Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐...

17
Scientific Journal of Economics and Management Research Volume 2 Issue 08, 2020 ISSN: 26889323 228 Cascade Reservoirs Construction ‐‐ A CostBenefit Analysis of "New Kariba Dams" Fei Gao 1, * and Xia Li 2 1 School of Insurance, Central University of Finance and Economics, Beijing 102206, China 2 School of Management, Shanghai University, Shanghai 200444, China Abstract This paper established the CostBenefit Optimization Model of cascade reservoirs to provide the most economic address selection planning. We applied the Simplified Triangle Method for Flood Routing to estimate the Maximum and minimum discharge of each dam, provided the management strategies in different months and locations for ZRA. Keywords 01 Integral Programming, CostBenefit Optimization, Simulation. 1. Introduction 1.1. Background June 2015, a report by the Institute of Risk Management of South Africa included a warning that the Kariba dam is in jeopardy of collapsing. Kariba Dam, one of the largest reservoirs in the world, straddling the border between Zambia and Zimbabwe, nourishes and protects more than 31 billion people along the Zambezi River and supplies nearly half the nations’ electricity with its number of 6,400 GWh. 2015, water levels at Kariba Dam dropped to 12% of the capacity. Its base eroded by water streams, which not jeopardize more than 3 billion people’s lives, but reduce 40% energy generation in the area of South Africa [1]. To be more specific, levels fell to 477.25 meters above sea level from 482.83 meters a year earlier, causing a 49% hike in electricity prices [2]. In order to prevent the worsening of levels drop, protect people from dangerous, and recover or enhance its capacity of power generation, three options had been proposed: 1)Repairing the existing Kariba Dam, 2) Rebuilding the existing Kariba Dam, 3) Removing the Kariba Dam and replacing it with a series of ten to twenty smaller dams along the Zambezi River. The aim of first two options is to recover the capacity of dam, and the third one is raised by the purpose of larger energy generation and additional buffers even there is an extreme condition. IRMSA and the World Bank had given a budget of first two options, and the third one is estimated by cost‐benefit optimization model of cascade reservoirs. According to the costs and benefits analysis as well as risks and opportunities analysis, the ability to fund‐ raising should be given the priority. Our task is to provide a detailed analysis of Option 3). This new system of dams should have the same overall water management capabilities as the existing Kariba Dam. Our analysis supports a recommendation as to the number and placement of the new dams along the Zambezi River. What’s more, we developed a strategy for modulating the water flow through our new multiple dam system that provides a reasonable balance between safety and costs. In addition to addressing known or predicted normal water cycles, we provided guidance for extreme water that explains and justifies the actions that should be taken to properly handle emergency water flow situations. Our recommended strategy includes information the locations and lengths of

Transcript of Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐...

Page 1: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

228

CascadeReservoirsConstruction

‐‐ACost‐BenefitAnalysisof"NewKaribaDams"FeiGao1,*andXiaLi2

1SchoolofInsurance,CentralUniversityofFinanceandEconomics,Beijing102206,China2SchoolofManagement,ShanghaiUniversity,Shanghai200444,China

Abstract

Thispaper established theCost‐BenefitOptimizationModelof cascade reservoirs toprovide the most economic address selection planning. We applied the SimplifiedTriangleMethodforFloodRoutingtoestimatetheMaximumandminimumdischargeofeachdam,provided themanagementstrategies indifferentmonthsand locations forZRA.

Keywords

0‐1IntegralProgramming,Cost‐BenefitOptimization,Simulation.

