Case Studies Energy Audit Ir. Totok Sulistiyanto M.eng .Sc 1

download Case Studies Energy Audit Ir. Totok Sulistiyanto M.eng .Sc 1

of 32

description

Konservasi Energi

Transcript of Case Studies Energy Audit Ir. Totok Sulistiyanto M.eng .Sc 1

  • 1/18/2011

    1

    1

    2

  • 1/18/2011

    2

    Energy Conservation(Free Encyclopedia): Efforts to reduce energy consumption through the result of several processes or developments, such as productivity increase or technological progress.

    Energy Efficiencygy y(Free Encyclopedia): The goal of efforts to reduce the amount of energy required to provide products and services. It is achieved when energy intensity in a specific product, process or area of production or consumption is reduced without affecting output, consumption or comfort levels. Sometimes called efficient energy use.

    Energy Management Energy Management is a technical and management function the remit of whichEnergy Management is a technical and management function the remit of which

    is to monitor, record, analyze, critically examine, alter and control energy flows through system so that energy is utilized with maximum efficiency. (Paul O Callaghan, Energy Management)

    The strategy of adjusting and optimizing energy, using systems and procedures so as to reduce energy requirements per unit of output while holding constant or reducing total costs of producing the output from these systems (Bureau of Energy Efficiency, India) 3

    Energy Audit (Free Encyclopedia)An energy audit is an inspection, survey and analysis of energy flows for energy conservation in a building, an industry, process or system to reduce the amount of energy input into the system without negatively affecting the output(s).g y g p ( )

    Energy Audit (US Agency for International Development)Energy audit is a tool to identify areas where energy can be conserved.

    Energy Audit (Guide Book: Energy Audit)The verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action p g gy y yplan to reduce energy consumption.

    Audit Energi (PP 70 tahun 2009 tentang Konservasi Energi)Adalah proses evaluasi pemanfaatan energi dan identifikasi peluang penghematan energi serta rekomendasi peningkatan efisiensi pada pengguna energi dan pengguna sumber energi dalam rangka konservasi energi.

    4

  • 1/18/2011

    3

    Preliminary Energy AuditPreliminary energy audit is a relatively quick exercise to: Establish energy consumption in the organization Estimate the scope for saving Identify the most likely (and the easiest areas for attention) Identify immediate (especially no-cost/low-cost) improvements/savings Set a reference point Identify areas for more detailed study/measurement Preliminary energy audit uses existing, or easily obtained data

    Detailed Energy AuditA comprehensive audit provides a detailed energy project implementation plan for a facility since it evaluates all major energy using systems This type of audita facility, since it evaluates all major energy using systems. This type of audit offers the most accurate estimate of energy savings and cost. It considers the interactive effects of all projects, accounts for the energy use of all major equipment, and includes detailed energy cost saving calculations and project cost.In a comprehensive audit, one of the key elements is the energy balance. This is based on an inventory of energy using systems, assumptions of current operating conditions and calculations of energy use. This estimated use is then compared to utility bill charges. 5

    Pemanfaatan energi oleh pengguna sumber energi dan pengguna energi wajib dilakukan secara hemat dan efisien

    (Pasal12)

    energi wajib dilakukan secara hemat dan efisien. Pengguna sumber energi dan pengguna energi yang

    menggunakan sumber energi dan/atau energi lebih besar atau sama dengan 6.000 (enam ribu) setara ton minyak per tahun wajib melakukan konservasi energi melalui manajemen energi.

    Manajemen energi dilakukan dengan: menunjuk manajer energi; menyusun program konservasi energi;

    6

    melaksanakan audit energi secara berkala; melaksanakan rekomendasi hasil audit energi; dan melaporkan pelaksanaan konservasi energi setiap tahun

    kepada Menteri, gubernur, atau bupati/walikota sesuai dengan kewenangannya masing-masing.

