Carrier mobility of Si and Organic Materials

21
1 Organic Semiconductor EE 4541.617A 2009. 1 st Semester 2009 5 12 K. C. Kao and W. Hwang, Electrical Transport in Solids, (Pergamon, New York, 1981), p.159 Changhee Lee, SNU, Korea 1/41 Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected] 2009. 5.12. Organic Semiconductor EE 4541.617A 2009. 1 st Semester Electron mobility of Si Carrier mobility of Si and Organic Materials hole mobility of Perylene hole mobility of MPMP Changhee Lee, SNU, Korea 2/41 370 nm thick perylene crystal 8.7 um thick unordered layer of MPMP ( sublimed).

Transcript of Carrier mobility of Si and Organic Materials

1

Organic SemiconductorEE 4541.617A

2009. 1st Semester

2009 5 12

K. C. Kao and W. Hwang, Electrical Transport in Solids, (Pergamon, New York, 1981), p.159

Changhee Lee, SNU, Korea1/41

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

2009. 5.12.

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Electron mobility of Si

Carrier mobility of Si and Organic Materials

hole mobility of Perylene hole mobility of MPMP

Changhee Lee, SNU, Korea2/41

370 nm thick perylene crystal 8.7 um thick unordered layer of

MPMP ( sublimed).

2

Organic SemiconductorEE 4541.617A

2009. 1st Semester

d 2

Mobility Measurement Techniques

10 2−

)/( 2 Vscmμ 10 4− 10 6− 10 8− 100 102

TOFMobility in the bulk

d = 0.5~5 mm

FETMobility in a thin layer

d ~ 50 nm

τμ

Vd 2

=∴

Vdμ

τ2

=

Changhee Lee, SNU, Korea3/41

d 0.5 5 mmOther mobility measurement techniques• Dark injection in the space-charge limited current regime• I-V characteristics of space charge limited current • Transient EL• SHG measurement [T. Manaka, E. Lim, R. Tamura, M. Iwamoto, Nature Photon.1, 581–584 (2007).]……

Organic SemiconductorEE 4541.617A

2009. 1st SemesterMobility Measurement Techniques: Organic TFT

Changhee Lee, SNU, Korea4/41

T. N. Jackson, Penn State U.

3

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Light (hν)τ

μVd 2

=

Mobility measurement techniques: TOF-PC

Time-of-flight photoconductivityt =0

hυ------

++++++

------

++

+++

+0 < t < τ

------

+++++

+

t=τ

rren

t

g p y

N2 laser

VacuumCryostat

B/S

Sample

Si-PD

Trigger

Changhee Lee, SNU, Korea5/41

t =0 t=τ

0 < t < τ

Time

Pho

tocu

r

OscilloscopeBias VPC

gg

TOF Signal

RL

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTransport of charge carriers in organic materials

60

40

20

0

Phot

ocur

rent

(arb

. uni

ts)

100806040200

0.20

0.15

0.10

0.05

0.00hoto

curre

nt (a

rb. u

nits)

a-NPD Alq3

Gaussian transport Dispersive transport Fast

Slow

P 1.00.80.60.40.20.0

Time (μs)

Ph 806040200

Time (μs)

Dispersive transportGaussian transport

er D

ensi

ty

Trappingand release

Band States

Changhee Lee, SNU, Korea6/41

Distance

Carr

ie

Localized states

Hopping

Deep trap

Ref.) Harvey Scher, Michael F. Shlesinger and John T. Bendler, Physics today, Jan. p.26 (1991)

4

Organic SemiconductorEE 4541.617A

2009. 1st SemesterMobility Measurement Techniques: Transient EL

30

25

20

rb.u

nit)

57V

Al

PPP15

10

5

0

Ligh

t (x

10-3

ar

500450400350300250200150100500

Time (x10-9 s)

57V

19V27V

39V

42V

46V52V

240

220

Mobility from the delay time

τ=d2/ μV

ITO glass

PMT

Changhee Lee, SNU, Korea7/41

220

200

180

160

140

120

100

Tim

e Del

ay (n

s)

605040302010

1/V (x10-3 V-1)

Hole mobility

in the vacuum-deposited PPP:

ITO/PPP/Al: μ=4.5x10-6 cm2/Vs

G. W. Kang, C. H. Lee, W. J. Song, and C. Seoul, SPIE 4105, 362 (2001).

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTransient EL Mobility vs TOF-PC mobility in Alq3

Changhee Lee, SNU, Korea8/41

S. C. Tse, H. H. Fong, and S. K. So, J. Appl. Phys. 94, 2033 (2003)

For a thin layer of Alq3 (d<180 nm), it is found that td is affected by both the charging effect and carrier transit time through the Alq3 layer. For a thicker layer of Alq3 (d>200 nm), tdapproaches the intrinsic electron transit time through Alq3 .