1. Introduction

1.1. BackgroundJune2015,areportbytheInstituteofRiskManagementofSouthAfricaincludedawarningthattheKaribadamis in jeopardyofcollapsing.KaribaDam,oneofthe largestreservoirs intheworld,straddlingtheborderbetweenZambiaandZimbabwe,nourishesandprotectsmorethan31billionpeoplealongtheZambeziRiverandsuppliesnearlyhalfthenations’electricitywithitsnumberof6,400GWh.2015,waterlevelsatKaribaDamdroppedto12%ofthecapacity.Itsbase erodedbywater streams,whichnot jeopardizemore than3billionpeople’s lives,butreduce40%energygenerationintheareaofSouthAfrica[1].Tobemorespecific,levelsfellto477.25 meters above sea level from 482.83 meters a year earlier, causing a 49% hike inelectricityprices [2]. Inorder toprevent theworseningof levelsdrop,protectpeople fromdangerous,andrecoverorenhanceitscapacityofpowergeneration,threeoptionshadbeenproposed: 1)Repairing the existingKaribaDam, 2)Rebuilding the existingKaribaDam, 3)RemovingtheKaribaDamandreplacingitwithaseriesoftentotwentysmallerdamsalongtheZambeziRiver.Theaimoffirsttwooptionsistorecoverthecapacityofdam,andthethirdoneisraisedbythepurposeoflargerenergygenerationandadditionalbufferseventhereisanextremecondition.IRMSAandtheWorldBankhadgivenabudgetoffirsttwooptions,andthethirdoneisestimatedbycost‐benefitoptimizationmodelofcascadereservoirs.Accordingtothecostsandbenefitsanalysisaswellasrisksandopportunitiesanalysis,theabilitytofund‐raisingshouldbegiventhepriority.OurtaskistoprovideadetailedanalysisofOption3).ThisnewsystemofdamsshouldhavethesameoverallwatermanagementcapabilitiesastheexistingKaribaDam.OuranalysissupportsarecommendationastothenumberandplacementofthenewdamsalongtheZambeziRiver.What’smore,wedevelopedastrategyformodulatingthewaterflowthroughournewmultipledam system that provides a reasonable balance between safety and costs. In addition toaddressingknownorpredictednormalwatercycles,weprovidedguidanceforextremewaterthatexplainsandjustifiestheactionsthatshouldbetakentoproperlyhandleemergencywaterflowsituations.Ourrecommendedstrategyincludesinformationthelocationsandlengthsof

Page 2: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

229

timethatdifferentareasoftheZambeziRivershouldbeexposedtothemostdetrimentaleffectsoftheextremeconditions.

1.2. GeneralAssumptionsThewaterstoragecapacityofthereservoirisequaltothemaximumamountofwateritcanprovide.Thebenefitsofbuildingareservoirareonlyincludedfiveparts:powergeneration,irrigationbenefits,watersupply,floodcontrolbenefitsandincomeinrecreation.Thecostofbuildingareservoirisonlyincludedfiveparts:constructionofdams,constructionof power stations, costs of maintenance, cost of populationmigration, and loss during theconstruction.Regardlessoftheusagetimeofthedam,costsandbenefitsarecurrent.Withoutconsideringthenumberofthespillwaygatesandswitchstateinthesesmallreservoirs.

1.3. NotationsTableThefollowingtableprovidesmeaningsofimportantnotationsusedinourmodels.

Table1:NotationsTableSymbols Meanings Unitai Ifbuildadam at No.ipoint,ai=1; ifnot,ai =0

Vi WaterstoragecapacityofNo.ireservoir m3

iPo PopulationaroundNo.iarea Qi Water‐carryingcapacityattheoutletofNo.idam m3/s

Benefits

Ei ElectricenergyproductionbyNo.ipowerstation $Hi DifferentheightbetweenNo.ipointandNo.i+1point m

Coefficientofelectricityconversionfromwater Gi IrrigationcapacitybyNo.ireservoir $

ii ProbabilityoftypeifloodingatNo.iarea Ui Incomeofurbanwatersupply $

Cost

Bi CostofconstructionofNo.idam $

Si CostofconstructionofNo.ipowerstation $

Mi CostofmaintenanceofNo.idam $

Hi Costofpopulationmigration $

Li LossduringtheconstructionofNo.idam $

λ Coefficientoftotalcosts

γ Coefficientofannuity

2. DamSiteSelectionProject

Inordertoselectthebesteconomicplanfordamconstruction,wechooseoutasmanydamsaswecan,thenuse0‐1IntegerProgrammingtodeterminethespecificpointstoconstruct.Itisworthtopayattentionthatnoteverydamwouldbebuiltfinally,andtheeconomicfactoristhemostimportanttoconsider.

2.1. SelectionofStartPointandEndPointThe 2,574‐kilometre‐long River of Zambezi River flows through eastern Angola, along theborder between Zambia and Zimbabwe to Mozambique. There are two main sources ofhydroelectricpowerontheriver,theKaribaDamforZambiaandZimbabweandtheCahora

Page 3: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

230

BassaDamforMozambiqueandSouthAfrica.InordertoprotectthesovereigntyandintegrityofKaribaDamandsubstitutetheroleofit,thelocationofthesesmallerdamsmustnotcrossthe border between Zambia andAngola (Theblack line in Figure 1), and it is nomeans tobeyondtheentryofthelatterReservoir.Thus,weselecttheStartPointatthenationalborderatthepointofChavuma,andtheEndPointattheentryofCahoraBassaLake(Tworedstartsonthemap).