  • 1/18/2011

    4

    7

    8

  • 1/18/2011

    5

    Industrial plantshigh energy intensity

    Other sectors:Energy sector

    Process IndustryEnergy Analysis

    EnergyAudit

    Programme

    Power Plant Energy Analysis

    Specific UtilityEnergy Audit

    CH

    EMEAir

    Audit intensity

    Industrialplants

    Small Medium Enterprices

    Small buildingsservice sector

    Large buildingsi t

    BuildingAudit

    IndustrialEnergyAudit

    EnergyInspection Post-

    acceptanceEnergy

    Audit

    Follow-upEnergyAudit

    IndustrialEnergy

    Analysis

    ProgrammeUpdating

    withindustrialmodels

    THE

    VOLU

    NTA

    RY

    AGR

    EEM

    ENT

    SC

    Infra-red Audit

    HVACAudit

    ElectricalAudit

    IndustrialEnergyAudit

    Building EnergyAudit

    Model not subsidised / Commercial Audits Model subsidised / Partnership Program

    service sector

    Blocks / Apartment / flats / Neighbourhood

    Small residential buildings

    T

    9

    Freelance energy auditors Energy Audit / Energy Management Consultants Mechanical & Electrical Consultants Equipment manufacturers / suppliers Energy committee in industries Energy audit training centers R h t Research centers Universities Related government officers Others

    10

  • 1/18/2011

    6

    11

    Seeking for where the greatest energy Seeking for where the greatest energy consumed goes to

    Measuring the energy losses started from the greatest energy consumer

    Analyzing the problem bli hi i Establishing a saving strategy

    Calculating the saving and payback period

    Implementing the strategy 12

  • 1/18/2011

    7

    1. Energy Consumption (kWh, Joule)

    2 Energy Intensity / Specific Energy Consumption2. Energy Intensity / Specific Energy Consumption

    (kWh/Ton Prod), (Ton Steam/Ton Prod), (kWh/m2/bl) (kW/TR), (liter of Oil/Ton Steam), (lumen/watt)

    3. Lighting Intensity (lux) for specific activity

    4. Power Intensity (watt/m2, pk/m2)

    5. Energy Distribution (Energy used and losses). 5. Energy Distribution (Energy used and losses).

    6. Efficiency and effectively of equipment

    7. Aspects of human comfort and lighting comfort

    8. Energy saving potentials (kWh/thn, Rp/thn.)

    9. Energy Management Planning13

    Inefficient design of utility systemsConfigurations, settings, and/or operation of utility system are inefficientLack of knowledge and lack of discipline of the operators, energy managers to the effect of energy wastageScheduling and maintenance of equipment are not optimalUtilities and its components in industrial processes are working at low efficiencyat low efficiencyDo not follow the basic procedures, control system is not functioning, and/or setting the system does not comply the requirementSensors or control systems are not functioning properly

    14

  • 1/18/2011

    8

    15

    IMP 1

    TransducersIntegrated Measuring Pods

    Light IntensityLight Intensity

    Electrical CurrentElectrical Current

    IMP 2

    IMP n

    Electrical LoadElectrical Load

    COCO22, O, O22 & CO& CO

    HumidityHumidity

    TemperatureTemperature

    PressurePressure

    FlowFlow

    Measure Existing ParametersMeasure Existing Parameters Analyze Existing EquipmentAnalyze Existing Equipment

    E l t E i ti I t ll tiE l t E i ti I t ll ti Evaluate Existing InstallationEvaluate Existing Installation Study Current Consumption BehaviorStudy Current Consumption Behavior

    and Patternand Pattern

    16

  • 1/18/2011

    9

    $avingsAchievement:

    C t Eff ti Cost Effective Efficiency Optimal Reliability

    Searching New TechnologySearching New TechnologyConsideration:

    Energy Efficient Reliability Low Investment Cost

    17

    ReducingThe OperationalCosts

    ImprovementOf Performance

    The Performance of Units

    Energy Consumption

    Load Characteristic

    Energy Consumption

    The Performance of Systems

    Operating Costs

    18

  • 1/18/2011

    10

    19

    20

  • 1/18/2011

    11

    Executive Summary Energy Balance Profile of Energy Consumption Specific Energy Consumption Specific Energy ConsumptionIntroductory Background Aims and Goals Scope of Activities MethodologyEvaluation of Thermal Systems Thermal Energy Balance Thermal Energy Consumption