5

Organic SemiconductorEE 4541.617A

2009. 1st SemesterSpace-charge-limited current

Hole only device

0.3 μm

d=0.13 μm

0.7 μm

OC1C10-PPV

Electron only device

3

2

89

dVJ roSCLC μεε=

d=0 22 m

ITO Au+

OC1C10-PPV-

Changhee Lee, SNU, Korea9/41

d=0.22 μm 0.37 μm

0.31 μm12

1

+

+

∝ m

m

dVJ

(a)Ca Ca

Poly(dialkoxy-p-phenylene vinylene) (OC1C10-PPV)P. W. M. Blom M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).

Organic SemiconductorEE 4541.617A

2009. 1st Semesterd

T it tiV R

++++++

Dark injection SCL transient current

Transient SCLC

Transit time Ohmic contact τ787.0=pt

PTPBpoly (tetraphenylbenzidine) PTPB

1.0

0.8

0.6

0.4i(t) (

arb.

uni

t)

Dark injection SCL transient currentτ787.0=pt

t

Changhee Lee, SNU, Korea10/41

M. Abkowitz, J. S. Facci, and M. Stolka, Appl. Phys. Lett. 63, 1892(1993).

0.2

0.01.00.80.60.40.20.0

Time (ms)

787.0pt

TOF-PC

S.C. Tse, S.W. Tsang, and S.K. So, J. Appl. Phys. 100, 063708 (2006).

6

Organic SemiconductorEE 4541.617A

2009. 1st SemesterMobility Measurement Techniques: dark charge injection

ITO/300nm m-MTDATA/Ag with ITO biased positively.

Edttr 786.0=

In a monopolar and single-layer configuration, the carrier transit time is shorter than in the absence of

space-charge effects due to the enhancement of the electric field at the leading edge of the carrier packet.

Etr μ

The transient current overshoots its steady-state value by a factor of 1.21 and starts at 0.44 times the

steady-state value.

Changhee Lee, SNU, Korea11/41

M. Stossel et al, Phys. Chem. Chem. Phys.1, 1791 (1999)A. Many and G. Rakavy, Phys. Rev. 126, 1980 (1962)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

nj.

Carrier injection efficiency

contact limiting-currentfor 1contact ohmicfor 1

current injected :efficiencyInjection

<=

=

ηη

ηSCLC

3

2

89

dVJ ro

SCLCμεε

=

Inje

ctio

n E

ffici

ency

ηin

Changhee Lee, SNU, Korea12/41

Hol

e

Hole Injection Barrier (eV)M. Abkowitz, J. S. Facci, J. Rehm, J. Appl. Phys. 1998, 83, 2670.

7

Organic SemiconductorEE 4541.617A

2009. 1st SemesterMobility Measurement Techniques: TRM-SHG

Vscm /25.0 2=μ

Changhee Lee, SNU, Korea13/41

T. Manaka, E. Lim, R. Tamura, M. Iwamoto, Nature Photon.1, 581 (2007).

T. Manaka, M. Nakao, D. Yamada, E. Lim and M. Iwamoto, Optics Express 15, 15964 (2008).

Organic SemiconductorEE 4541.617A

2009. 1st Semester

(1) Poole-Frenkel Model

Conduction band mxx =x

)(xV)(xV

Charge Transport in Disordered Organic Solids

EEePF

2/1

0

3

PF βπεε

φ =⎟⎟⎠

⎞⎜⎜⎝

⎛=Δ

Conduction band

edge at ETunneling

PFφΔedge at E=0

Zero field (E=0) E≠0

x

eEx−x

e

oεπε4

2

Changhee Lee, SNU, Korea14/41

Zero field (E 0) E≠0

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−=

TkE

TkEμF,T

B

PF

BPF expexp)( βμ EΔ : Activation energy at

E=0

: PF Mobility

: PF constant

PFμ

PFβ

0

3

PF πεεβ e

=

8

Organic SemiconductorEE 4541.617A

2009. 1st Semester

0

111TTTeff

−= : Empirical parameter

0T

(2) Gill’s modified Poole-Frenkel model

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−=

effeff TkE

TkEμF,T

B

PF

BPF expexp)( βμ

Charge Transport in Disordered Organic Solids

PVKpoly-n-vinylcarbazole

(hole conductor)