 

Figure1:PotentialDamLocation

2.2. PrinciplesofDamSiteFordecades,potentialhydropowerprojectsanddamshadtakenagreatdealofresearchforscientists and academics. They think, locations of those rivers of big dropping variance isbenefitforpowergeneration(AsmarkedontherightofPictureone)[4],andfloodingareasmustbeprotectedbydamsorothermeans.Finally,weselectedthepotentialsitesfordamsasmanyaspossible,whichmetatleastoneconditionoffollows:1.Highdroppingvarianceofriver;2.Locatedatfloodingandrainyareas;3.Rapidorhurrywaterflowsthroughthepoint;4.Locatedatthebranchoftheriver,whichisnarrowatitsentry.

2.3. MarkPointsontheMapAlong the chosen‐distance‐river, about 1200 kilometers, wemarked 22 points on themapwhichmeetsatleastonecondition,especiallyatthelocationofVictoriaFall(No.12),BatokaGorge (No.13),Devils Gorge (No.14) andMuptaGorge (No. 20). And a description of thesepointsasfollowing:

Table2:DescriptionofpotentialDamSite

Pointnumber Description

No.1toNo.5 Situatedneargeologicfaults,inareaspotentiallyvulnerabletoflooding.

No.1,No.6,No.7,No.8,No.9,No.12 Markedaswaterfallsorrapids,whichwouldgenerategreatpotentialenergy.

No.10,No.15,No18,No.19,No.21 LocatedatthebranchofZambeziRiver

No.13,No.14,No.20 Formedasfast‐flowinggorgesnaturally,whichwouldbeusedaspowerstations.

No.11,No.16,No17,No.22 Situatedatthemiddleoftwokindsoflandscapes,creatingabigdifferenceinheight.

Page 4: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

231

3. Cost‐BenefitOptimizationModelofSmallerDams

3.1. Cost‐benefitOptimizationModelofCascadeReservoirsSincethereareseveralfactorsdecidingwhethertobuildadamatthe22candidatelocations,factorsaredividedintotwoaspects,namelycostandbenefitfactorsforpreliminaryanalysis.Ourtask istobuildanoptimalcost‐benefitsystemofsmallerdamsonthebasisofdynamicfactors,thenchoosecertaindams(between10to20)tocomeintooperation.

 

Figure2:BenefitsandCostsofBuildingSmallerDams3.1.1. BenefitModelofSmallerDamsThebenefitmodel istomeasuretheearningofeachsmallerdamintheselectedregionandcalculatetotalearnings.Wedecidetoselectfourparts:powergenerationcapacityofcascadereservoirs,irrigationbenefits,urbanwatersupplybenefitsandthefloodcontrolbenefitasthebasisofthecalculationofbenefitsofsmallerdams.(1)TherevenueestimatemodelofgeneratingelectricofgradientreservoirsWithin the scopeof the electricity supply, the electric energydemandedbyeach electricitysectorneedstobeintegratedtodescribethechangesofelectricityusedfordaysandhours.Annualloaddiagram:thegraphrepresentingthechangeofelectricityusedforeachmonthinayear.Loadfigurecommonlyusesdailymax(N )min(N)loadchangecurveanddaily(ormonthly)averageloadchangecurve.[5]

Figure3:Theannualloaddiagram

Theelectricityloadchartisprepared,thenbasedonthepartthathydropowerstationshouldbeas,theelectricitythathydroelectricplantsshouldgeneratecanbedetermined,throughtheformulaforoutput:

Page 5: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

232

iii HQN (1) ——waterdensity(=1000kg/ 3m )

iQ ——powerflow,unit 3m /s

iH ——drop,unitm

N——output,unitkgfm/sInengineering,thecommonlyusedunitforNiskilowatt(kw),1kw=102kgfm/s,then

QHQHN 80.9102

1000 (2)

i

i

i H

N

H

NQ

80.9

1

1000

102 ii (3)

TheelectricityHydropowerstationgenerateisalsorelatedtotheefficiencyoftheturbineandgenerator,asaresult,theactualformulaforprocessingis

QHQHN EW 9.8i (4)

N——output,unitkw ——the combination of efficiency coefficient and unit conversion constant, 7.5‐8.8 asoften.[6]Ei——ElectricenergyproductionbyNo.ipowerstationMW,unit$

Pw——Priceofeachmegawattofpower,unitkw/$Sothedirecteconomicbenefitsbroughtbygeneratingelectricityis

PwQHEi (5)