    C b i S & Th l A l i Combustion System & Thermal Analysis Heat Integration and Process AnalysisElectrical System Evaluation Electrical Energy Balance Electrical Energy Consumption Demand Factor AnalysisEvaluation of Energy Management Asessemen of Energy Management 21

    22

  • 1/18/2011

    12

    Lift = 6.89%121.51 MWh/mo

    Lighting = 10.63%187.43 MWh/mo

    Others = 18.34%323.5 MWh/mo

    Air Cond. System = 64.14%1,131.20 MWh/mo

    PLN Supply = 100%1,763.64 MWh/Mo

    Essential: 45.51%1,094.48 kW

    Essential: 22 64%

    Non-Essenttial: 2.46%59.17 kW

    Essential: 22.64%416.96 kW

    Non-Essential: 24.08%443.60 kW

    Essential: 1.24%38.33 kW

    Non-Essential: 4.06%124.62 kW

    Garden Wing: 5.31% = 162.95 kW

    PLN Supply = 100%2,177.16 kW

    Tech Bld: 47.97%1,153.65 kW

    Main Bld: 47.97%1,153.65 kW

    23

    24

  • 1/18/2011

    13

    1 Building Type Office2 Year Built 20054 Gross Floor Area M2 3,0403 Conditioned Floor Area M2 2,736

    Reference

    5 Average Electricity Bill per Month Rp. 41,026,097Power Capacity Contract / Type kVA 414 / B3

    6 Electrical Consumption per Month kWh/Mo 57,907

    7 Electrical Energy Intensity of Conditioned Area kWh/y m2 253.98200

    0 - 100ASEAN Energy AwardNZEB / EE Showcases

    8 Type of LampsVarious capacity

    TL, PL-C, HALOGEN, HALOPAR, HCI-T, DOWNLIGHT, T-5

    9 Average Light Power Density Level Watt/m2 14.3110.76

    4.80 - 12.00ASHRAE 90.1-2007

    NZEB / EE Showcases

    10 Average Office Plug Load Level Watt/m2 12.67 < 5.00 NZEB / EE Showcases10 P k L d/Off P k L d C t E % 13 23%10 Peak-Load/Off-Peak-Load Cost Expences % 13.23%11 Air Conditioning System (DX System):5 Units

    Indoor Unit ( total number: 25) COP 2.56 2.802.96

    3.50 - 6.50ASHRAE 90.1-2007

    VRV/VRF System

    12 Air Conditioning Type : Split Unit EER 08 0913.0017.75

    ASHRAE 90.1-2007VRV/VRF System

    13 Typical Zone Temperature oC 24 27 25 + 2 SNI14 Typical Zone Relative Humidity % 35 65 60 + 10 SNI

    15 Total Cooling Capacity of Central Air Conditioning Ton.Ref 112,49 25

    NO TYPE OF LOADS kW %

    1 Air Conditioning System 125.43 40.23%

    2 Lift 66 21.17%

    3 Lighting System 43.5 13.95%

    4 Plug Loads 34.67 11.12%

    5 Ground Water Pump 24 7.70%

    6 Computer 12.55 4.02%

    7 Others 5.67 1.82%

    Total 311.82 100 % 26

  • 1/18/2011

    14

    Measurement of Chipper Motor:6 000 V 203 A cos=0 6356.000 V, 203 A, cos=0,635

    Improvement of cos 0.9:kVARc 648,56 kVARc

    Energy Saving: Operating Time 2400 hours / year

    {(1.629,69) x 2400 - (0,65 x 1.339,6 x 2400)} x Rp. 114,-

    = Rp.238,23 Mill,-/yrp , , y Transformer losses 5%, operating time 2400

    hours / yr{1-(0,635/0,9)2} x 5% x 1339,6 x 2400 x Rp. 109,-

    = Rp. 8,84 Mill,-/yru PLN tariff 1994

    1.629,69 kVAR

    Daya Resistif (Watt)

