄8 1 1/4Rebar #4 #5 #6 #7 #8 #9 #10 #11 #14

E 3 1/2 4 1/4 6 5 9 3/8 6 3/4 11 1/4 7 3/4 13 1⁄8 9 15 9 16 7/8 10 1⁄8 11 1/4 18 3/4 12 3/8 20 5/8 15 3/4scr 14 17 24 20 37 1/2 27 45 31 52 1/2 36 60 36 67 1/2 40 1/2 45 75 49 1/2 82 1/2 63smin 1 3/4 2 1⁄8 3 2 1/2 4 3/4 3 3/8 5 5/8 3 7/8 6 5/8 4 1/2 7 1/2 4 1/2 8 1/2 5 1⁄8 5 5/8 9 3/8 6 1/4 10 3/8 7 7/8fsmin 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

1 3⁄4 0.892 0.894 0.91 0.90 0.90 0.90 0.89 0.896 0.93 0.92 0.91 0.91 0.89 0.90 0.89 0.90 0.90 0.90 0.89 0.898 0.95 0.93 0.92 0.92 0.90 0.91 0.90 0.91 0.89 0.90 0.89 0.90 0.90 0.90 0.89 0.8910 0.96 0.95 0.93 0.94 0.91 0.92 0.90 0.91 0.90 0.91 0.90 0.91 0.89 0.91 0.90 0.89 0.90 0.8912 0.98 0.96 0.94 0.95 0.91 0.93 0.91 0.92 0.90 0.92 0.90 0.92 0.90 0.91 0.91 0.89 0.90 0.89 0.9014 1.00 0.98 0.95 0.96 0.92 0.94 0.91 0.93 0.91 0.92 0.90 0.92 0.90 0.92 0.91 0.90 0.91 0.90 0.9016 0.99 0.96 0.97 0.93 0.95 0.92 0.94 0.91 0.93 0.91 0.93 0.90 0.92 0.92 0.90 0.91 0.90 0.9118 1.00 0.97 0.99 0.93 0.96 0.92 0.95 0.92 0.94 0.91 0.94 0.91 0.93 0.92 0.90 0.92 0.90 0.9120 0.98 1.00 0.94 0.97 0.93 0.96 0.92 0.94 0.92 0.94 0.91 0.94 0.93 0.91 0.92 0.90 0.9124 1.00 0.95 0.99 0.94 0.97 0.93 0.96 0.92 0.96 0.92 0.95 0.94 0.91 0.94 0.91 0.9228 0.97 1.00 0.95 0.99 0.94 0.97 0.93 0.97 0.93 0.96 0.95 0.92 0.95 0.92 0.9332 0.98 0.96 1.00 0.95 0.99 0.94 0.99 0.93 0.97 0.96 0.93 0.96 0.92 0.9436 0.99 0.97 0.96 1.00 0.95 1.00 0.94 0.99 0.97 0.93 0.97 0.93 0.9540 1.00 0.99 0.97 0.96 0.95 1.00 0.99 0.94 0.98 0.94 0.9545 1.00 0.98 0.97 0.96 1.00 0.95 0.99 0.94 0.9650 0.99 0.98 0.97 0.96 1.00 0.95 0.9755 1.00 0.99 0.98 0.97 0.96 0.9860 1.00 0.99 0.97 0.97 0.9965 1.00 0.98 0.97 1.0070 0.99 0.9875 1.00 0.99

82 1⁄2 1.00See Notes Below.

Spacing Shear (fs)

sact (in.)

Dia. 3/8 1/2 5/8 3/4 7/8 1 1 1⁄8 1 1/4Rebar #4 #5 #6 #7 #8 #9 #10 #11 #14

E 3 1/2 4 1/4 5 6 3/4 7 3/4 9 10 1⁄8 11 1/4 12 3/8 12 3/8scr 5 1/4 6 3/8 7 1/2 10 1⁄8 11 5/8 13 1/2 15 1/4 16 7/8 18 5/8 18 5/8smin 1 3/4 2 1⁄8 2 1/2 3 3/8 3 7/8 4 1/2 5 1⁄8 5 5/8 6 1/4 6 1/4fsmin 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

1 3⁄4 0.832 0.843 0.89 0.87 0.854 0.94 0.91 0.88 0.85 0.835 0.99 0.95 0.92 0.87 0.85 0.846 1.00 0.99 0.95 0.90 0.88 0.86 0.84 0.847 1.00 0.98 0.92 0.90 0.88 0.86 0.85 0.84 0.848 1.00 0.95 0.92 0.90 0.88 0.87 0.85 0.859 0.97 0.94 0.92 0.90 0.88 0.87 0.8710 1.00 0.96 0.93 0.91 0.90 0.88 0.8812 1.00 0.97 0.95 0.93 0.91 0.9114 1.00 0.98 0.96 0.94 0.9416 1.00 0.99 0.96 0.9618 1.00 0.99 0.9920 1.00 1.00

1. E = Embedment depth (inches).2. Sact = actual spacing distance at which anchors are

installed (inches).3. Scr = critical spacing distance for 100% load (inches).4. Smin = minimum spacing distance for reduced load (inches).5. fs = adjustment factor for allowable load at actual

spacing distance.6. fscr = adjustment factor for allowable load at critical spacing

distance. fscr is always = 1.00.7. fsmin = adjustment factor for allowable load at minimum

spacing distance.8. fs = fsmin + [(1 – fsmin) (sact – smin) / (scr – smin)].

IBC *

IBC *

85