(2)EstimationModelofAgriculturalIrrigationWater

Figure4:DistributionofUrbanWaterSupply

The appropriate moisture retention of crops not only rely on the effective supply ofprecipitationintheatmospherebutalsoneedtobeprovidedfromthefarmlandconservancymeasurestoaddwater,whichiscalledagriculturalirrigationwater.Makesurethesystemofallkindsofagriculture[7],ifgivenirrigatedareaandthepercentofplantedareaofallkindsofagriculture,theamountofirrigationwaterandirrigationtimecanbegotten.Aboveall,irrigationincomeforNo.iis

gi PVG i2 (6)

iG ——IrrigationcapacitybyNo.ireservoirunit$

Page 6: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

233

i2V ——WatersuppliesofNo.ipointinirrigation,unit 3m

gP ——Productionoffarmland,unit$/ 3m

(3)EstimateModelofUrbanWaterSupplyAssumptionThewatersupplyoftheNo.itothetownisequaltothesumofthecivilwatersupplyandtheindustrialwatersupplywithintheresponsibleurbanarea.

uPoV i ii1 D (7)

iV1 ——WatersuppliesofNo.ireservoirintown,unit 3m

iD ——IndustrialwaterconsumptionofNo.i,unit 3m

iPo ——PopulationofNo.ipoint,unitperson

u ——AveragewaterconsumptioninZambianwatershed,unit 3m /year

iU ——Incomeofurbanwatersupply,unit$

Pr ——Priceofurbanwater,unit$/ 3m Thenextstepistocalculatethetotalrevenueoftownwatersupply:

Pr1i iVU (8)

(4)EstimationmodeloffloodcontrolbenefitThefrequencyandgradeofthefloodoccurredintherepresentativeyearofeachpotentialdampointarefound,andthemathematicalmodelisusedtosimulatethefrequencyofthefloodinotheryearsduringtheoperationperiodofthesystem,andthencalculatetheexpectedvalue.[8]

iitiD iF (9)

iF ——AvoidabledamagebenefitsfromNo.idam,unit$

ii ——ProbabilityoftypeifloodingatNo.idam

itD ——Lossoftypeiflooding,unit$(5)Calculatethetotalbenefitsofsmallerdams

)(Tb22

1iiiii

iFUGEa

(10)

Tb——Totalearningsofdams,unit$3.1.2. CostModelofSmallerDamsInthismodel,costsaremeasuredintermsofmoneyandcurrencyperyear,andacoefficientofannuity, ,isintroducedintoequations.Morespecifically,thetotalcostsaredividedintofiveparts:Constructionfeesofdams,Construction feesofpowerstations,Costsofmaintenance,Costofpopulationmigration,andLossduringtheconstruction. 

 

Figure5:ComponentsofTotalCost 

Page 7: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

234

Thesumofvaluesoffivefactorsstandsforthetotalcostsofeachdam.AccordingthereportbytheInstituteofRiskManagementofSouthAfrica,thedamsmustbeusedformorethan100years,thusthetotalcostsshouldbesetasidefor100yearsandwesuppose asaaveragerate.

iiiiiiiii VLHMVSVBiC Po (11)

iC ——TotalcostsofNo.idam)(Bi iV ——CostofconstructionofNo.idam

)(Si iV ——CostofconstructionofNo.ipowerstation

iM ——CostofmaintenanceofNo.idam

iPoiH —— Costofpopulationmigration

)(Li iV ——LossduringtheconstructionofNo.idam

——Coefficientofannuity

Andthecostofwholeconstructioncanbemeasuredas:

22

1

n

ii iCaTC (12)

Inordertoestimatethecostsaccuratelyandactually,acoefficientoftotalcosts,λ,isintroducedas a coefficient tomeasure the cost ofwater storageof reservoirperm3. we consider thecoefficientλisrelatedtowaterstorageofreservoir,andusethefollowingdatastoconstructaregressionequationaboutTotalCostandWaterStorage.WefindtensetsofdataofTotalCostandWaterStorageaboutthedamsin10years.

Table3:DatasofTotalCostandWaterStorageaboutthedamsin10years

NameofDam ThreeGorges Shuibuya Goupitan Longtan Pubugou

TotalCost $2.7×1010 $1.3×109 $8.7×108 $5.1×109 $1.05×107

WaterStorage 3.93×1010m3 4.58×109m3 6.45×109m3 2.73×1010m3 5.17×106m3

NameofDam Hongjiadu Tankeng Wawushan Dongping Baishuikeng

TotalCost $1.85×108 $9.58×108 $3.1×108 $1.34×108 $5.09×107

WaterStorage 4.92×109m3 3.53×109m3 5.84×108m3 3.36×108m3 2.46×108m3

ApplyingthemethodofmathematicalregressionanalysiswithSPSS,oneregressionequationwasgivenout.