    1.339,6 kW

    27

    Other plant 1800 kW

    G3

    G2

    G1 2700 kVA472A; 3.3 kV 1000 kVA; 3150 kVA/380 V; 183/1519 A

    UTILITY 1- 405 kW/ 0.84

    UTILITY 2 - 394 kW/ 0.83

    SPINNING - 620 kW/ 0.82

    POLYMER 248 kW/ 0 59

    460OC

    438OC

    430OC

    G4 Capacitors2 x 500 kVAR

    STRETCHING - 415 kW/ 0.81

    SOURCE WTR - 26 kW/ 0.80

    TURBO REFRIG. - 220 kW

    POLYMER - 248 kW/ 0.59

    403OC

    430 C

    28

  • 1/18/2011

    15

    Other plant 1800 kW

    Recovering of Waste Heat Energy Cost saving Rp.297,230,000,-/y - Pay back period 1.6 years

    WHRB

    430OCG3

    G2

    G1 2700 kVA472A; 3.3 kV 1000 kVA; 3150 kVA/380 V; 183/1519 A

    UTILITY 1- 405 kW/ 0.84

    UTILITY 2 - 394 kW/ 0.83

    SPINNING - 620 kW/ 0.82

    POLYMER 248 kW/ 0 59

    438OC

    460OC9 bar1.25 T/h

    9 bar1 25 T/h

    WHRB

    WHRB

    430 C

    G4 Capacitors2 x 500 kVAR

    STRETCHING - 415 kW/ 0.81

    SOURCE WTR - 26 kW/ 0.80

    TURBO REFRIG. - 220 kW

    POLYMER - 248 kW/ 0.59

    403OC

    Steam line to process

    1.25 T/h

    29

    flue gas

    steam

    Ms (kg/s)P (b )

    Mu (kg/s)T (oC)CO2 (%)O2 (%)CO (ppm)

    Mu (kg/s)T (oC)CO2 (%)O2 (%)CO (ppm)

    Simple cost benefit ratio after implementing ADDMF technology :Boiler capacity 1.6 Ton/hour

    BURNER

    BOILER

    ECONOMIZER

    CHIMNEY

    fuel in

    Mf (kg/s)

    Me (kg/s)

    P (bar)T (oC)

    CO (ppm) CO (ppm)

    Boiler performance status 65% (total efficiency)Operating hour 12 - 20 hours/day

    Fuel consumption 180,000 litres ADO /year = Rp. 99,000,000,-/yearMaintenance cost (cleaning, overhauling, etc.) Rp. 4,500,000,-/yearChemical component costs(softener, resin, salt, chemical injection compound, etc.) Rp. 2,000,000,-/yearF l t (ADO) i ft d i 1 i l t ti

    ADDMF

    combustion air

    blowdown water feed water feed water

    Ma (kg/s)Tdb (oC)Twb (oC)

    Mb (kg/s)Tdb (oC)Twb (oC)

    ( g )T(oC)

    Me (kg/s)T(oC)

    Fuel cost (ADO) saving after during 1 year implementation,10% x 180.000 litres x Rp. 550,- /litre =Rp. 9,900,000,- /year

    Reduction cost for maintenance Rp. 4,000,000,- /yearReduction cost for chemical compounds Rp. 2,000,000,- /year

    Total cost saving = Rp. 15,900,000,- /yearThe cost of ADDMF equipment Rp. 18,000,000,- the pay back period of theimplementation of the equipment is about 1.1 year.

    30

  • 1/18/2011

    16

    jacket

    coolingtower

    waterHE

    [-44%]40

    UNITSWHRB[-83%]

    38UNITS

    18UNITS

    100UNITS

    generator[ -90%]

    31UNITS

    35UNITS

    engine[ 35-45%]

    31

    menara pendingin

    unit pengolah udara (AHU)

    Tic(oC) Tdu(oC)Twu(oC)Mu(kg/s)

    Toc(oC)Tds(oC)T ( C) M (k / )

    Tdf(oC)Twf(oC)

    /

    pompa

    evaporator

    kondensor

    motor-kompresorkatup expansi

    Wc(kW)Mc(kg/s )

    Pc(bar)TC(oC)

    Pe(bar)Te(oC)

    Pk(bar)Tk(oC)

    Two(oC)

    Twi(oC)

    Tws(oC), Ms(kg/s)

    Tdr(oC)Twr(oC)Mr(kg/s)