Nn

O2N C

O

NO2

Changhee Lee, SNU, Korea15/41

TNF2,4,6-trinitro-9-fluorenone

(electron acceptor)

NO2

W. D. Gill, J. Appl. Phys. 43, 5033 (1972).

Organic SemiconductorEE 4541.617A

2009. 1st Semester(3) Bassler’s Gaussian Disorder Model• The energy of each site is distributed in accordance with the Gaussian distribution• Energies of adjacent sites are uncorrelated and motion between sites is Markovian (no phase memory)• The transition rates for phonon-assisted tunneling (Miller and Abrahams):

⎪⎬⎫

⎪⎨⎧

>−

−−= jiji

kTRvW εεεε

α ),exp()2exp( εεj

Charge Transport in Disordered Organic Solids

α = inverse localization length, Rij = distance between the localized states, εi = energy at the state i.• Since the hopping rates are strongly dependent on both the positions and the energies of the localized states, hopping transport is extremely sensitive to structural as well as energetic disorder.

σLUMO

⎪⎭⎬

⎪⎩⎨

>=

ji

jijphij kTRvW

εεα

,1)2exp( εi

A. Miller, E. Abrahams, Phys. Rev. 120 (1960) 745. Hopping

0

5

ε

Changhee Lee, SNU, Korea16/41

H. Bässler, Phys. Status Solidi B 175, 15 (1993).

HOMO σ-1 0 1 2 3 4 5-10

-5 TkTk BB

2σε−=∞

log (t/to)

TkB

ε

9

Organic SemiconductorEE 4541.617A

2009. 1st Semester

TkB

σσ =∧

Hole mobility of TAPC embedded in BPPC matrix

Charge Transport in Disordered Organic Solids

: Energetic disorder: Positional disorder: Constant 2 9x10-4 (cm/V)1/2

σ

Changhee Lee, SNU, Korea17/41

radiuson localizaticarrier anddistance site-inter average where

),/2exp()( 2

==

−=

o

ooo aμ

ρρ

ρρρρ

H. Bässler, Phys. Status Solidi B 175, 15 (1993).M. Stolka, J. F. Janus and D. M. Pai, J. Phys. Chem. 88, 4707 (1984).

1.5)( ,32exp

32exp)(

1.5)( ,32exp

32exp)(

22

B

2

B

22

B

2

B

≥Σ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡Σ−⎟⎟

⎞⎜⎜⎝

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

<Σ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡Σ−⎟⎟

⎞⎜⎜⎝

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

ETk

CTk

μE,T

ETk

CTk

μE,T

o

o

σσμ

σσμ

: Constant ~2.9x10-4 (cm/V)1/2

: High temperature limit of the mobilityC

P. M. Borsenberger, L. Pautmeier and H. Bassler, J. Chem. Phys. 94, 5447 (1991).

Organic SemiconductorEE 4541.617A

2009. 1st Semester

MPMPbis(4-N,N-diethylamino-2-methylphenyl)-4-

methylphenylmethane (thickness~8.7 μm)

Hole mobility of MPMP

Charge Transport in Disordered Organic Solids

Changhee Lee, SNU, Korea18/41

P. M. Borsenberger, L. Pautmeier and H. Bässler, J. Chem. Phys. 95, 1258 (1991)

10

Organic SemiconductorEE 4541.617A

2009. 1st SemesterDisorder parameters• σ: The width of the DOS. Random distribution of both permanent and van der Waals dipoles lead to local fluctuations in electric potential increase σ by an amount proportional to the square root of the dipole concentration and to the strength of the dipole moment. reduce the carrier mobility. The smaller dipolar interaction is better for the carrier transport. • Σ: The degree of positional disorder. Amorphous morphology of molecular solids or doped polymers lead to the variation in the intermolecular distances.

Disorder parameters

μ TAPC doped polystyrene >> μ TAPC doped polycarbonate

Dipole moment:• TAPC [1,1-bis(di-4-tolylaminophenyl)cyclohexane] = 1.0 D• PC (bisphenol-A-polycarbonate) = 1.0 D• PS (polystyrene) = 0.1 D

• Larger dipolar interaction increases both σ and Σ.• The elimination of random dipolar fields due to

Changhee Lee, SNU, Korea19/41

P. M. Borsenberger and H. Bässler, J. Chem. Phys. 95, 5327 (1991).

• The elimination of random dipolar fields due to static dipole moments of PC reduces both σ and Σand thereby increases the mobility.