3925- 1018.11069.3-31.092.54 XXXY (13)

Page 8: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

235

 

Figure6:Fitting‐figuresofrelationbetweenTotalCostandWaterStoragetestforequalityperformedbySPSS,andtheresultsofitasfollows:

Table4:ModelSummaryandParameterEstimates

DependentVariable:TotalCost

EquationModelSummary ParameterEstimates

RSquare F df1 df2 Sig. Constant b1 b2 b3

Linear .796 31.133 1 8 .001 ‐1247.102 .555

Quadratic .958 78.946 2 7 .000 1405.901 ‐.590 3.069E‐5

Cubic .999 1763.314 3 6 .000 54.920 .312 ‐3.693E‐5 1.182E‐9

Power .845 43.461 1 8 .000 1.432 .785

Growth .695 18.267 1 8 .003 4.945 .000

Exponential .695 18.267 1 8 .003 140.434 .000

Logistic .695 18.267 1 8 .003 .007 1.000

TheindependentvariableisWaterStorage. 

RSquareofCubicisthelargest,indicatingthatthefitisthebest.AndtheSigvalueis0.000(Thenormallevelis0.05),lessthanthesignificancelevel,sowecanrejectthenullhypothesis,thatthecurvefittingisbetter.Consideringthedetrimentalaffectofextremeconditiontodams,suchasfloodingsandstorms,a2%increaseshouldbeaddedtoitsoriginalcosts[2].AndcorrecttheCostFunctionlikethis:

%21iViC (14)

 

iV ——Coefficientoftotalcosts

iC ——CorrectthecostofNo.idam

Page 9: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

236

3.2. RelatedDatasSimulationSincetheriver’srelateddatasareunkownorunstatistical,weusearandomsimulationmodeltosimulate22setsofdatasofthesedams,accordingtothekonwndatasofVaictoriaFallsandKaribaDaminyears.

 

Figure7:Simulationdata’swithMATLAB 

Andgiveoutthesedatasintable:Table5:SimulationdatasofStorage,FolwsandHeight

NumWaterStorage

(m3)

Flows

(m3/s)

Height

(m)Num

WaterStorage

(m3)

Flows

(m3/s)

Height

(m)

1 103.2 263.9 30.4 12 100 490.1 32.6

2 138.4 339.3 38.9 13 90.4 565.5 37.6

3 76 414.7 36.8 14 105.6 640.9 40.1

4 51.2 527.8 32.5 15 125.6 640.9 35.3

5 65.6 603.2 28.9 16 139.2 678.6 32.4

6 109.6 716.3 39.6 17 142.4 640.9 31.7

7 116 678.6 35.7 18 124 603.2 35.9

8 124.8 678.6 43.2 19 110.4 716.3 34.9

9 126.4 640.9 38.9 20 113.6 640.9 40.9

10 114.4 603.2 42.3 21 99.2 678.6 45.7

11 132 527.8 39.6 22 125.6 527.8 47.9

3.3. 0‐1IntegerProgramminginDeterminingDamSitesInthismodel,whetherthedamcanbebuilthasnotbeendecided.Andweassumethatthereisacoefficienttoshowifthedambeconstructed.Thecostsofthedamwouldbeincludedifitwouldbebuilt,whichwouldbemultipliedbyanumberof1,whiletheothersituationwouldbemultipliedbythenumberof0.Thentheplanthatleadtomaximumbenefitwouldbeselected.

Page 10: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

237

Atfirst,introduce0‐1variables: 

bulitnot is dam No.i ,0

built is dam No.i ,1ia ,(15)

Inordertomaintainthepowergenerationandirrigationcapacityatoriginallevels,objectivefunctionandconstraintsarelisted:

22

1

maxn

iiii CBaTcTb (16)

1or 0

..22

1

22

1

i

originali

n

ii

n

ioriginalii

a

EEa

VVa

ts

Consideringbenefitandcostfactorsmentionedabove,writeprogramswithMatlab,accordingtotheobjectivefunctionandconstraints,toidentifythemosteconomicconstructionplan,thenselectthespecificsites.

 

Figure8:SitesSelectionProgramflow 

RuntheProgram,andlistselectionresultsasfollows:

 

Figure9:SitesSelectionResults

Page 11: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

238

Finally,weselecttobuild17damsalongZambeziRiver,theyare:No.2,No.6,No.7,No.8,No.9,No.10,No.11,No13,No.14,No.15,No.16,No.17,No.18,No.19,No.20,No.21,No.22.