    Mf(kg/s)

    Tdm(oC)Twm(oC)RH(%)

    Wm(kW)

    pompa

    evaporator

    unit koil kipas(FCU)

    Mw(kg/s)Ww(kW)

    toto/konser.hfx3232

  • 1/18/2011

    17

    Measure , Record & Calculate

    179oC

    FuelBoiler400kg/hr

    APH

    5200kg/hr,120oC

    Flue gas320oC

    stack

    Steamprocess

    179 C

    Condensatereturn

    uetank 30oC

    30oC

    Feed water Tank520 kg.hr

    4680kg/hr

    10% makeup water

    Air

    33

    Perbandingan Konsumsi daya dan masa kembalinya investasiJumlah titik lampu tetap Jumlah titik lampu berubah

    No deskripsi Kondisi awal konvensional Electronics konvensional Electronicsballast ballast ballast ballastballast ballast ballast ballast

    1 Jumlah titik lampu 9 9 9 6 62 Jumlah lampu/armatur 4 3 3 4 43 Tipe lampu TLD18W/54 TLD18W/84 TLD18W/84 TLD18W/84 TLD18W/844 Tipe ballast konvensional konvensional elektronik konvensional elektronik5 Jumlah ballast 2 2 1 2 16 Total daya (watt) 828 666 504 552 4327 Kuat penerangan (lux) 338 538 538 512 5128 Penghematan daya/thn (kWh) - 801 1562,4 1331,3 1910,19 Penghematan biaya/thn(Rp) - 160.200,00 312.480,00 226.260,00 382.020,00

    10 Investasi (Rp)a. Ballast 13.500,00 13.500,00 75.000,00 13.500,00 75.000,00b. Starter + holder 4.500,00 3.500,00 - 4.500,00 -c. Capasitor 7.500,00 7.500,00 - 7.500,00 -d. TLD 12.000,00 18.000,00 18.000,00 24.000,00 24.000,00e. Armatur kosong 110.000,00 100.000,00 100.000,00 120.000,00 120.000,00

    11 Investasi per unit (Rp) 147.500,00 142.500,00 193.000,00 169.000,00 219.000,0012 Total investasi (Rp) 1.327.500,00 1.282.500,00 1.737.000,00 1.017.000,00 1.314.000,0013 Tambahan investasi (Rp) - -45.000,00 409.500,00 -310.500,00 -13.500,0013 Masa pengembalian (thn) - murah&hemat 1,3 murah&hemat murah&hemat14 Prioritas pilihan 2 4 1 3

    34

  • 1/18/2011

    18

    Sebelum Retrofit Sesudah RetrofitItem Rata2 Maks. Min. Dev.

    Std.Keterangan Rata2 Maks. Min. Dev

    StdKinerja Chiller PengukuranKinerja Chiller Pengukuran

    (08.45 -16.22)(07.29 -15.52)

    1. Daya Kompresi (kW) 68.9874.16

    77.2480.55

    65.4467.94

    4.283.07

    60.0560.80

    64.4664.50

    55.4453.01

    1.961.96

    2. Beban Pendinginan(kW)

    159.24176.89

    179.58196.04

    143.66152.34

    11.616.70

    243.45230.85

    266.97247.82

    217.89211.90

    8.217.57

    3. COP 2.302.39

    2.572.75

    2.242.17

    0.120.19

    4.063.80

    4.744.39

    3.753.46

    0.140.15

    4. Suhu Udara Ambient(oC)

    28.8529.76

    31.6133.93

    26.3225.85

    1.202.08

    28.8429.85

    31.8732.48

    25.5125.85

    1.261.43

    5. Temp. Input ChilledWater (oC)

    15.7916.21

    22.4120.25

    12.8712.73

    1.741.17

    17.3017.62

    18.4723.49

    13.3214.82

    1.321.49Water ( C)