Organic SemiconductorEE 4541.617A

2009. 1st SemesterDisorder parameters

Changhee Lee, SNU, Korea20/41

A. Dieckmann, H. Bässler and P. M. Borsenberger, J. Chem. Phys. 99, 8136 (1993).

11

Organic SemiconductorEE 4541.617A

2009. 1st SemesterEffect of dipolar molecules on carrier mobilities

• Conduction through the dopant.• Mobility is strongly affected by the dipole moment of the dopant for holes and electrons

Changhee Lee, SNU, Korea21/41

A. Goonesekera and S. Ducharme, J. Appl. Phys. 85, 6506 (1999)

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTemperature dependence of the hole mobility of PPVs

Changhee Lee, SNU, Korea22/41

P.W.M. Blom, M.C.J.M. Vissenberg, Materials Science and Engineering 27, 53-94 (2000)

12

Organic SemiconductorEE 4541.617A

2009. 1st Semester

⎩⎨⎧ <

=+−

−− τα

α

tttt ,

(t)J )1(

)1(

ph

(4) Scher-Montroll dispersive transport model

Trapping

Band Statesα−≈Ψ tt)(Continuous time random walk (CTRW)

Charge Transport in Disordered Organic Solids

⎩ >+ τα tt ,)1(ppp gand release

Localized statesDeep trap

oTT

Disappearance of plateau

hoto

curr

ent Slope = -(1-

α)

log

i ph

ατ1

)(EL

Changhee Lee, SNU, Korea23/41

Time

t =0 t =τ Time

Ph

Slope = -(1+α)

log tt =0 t =τ

Scher and Montroll, Phys. Rev. B 12, 2455 (1975)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

ατ1

)(EL

Scher-Montroll model of dispersive transport

)45.01( −−t

)45.01( +−t2.2 45.011

=

Changhee Lee, SNU, Korea24/41

H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975)

13

Organic SemiconductorEE 4541.617A

2009. 1st SemesterDispersive Transport in a-Selenium

Changhee Lee, SNU, Korea25/41

G. Pfister, Phys. Rev. Lett. 36, 271 (1976)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Changhee Lee, SNU, Korea26/41

14

Organic SemiconductorEE 4541.617A

2009. 1st SemesterCharge –voltage characteristics of organic semiconductors

Injection limited

Thermionic emission]1)[exp( −=

TkeVJJ

Bs )exp(2*

TkeTAJB

bns

φ−=

Current

Bulk Limited

Ohmic (Doped semiconductor)EepJ μ=

Tunneling)exp(2

EbEJ −

≈qh

qmb3

)(28 2/3* φπ=

Changhee Lee, SNU, Korea27/41

Bulk Limited

SCLC (undoped semicond. or Insulator)

3

2

89

dVJ roSCLC μεε=

Organic SemiconductorEE 4541.617A

2009. 1st Semester

PPV

AuITO

V=0

V>0

Space-charge-limited current (SCLC)

velocitydensity)charge(JSCLC ×≈

Space-charge-limited current (SCLC)

OLED acts as a capacitor

V>0

V>>0

+

PPV

AuITO +

+

++

+++++

2

2

)( )area

(

velocity density)charge(

VdVV

d

Ed

CVJ

ro

ro

SCLC

μεε

μεε

μ

⋅⋅⋅=

×⋅

=

ερ

−=2

2

dxVd

potentialField ~ 0 at contact

Changhee Lee, SNU, Korea28/41

+

PPV Au

ITO +

++

++

+++

+

+

++

+++++

3 dro=

3

2

89

dVJ roSCLC μεε=

xd

ohmic

SCLC

15

Organic SemiconductorEE 4541.617A

2009. 1st SemesterOhmic Contact (1)

field. applied external no is theresince

,0 :equation flowCurrent

. :equationPoisson

dxdnF - qDqnJ

qndxdF

==

=

μ

ε

figurerightin theconditionboundarytheFrom

log

used. isrelation Einstein thewhere

,

pp

0.Fdx

Tkq

nn

qTk

μD

FdxTk

qFdxDμ

ndn

x

Bs

B

B

=∴

=

==∴

∫:cathodevirtual

Changhee Lee, SNU, Korea29/41

law.Boltzmann i.e., ],exp[

figure,right in thecondition boundary theFrom

0

Tkχ)ψ(x)-(φnn

.Fdxqχ)ψ(x)-(φ

B

ms

x

m

−−=∴

−=− ∫ .dxdV 0

:cathode virtual

=

Organic SemiconductorEE 4541.617A

2009. 1st Semester

when0conditionboundarytheusingand

)2( gmultiplyinafter sidesboth gIntegratin

].exp[22

2

2

χφψdψdxdψ

Tkχ)ψ(x)-(φnqnq

dxdFq

dxψd

B

ms

−==

−−−=−=−=

εε

Ohmic Contact (2)