 

Figure10:SitesSelectionMap

4. MaximumandMinimumDischargeofDamsunderExtremeConditions

4.1. TheMethodofCalculatingtheMaximumEmissionofFloodHypothesis: In the state of small watershed and small reservoir without considering thenumberofthespillwaygatesandswitchstateConception:Flooddetentioncapacity:ThemaximumamountoffloodthatcanbeaccommodatedFloodstoragecapacity:ThemaximumamountoffloodthatcanstoreSupposingthattheflowofstorageandoutboundflowaresimplifiedastriangular,sothetotalfloodstorageis:

TmQ2

1W (17)

Figure11:SimplifiedTriangleMethodforFloodRouting

Asforpicturea,themaximumdischargeflowofthereservoirfromthedamheightis:

)1(qW

VQ mmm

(18)

mQ ——peakdischarge

Page 12: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

239

mV ——flooddetentioncapacity

T——flooddurationAsforpictureb,thestartinglevelofthereservoirisbelowtheweircrestelevation,butthetimeoffillingtothecrestelevationislessthanthatofthefloodpeak,sothetotalfloodstorageis:

WTTVWV

Q

s

mm

m

11

)1(q

(19)

sV —— floodstoragecapacityThetwoequationsareestablishedfromthepointviewofwaterbalance[4].

4.2. EstimationoftheMinimumExpectationEmissionundertheConstraintBenefit

Intheseasonofwatershortage,therearetwomainsourcesofwaterconsumptioninreservoirs,oneistomeetpowergenerationneedsthroughthedrainage,theotheristomeettheareaofirrigation and urban water supply minimum requirements through the remaining waterstoragereservoir.Restrictions:

)(qV 12i ii VV ;

iV2i2V ;iV1i1V ; tQq (20)

Whentheequalsignisestablished,minimumemissions minq canbegotten

iV ——waterstoragecapacityofreservoirduringdryseason,unit 3m

i2V ——thesupplyofirrigationwaterduringdryseason,unit 3m

i1V ——thewatersupplyofthetown,unit 3m

t——thetotaltimeofpowergenerationundernormalconditions,units

minq ——theminimumexpecteddischarge

5. DemonstrationAnalysisofDamDischargeinExtremeCondition

SelectNo.12damtoanalyzewhich locatednearVictoriaFallsof17dams,andestimate themaximum expected discharges and the minimum expected discharges under the extremeconditions. Then the suggestionswere given. The analysis of other dam points of thinkingprocessissimilar,sodonotrepeathere.

Figure12:TheMaximumExpectedDischargeandtheMinimumExpectedDischargeofDifferentDams

Page 13: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

240

5.1. TheMaximumExpectedDischargesofNo.12According to the averagemonthlywater flow data in the yearwhich is representative, themonthwithmeanflowexceeding1000 s/m3 isthefloodseason.FortheNo.12dam,FebruarytoJuneisusuallythefloodseason.Accordingtothehistoricaldata,Marchhasthelargestflow,andtheflowis8720 s/m3 .

Table6:ZambeziRiverMonthlyAverageFlowsatVictoriaFalls(1907‐2008)

Ascanbeseenfromtheabovetable,

mQ =8720 s/m3.

011301120003024606087202

1W 3m ,

Suppose39

12m m103V , From the flood control calculation of the maximum discharge’s method can be seen, themaximumdischargeflowofReservoiriis

4862)01130112000

1051(8720q

9

m12

s/m3.

Asforthemaximumdischarges,dependingonthedurationofitsflooddischarge.

TW 4862max

maxW ——Themaximumdischarges

T ——The duration of flood dischargeWhenthemaximumdischargesareequaltothetotalamountoffloodstorage,thetimerequiredis

542

T12

mq

Wdays.

5.2. TheMinimumExpectedDischargesofNo.12Wewillestimatetheminimumexpecteddischargeof theNo.12damundertheconditionofbenefitconstraint.Step1DeterminethemonthlyenergydemandfortheNo.12jurisdiction.Ascanbeseenfromtheabovefigure,thedemandforelectricityintheKalibaareaisnotaffectedbytheseasons.Asatotalof17smalldamsarebuilt,theaveragemonthlydemandforpowerinthesmalldamjurisdictionis10765kW.Suppose,

12N 10765kW.

Step2calculatetheminimumdischargesrequiredtomeettheenergyrequirementsAsknows,

Page 14: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

241

12H =20.6m,

Set =8.0,

Then

s/m65H

NQ 3

12

1212

,

Sot65tQq 12min

Theminimumdischargesarerelatedtothetimeofpowergeneration,inonemonth,

30246060t 259200s,Then

minq =1684800003m

6. Recommendation

6.1. ProposalontheNumberandPlacementoftheNewDamsFor the construction of smaller dams in the Zambezi River Basin, not only to meet theconstructionofthefeasibilityoftheconditions,butalsoshouldconsiderthebenefitsandthecostssothatthedifferencereachanoptimalvalue.

