CASCADE AERATION

25
CASCADE AERATION Dr. A. Saatci

Transcript of CASCADE AERATION

Page 1: CASCADE AERATION

CASCADE AERATION

Dr. A. Saatci

Page 2: CASCADE AERATION

KASKAT HAVALANDIRMA

Page 3: CASCADE AERATION

Kağıthane Kaskat Havalandırma

Page 4: CASCADE AERATION

K. Hane SAT Kaskat Havalandırma

Page 5: CASCADE AERATION

Ömerli (Emirli) SAT

Page 6: CASCADE AERATION

Ömerli (Emirli)

Page 7: CASCADE AERATION

Kırıkkale SAT – Kapalı (!) Kaskat Havalandırma

Page 8: CASCADE AERATION

Kaskat Havalandırma

Page 9: CASCADE AERATION

Cumhuriyet SAT-Kaskat Havalandırma

10/8/2012 Prof. Dr. A. Saatci 9

Page 10: CASCADE AERATION
Page 11: CASCADE AERATION
Page 12: CASCADE AERATION
Page 13: CASCADE AERATION
Page 14: CASCADE AERATION
Page 15: CASCADE AERATION

AERATION Weir Aeration and Cascades

Referans : Pöpel, H.J., “Aeration and Gas Transfer”, Delft University of Technology

Dept. of Civil Engrg., Division of Sanitary Engineering. 1974.

Page 16: CASCADE AERATION

Mechanism of Gas Transfer

During free fall of water certain surface area A is created. (CO2 VOCs and taste-odor producing substances are removed trough A) From the weir height “h” the average time of exposure of the surface area A: Size of A depends on: configuration of the weir portion of the nagge into several jets (will increase A/).

h = 2

2

1Cgt (free fall)

tc = gh /2

Page 17: CASCADE AERATION

Mechanism #2 of Gas Transfer:

When nappe or its jets submerge into the receiving body significant amount of air entrained. The amount of air entrapped depends on the velocity of the nappe

when passing the surface of the water.

h =

g

V

2

2

V = gh2

Page 18: CASCADE AERATION

Depth of receiving water influences the amount of gas transferred Vel of nappe when passing at this point depends on its energy at the ptA which is h = v2/(2g) (potential energy h converted to kinetic energy) . Final velocity of jets within the tail water before reaching its bottom = Rising velocity of the bubbles produced. Empirical estimates recommend a min depth of 2h/3.

Page 19: CASCADE AERATION

Efficiency Coefficient K;

Unpolluted water K = 0.45 (1+0.046 tC).h

Polluted water K = 0.36 (1+0.046 tC).h

Sewage K = 0.29 (1+0.046 tC).h

h = weir height for straight weir.

lm

for rectangular notcher at least 4 jets/m. weir length the proportionality constant

increases up to 0.64 for heights < 0.70 m.

Page 20: CASCADE AERATION

Modest increase of K value above 0.7 m ( Do not have step heights < 0.6-

0.7m)

8

6

K CS,

gO2/m3

4

2

0

0.5 1.0 1.5

length of weir, m

Fig 1: Efficiency coefficient in dependence of

The height of fall over weirs.

Page 21: CASCADE AERATION

s

mgCCK

dt

dCSLa

3/)( ……………………………………………….(1)

aKKA

t

DAaK LL

c

L

2 ……………………………………….(2)

taK

S

S LeCC

CC ..

0

C = C0 @ t = 0 ……………………………….(3)

ln [(CS – C) / (CS – C0)] = (KLa) t St line ……………………………….(4)

taK

S

S LeCC

CC ..

0

= 1 – K ……………………………………………….(5)

K = taK

S

S LeCC

CC ..

0

1

……………………………………………….(6)

If height of weir being divided into (n) equal steps each having Kn = n

K from Eqn (5)

C1 = C0 (1 – Kn) + KnCS ……………………………………………….(7)

Cn = C0 (1 – Kn) + KnCS

Or

Cn = CS – (CS – C0)(1 - n

n

K)

as n (1 - n

n

K) e

-K ……………………………………….(8)

Subdivision into steps of a height of less than 0.6 m will decrease the

oxygenation effic but will promote CO2 desorption … odor … taste prod VOC step

heights of 0.2-0.40 m are quite common. Cascades require little space (~ 50-200

m2/m

3/s).

Page 22: CASCADE AERATION

Example (Application of Eqn 8)

Calculate no of steps for max oxygenation

h = 1.5m, CS = 10 g/m3, C0 = 2 g/m

3

Form Fig 1. h = 1.5 m KCS = 7.0 gO2/m3

K = 7.0/10 = 0.7, K/n = 0.7 (for n = 1)

Form Eqn 8, C1 = CS – (CS – C0) (1 - n

K) = 0.7 CS + 0.3C0 = 7.6 g/m

3

C2 = CS – (CS – C0) (1 - n

K)

2 =0.75 CS + 0.25C0 = 8.0 g/m

3 max value

C3 = CS – (CS – C0) (1 – 0.35)3 = 7.8 g/m

3

Max oxygen concentration is reached at two steps

Page 23: CASCADE AERATION

142.74

142.55

139.92 140.14 140.36 140.07

0.15 20.20

142.40

139.77 140.77

0.60

141.16 141.80

0.60

141.20

140.33 140.96 141.16 Kgiris= 0.50

0.60 TaşmaSavağı Kot= Kçıkış= 1.00

140.35 140.60 Qpipe= 5.79

22.00 m Dpipe= 2.00

Vpipe= 1.84

Qgaleri= 5.79 m3/s Kvalve= 1.50

137.00 Kgiris= 0.50 HL= 0.52

139.00 Kçıkış= 1.00

Agaleri= 6.25 m2 Apenstok=6.25

Vgaler= 0.93 m/s No Penst= 2.00

137.00 137.00 Hlgaler= 0.066 Qpens= 5.79

Vpenstk= 0.93

Kpensk= 2.70

HLpenst 0.118 m

1.20 m

133.92

Page 24: CASCADE AERATION

143.26

142.74

142.55

0.15 20.20

142.40

0.60

141.16 141.80

0.60

141.20

140.96 141.16 Kgiris= 0.50

0.60 TaşmaSavağı Kot= Kçıkış= 1.00

140.60 Qpipe= 5.79 m3/s

22.00 m Dpipe= 2.00 m

Vpipe= 1.84 m/s

Qgaleri= 5.79 m3/s Kvalve= 1.50

137.00 Kgiris= 0.50 HL= 0.52 m

Kçıkış= 1.00

Agaleri= 6.25 m2 Apenstok=6.25

Vgaler= 0.93 m/s No Penst= 2.00

137.00 Hlgaler= 0.066 Qpens= 5.79

Vpenstk= 0.93

Kpensk= 2.70

Page 25: CASCADE AERATION

OZON TEMAS TANKI HİDROLİĞİ

Batık Savak

Batık Savak

H

h

B

a

Batık Savak Formülü:

2/361.0'' )(23

2)(2 hHgBChHghBCQ DD

Perde Hidroliği

%52

A

Ab (% 10’dan fazla olursa kısa devreyi engelleyemez)

Batık orifis denkleminden

hgACQ D 2

gBaC

Qh

D 2

veya

2.3180

dönüşCoK

g

Vh

22.3

2

Perdelerdeki yük kaybı 0.8 cm geçerse yumaklar kırılır. Perde aralığındaki hızlarından aynı

sebepten 0.3 m/s geçmemeleri gerekir.

3/1

2

2

gB

Qdc