    6. Temp. Output ChilledWater (oC)

    10.4710.33

    16.8514.42

    7.867.32

    1.611.14

    9.179.91

    10.3516.04

    6.007.48

    1.091.35

    Kinerja Chiller diukurdari Beban AHU

    Peng. sesaat10/03/1999

    22/03/19991. Beban Pendinginan

    (kW)150.30 164.74

    2. COP 2.24 2.77

    35

    No Item Unit Jan Feb Maret April

    1 Total Kamar kamar 150 150 150 150

    2 Kamar Terjual kamar 2410 2160 2805 2715

    3 Tingkat Hunian % 77 70 93 96

    4 Konsumsi Listrik Perbulan

    kWh 381.000 288.000 348.000 306.000

    5 Biaya Listrik Rp/Bl 242.328.744 195.679.632 268.366.400 158.652.000

    6 Konsumsi/Kmr Terjual

    kWh/Kmr 158 133 124 113j

    7 Biaya Listrik/Kmr Terjual

    Rp/ Kmr 100.551 90.592 95.674 58.435

    8 Total Revenue Rp 1.268.000.000 1.165.000.000 1.489.000.000 1.454.000.000

    9 % Listrik thd Revenue

    % 19 17 18 1136

  • 1/18/2011

    19

    No Measures Avg Savings (% of Total Electrical Consumption)

    B ELECTRICAL SYSTEM1 Raise Power Factor 5.12 Lower excess transformer capacity 3.3

    C LIGHTING1 Lower Lighting Wattage 1.62 Reduce lighting hours 2.8

    D ENVELOPE MODIFICATIONS1 Lower window-wall ratio 12.72 Install double glazed windows 2.13 Installation, infiltration, roof absorbtion 0.8

    E ELEVATORS1 Eliminate 1-floor elevator trips 0.2

    37

    No Action Average Saving % of Energy Consumption

    Boilers

    1. Boiler Tune Up 2 3 %o e u e Up 3 %

    2. Reduce Operating Pressure 1 5 %

    3. Install Preheater 4 7 %

    4. Install Economizer 4 7 %

    5. Recover Heat from Condensate 3 15 %

    6. Minimize Radiation Heat Loss 1 %

    7. Select Optimum Steam Pressure 1 %

    8. Control Heat Using Instrument 1 %

    9. Clean Heating Surface 1 %

    Diesel Generators

    1. Waste Heat Recovery 5 25 %

    2. Fuel Additive 1 3 %

    3. Fuel Preheating 1 %

    Electrical Power Systems

    1. Raise Power Factor 5 6 %

    2. Electrical Balance Loads 1 5 %

    3. Lower Excess Transformer Capacity 3 3.5%

    38

  • 1/18/2011

    20

    No Measures Avg Savings (% of Total Electrical Consumption)

    A AIR CONDITIONING SYSTEM

    1 Install VAV controls 12.6

    2 Install Heat Exchanger for incoming air 12.0

    3 Install high efficiency chillers 9.6

    4 Maintain clean AHU filters, cooling coils 7.2

    5 Minimize outdoor air intake 6.0

    6 Optimize multiple chiller operation 4.9

    7 Raise A/C condenser temperature 4.1

    8 Replace Over-sized electrical motor 3.8

    9 Raise set point to 25.5o C 3.6

    10 Relocate offices to lower cooling load 3.0

    11 Modify airflow to condenser 2.8

    12 Reduce A/C equipment run time 2.3

    13 Install variable speed pumps 1.6

    14 Install small A/C for separate space 1.3

    15 Install high efficiency pumps 1.339

    Low cost/no cost investmentMedium cost investmentHigh cost investment

    40

  • 1/18/2011

    21

    41

    42

  • 1/18/2011

    22

    43

    Luas lantai (ft2)BTU/jam

    Tembok tebal Tembok biasa

    100125150175200250300

    4.5505.1505.7006.2006.5007.5508 300

    5.3006.1006.8007.5008.1009.300

    10 400300400500

    8.3009.70011.000

    10.40012.40014.250

    1 ft1 ft22 = 0,09290 m= 0,09290 m22 1 BTU = 3142 kWh1 BTU = 3142 kWh 1 BTU/j = 3142 kW1 BTU/j = 3142 kWKoreksi : Koreksi : dinding ke timur = 0,95 dinding ke timur = 0,95 LangitLangit--langit > 3 m = 1,1 Ruang teduh = 0,8langit > 3 m = 1,1 Ruang teduh = 0,8