Table7:ConstraintsonDamConstruction

Conditions Description

Constructionfeasibility

①notcrosstheborder

②highdroppingvarianceofriver

③Rapidorhurrywater lows

④Locatedat loodingandrainyareas

⑤Locatedatthebranchofnarrowriver

Cost‐Effectiveness

Benefits

①Powergeneration

②Constructionofpowerstations

③Irrigation

④Watersupply

⑤Avoidablelossin lood

⑥Incomeinrecreation

Costs

①Constructionofdams

②Costsofmaintenance

③Costofpopulationmigration

④Lossduringtheconstruction

Page 15: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

242

Finally,weselecttobuild17damsalongZambeziRiver,theyare:No.2,No.6,No.7,No.8,No.9,No.10,No.12,No13,No.14,No.15,No.16,No.17,No.18,No.19,No.20,No.21,No.22

6.2. RecommendationsonDamManagementduringtheFloodSeasonReservoirsplayamajorroleinfloodcontrolandwatersupplybycontrollingtheirdischarges.Thesizeofthedischargeisaffectedbytheobjectivefactorssuchasdamsite,damheight,flow,seasonandothersubjectivefactorssuchasurbanwatersupplydemand,irrigationdemandandpowergenerationdemand.Reasonablearrangementsfordischargesandthetimeofdischargeisimportanttothereservoirmanagement.6.2.1. ManagementoftheDamintheFloodingIn the flood season, the reservoirswith small capacity, low altitude, large flow, suffers thelargestadverseinfluences.Thelengthsofaffectedtimearetheentirefloodseason.Floodseasonatdifferentdamsitesisdifferent,sotheaffectedtimeisalsodifferent.Accordingtothehistoricaldata,whentheaverageflowismorethan1000m3/s,floodseasonisarriving.Thenmeasuresshouldbetakeninflooddischarge.For theNo.12dam, the floodseason is fromFebruary to June,and themaximumexpecteddischarges are most likely to occur in March. Therefore, during this period, the reservoirmanagementpersonnelshouldincreasedischargesaccordingtotheactualsituationinordertoavoidtheriskofburst.From2.3.2wecanseethatthemaximumexpecteddischargesisaffectedbythetimeofflooddischarge.Whenthefloodseasonlasts,themaximumexpecteddischargesinthismonthcanbelargerthanthatinthestorageflood.Forthenextmonth,thetimeofflooddischargeshouldbelongerthan54days.Whenthefloodseasonisabouttopass,themaximumexpecteddischargesforthemonthshouldbelessthanthestorageflood,inordertostorewaterforthedryseason,thetimeshouldbelessthan54days.6.2.2. DamManagementofDrySeasonUnderlong‐termlow‐waterconditions,thosereservoirswithsmallstoragecapacityandsmallwaterflowbuthighhydropowerdemandaremostadverselyaffected.Itsimpacttimeshouldbethedurationoftheentiredryseason.Accordingtothehistoricaldata,thattheaverageflowislessthan300m3/sinonemonthisthedryseason.Wheninthedryseason,reservoirstorageislow,thistimethewaterislikelytobedifficulttomeettherequirementsofwatersupply(urbanwaterandirrigationwater)anddrainagepowergeneration.When generating electricity as the first function of the reservoir, the minimum expecteddischarges must meet the demand for power generation (which can be calculated fromEquation 1), but at this time facing the shortage of water supply, the proposed treatmentmethod has two: Plan A increase the water storage capacity ahead of time; Plan B applyupstreamreservoirtoincreasedischarges.Whenthestorageofwatersupplyasthefirstfunctionofthereservoir,tomeettheurbanwaterand irrigationwater, the amountofwaterdischarge isnot enough tomeet thedemand forelectricitygeneration,atthistime,theproposedtreatmentmethodsare:PlanAincreasetheamountofwateraheadofschedule;PlanBtransferpowerfromotherplaces.Obviously, the cost of Plan B is expensive and the possibility of realization is unknown.Therefore,inordertopreventtheshortageofsupplyinthedryseason,watershouldbestoredinthefloodseason.

Page 16: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

243

7. StrengthsvsWeakness

7.1. Strengths1)Solvetheproblemfromtheactualsituation.Infullconsiderationofcontours,topography,precipitationandotherfactorsundertheconditionsofchoicefordamsites.2)Abstractthepracticalproblems,withtheuseof0‐1planningmethodtosimulatethenumberandlocationofdams.3)Determinethenumberandlocationofdamsfromthecost‐benefitoptimizationpointofview4)Classificationdiscussion.Reasonablerecommendationsaregivenforthemaximumexpectedandminimumexpecteddischargesfordifferentregionsunderextremeconditions.5)Wheninsensitivityanalysisandmodificationofthemodel,wediscusseachparameter,theresultsshowthatourmodelparametershaveawiderangeofapplications.

7.2. Weaknesses1)This model takes into account too many factors, leading to the settlement process iscumbersome,thesolutionisdifficult.2)Oneofthemodelparameters(floodingtime)stillneedstobedeterminedexperimentallyandcannotbededucedfromtheexistingphysicalconstants.3)Forouremergencyguidanceproposal,onlysomekeydamsareconsidered,andthereisnospecificconsiderationforeachtypeofdam.

8. SensitivityAnalysis

In order to better guide the establishment of multi‐dam systems, the most benefits, weconducted a sensitivity analysis. Sensitivity analysis is particularly important if you areinvestinginaprojectthatmustbeconsideredforfeasibility.Themainpurposeofinvestmentsensitivityanalysisistorevealtheinfluenceofrelevantfactorsoninvestmentdecision‐makingevaluationindex,todeterminethesensitivefactorsandseizethemaincontradictions.Step 1 Select the sensitivity analysis indicator. Here, we use the cost‐benefit principle.Therefore,weselectnetincomeasthesensitivityanalysisindicator.Step2Calculatethetargetvalueofthetechnicalscheme.Normally,thevalueoftheeconomicbenefitevaluationindexinthenormalstateistakenasthetargetvalue.Step3SelectUncertainty.Wechoosethefactorwhichlargelyeffectthetargetvalue.Here,wemainlyselectthestoragecapacityastheuncertaintyfactor.Step4Calculatethedegreeofinfluenceofuncertainfactorsonanalysisindicators.Theprincipleofunivariatesensitivityanalysisisthatonlyoneuncertaintycanbechangedatatime.Step5Identifysensitivefactors,analyzeandtakemeasurestoimprovetheanti‐riskabilityoftechnicalsolutions.We take thestoragecapacityas theuncertainty factor, carrieson thesensitivityanalysis inMATLAB,obtainstheresult,likefigureasfollows:

Page 17: Cascade Reservoirs Construction - SJEMR · 2020. 8. 28. · Cascade Reservoirs Construction ‐‐ A Cost‐Benefit Analysis of "New Kariba Dams" Fei Gao1, *and Xia Li2 1School of

ScientificJournalofEconomicsandManagementResearchVolume2Issue08,2020

ISSN:2688‐9323

244

Figure13:Sensitivityanalysiscurve

Throughtheaboveanalysis,wecanseethatwhenthetotalstoragecapacityincreasesby70‐80,thetotalbenefitisincreasing.Thereasonisthatsomedamsmaybeeconomicallyinefficient,so when increasing the storage capacity to a limit, then the economic benefits diminish.Therefore,thetotalstoragecapacityofthesesmalldamsshouldbeincreasedby70‐80istheeconomy.

References

[1] http://mgafrica.com/article/2016‐01‐20‐kariba‐dam‐drops‐to‐record‐low‐12‐and‐zimbabwe‐zambia‐stare‐at‐a‐nightmareKaribaDamDropstoRecordLow12%,andZimbabwe,ZambiaStareatANightmare.

[2] http://mp.weixin.qq.com/s? biz=MzIxMjA1MzQwOA==&mid=212151600&idx=1&sn=b919d6fa2287b23447b82b581e228312&3rd=MzA3MDU4NTYzMw==&scene=6KaribaDam JeopardizesCahoraBassaDamand3BillionPeople’sLivesandProperty.

[3] ImpactofTheFailureofTheKaribaDam‐TheInstituteofRiskManagementSouthAfrica,2015[4]ExistingandPotentialHydropowerProjectsonTheZambeziRiver.

[4] YeBingru.WaterUtilityCalculationandWaterResourcesPlanning,1995.[5] YangLong.StudyonHydroelectricPowerGenerationandPowerGenerationEfficiency,2014.[6] WuLi.ClassificationandFormulationofCropIrrigationSystem,2011.[7] Wang Guangjie.Calculation of Annual Average Flood Control Benefit for Monitoring System for

Chaihereservoir,2014.[8] PreliminaryDesignSpecificationforPowerStationofTalaDitch,2004.