    44

  • 1/18/2011

    23

    45

    Basic Electrical Parameters in AC &DC systems Voltage (V) Current (I)

    RPMAir VelocityN i d Vib tiVoltage (V), Current (I), Power factor (cos ), Active

    power (kW), Maximum demand (kVA), Reactive power (kVAr), Energy consumption (kWh), Frequency (Hz), Harmonics, etc. Temperature & Heat Flow

    Noise and VibrationDust ConcentrationTDSPHMoisture ContentRelative HumidityFlue Gas Analysis CO2, O CO SO NOTemperature & Heat Flow

    RadiationAir and Gas FlowLiquid Flow

    O2, CO, SOx, NOxCombustion EfficiencySteam trap analyzerInfra-Red Thermography

    46

  • 1/18/2011

    24

    C:\Document\Totok\PT. Narama Mandiri 2011

    47

    C:\Document\Totok\PT. Narama Mandiri 2011

    48

  • 1/18/2011

    25

    C:\Document\Totok\PT. Narama Mandiri 2011

    49

    C:\Document\Totok\PT. Narama Mandiri 2011

    50

  • 1/18/2011

    26

    C:\Document\Totok\PT. Narama Mandiri 2011

    51

    C:\Document\Totok\PT. Narama Mandiri 2011

    52

  • 1/18/2011

    27

    C:\Document\Totok\PT. Narama Mandiri 2011

    53

    C:\Document\Totok\PT. Narama Mandiri 2011

    54

  • 1/18/2011

    28

    C:\Document\Totok\PT. Narama Mandiri 2011

    55

    C:\Document\Totok\PT. Narama Mandiri 2011

    56

  • 1/18/2011

    29

    C:\Document\Totok\PT. Narama Mandiri 2011

    57

    C:\Document\Totok\PT. Narama Mandiri 2011

    58

  • 1/18/2011

    30

    1

    IR - I0000000.035 189.6 C

    1501

    2

    3

    4

    24/10/96 1:59:51 PM

    -62.4-50

    0

    50

    100

    150

    0.1

    0.6 170.0

    -50

    0

    50

    100

    150

    0.6

    0.5

    1.6

    3.4

    9.6

    13.2

    43.3

    21.5

    4.8

    1.4

    0.0

    155.0

    140.0

    125.0

    110.0

    95.0

    80.0

    65.0

    50.0

    35.0

    20.0

    C:\Document\Totok\PT. Narama Mandiri 2011

    59

    IR - I0000000.018 89.4 C

    70

    80

    70

    80

    IR - I0000000.029 40.0 C

    0.0

    0.0 40.0

    23/10/96 2:23:29 PM

    27.230

    40

    50

    60

    70

    30

    40

    50

    60

    70

    24/10/96 10:55:32 AM

    15.015

    20

    25

    30

    35

    400.0

    0.0

    0.1

    4.8

    6.2

    8.7

    10.0

    16.2

    50.7

    3.4

    0.0

    37.5

    35.0

    32.5

    30.0

    27.5

    25.0

    22.5

    20.0

    17.5

    15.0

    C:\Document\Totok\PT. Narama Mandiri 2011

    60

  • 1/18/2011

    31

    C:\Document\Totok\PT. Narama Mandiri 2011

    61

    EnergyEnergylosses

    Energy waste

    Useful energy

    gyinput

    62

  • 1/18/2011

    32

    Buildings Nation Globe

    Reduced energy bills Increased

    Competitiveness

    Reduced energy imports Avoided costs can be used

    for poverty reduction

    Reduced GWP impacts Reduced GHG and

    th i iCompetitiveness Increased productivity Improved quality Increased profits !

    for poverty reduction Conservation of limited

    resources Improved energy security

    other emissions Maintains a sustainable

    environment

    63

    Thank YouS

    TerimakasihMatur Nuwun

    DankeDankeSpasiboSpasibo

    XieXie xiexie

    Salamat PoShukriya Aabhar

    Arigatou Gozaimasu

    Prepared by:Prepared by:Totok SulistiyantoTotok Sulistiyanto

    XieXie--xiexie

    64