)}].2

{exp(sin2

)[2

exp()2(W

regionon accumulati theof width the givesequation thisgIntegratin

]}.exp[]{exp[2)(

,when 0condition boundary theusing and

12/12

22

Tkφ

Tkχφ

NqTk

Tk)φ(

Tkχ)ψ(x)-(φTknq

dxdψ

χφψdx

B

m

Bc

B

B

m

B

mBs

−−−

−=

−−−

−−=

==

− ϕπε

ϕε

Changhee Lee, SNU, Korea30/41

).2

exp()2(2

W

, levelenergy discrete ain confined trapsshallow containing torssemiconducFor

).2

exp()2(2

W

,4 If

2/12

2/12

TkEχφ

NqTk

ETkχφ

NqTk

Tkφ

B

t

t

B

t

Bc

B

Bm

−−≈

−≈

>−

επ

επϕ

16

Organic SemiconductorEE 4541.617A

2009. 1st SemesterSpace-charge-limited current

.)()( :equation flowCurrent

.)]()([)( :equationPoisson

density trapoffunction on Distributi

xFxpqJ

xpxpqdx

xdF(E)S(x).Nh(E,x)

p

t

t

μεε

ρ

=

+==

=oφ'ieV

'x

aeV

0 :electrode Virtual'

==xxdx

2)(

.2)]([)]0([)]([ .2)]([)()(2

,0)(For

.exp ,)()(

)()(q

2222

xJxF

xJxFxFxFJdx

xFddx

xdFxF

xp

]Tk

E[Np(x)dEEh(E,x)fxp

pq

pp

t

B

Fv

E

E pt

p

pu

l

εμεμ

μ

=∴

===−∴==

=

−== ∫ ElectrodeOrganic semiconductor

Electrode

Changhee Lee, SNU, Korea31/41

law.Gurney -Mott .89

)( condition,Boundary

.)(

3

20

dVJ

.dxxFV

xxF

p

d

p

εμ

εμ

=

=

=∴

The distance Wa between the actual electrode surface and the virtual anode (-dV/dx=F=0) is so small that we can assumeF(x=Wa 0)=0 for simplicity.

(no trap)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

ITO/PPV/Au hole-only devices

3

2

89

dVJ roSCLC μεε=

3&/1050iFit 26− V

Space-charge-limited current

3 & /105.0usingFit 26 =×= rVscm εμ

⎟⎟⎠

⎞⎜⎜⎝

⎛ −Δ−=

effB

PFo exp)(

TkFEμF,T βμ

Changhee Lee, SNU, Korea32/41

P.W.M. Blom, M.C.J.M. Vissenberg, Materials Science and Engineering 27, 53-94 (2000)

17

Organic SemiconductorEE 4541.617A

2009. 1st Semester

ofonset or the law sOhm' from departure theofonset The

.89

such thatt predominan isspecimen theinside carriers free generated thermallyofdensity theif holds law sohm' field, lowAt

3

2

ppo

o

dV

dVqp

p

εμμ >>Jlog

Space-charge-limited current

Vat V

ansit timecarrier tr when theplace takes

regime SCL the toohmic thefromn transitio theTherefore,

.or 89

89

V

have eequation w thisgrearranginBy

.98V when place takesconduction SCL the

2

t

dt

2

2

opop

o

d

qpd

dqp

τ

ττσε

με

μ

ε

=

≈==

=

Ω

Ω

Ω

VJ ∝

2VJ ∝

Changhee Lee, SNU, Korea33/41

. timerelaxation dielectric the toequalely approximat is

V

do

p

σετ

μ

=

Ω

K. C. Kao and W. Hwang, Electrical Transport in Solids, (Pergamon, New York, 1981), p.159

t.predominan is conduction SCLC ,At t.predominan is conduction ohmic ,At

dt

dt

ττττ

<>

ε

2

98V dqpo=Ω

Vlog0

Organic SemiconductorEE 4541.617A

2009. 1st Semester

,equation Continuity

. timerelaxation dielectric d σετ

Jt

)p(pq o

o

⋅−∇=∂+∂

=

Space-charge-limited current

ignored. becan term2nd the, timerelaxation dielectric the tocomparable

timeain specimen over theuniformly spreads p and If

.)(

).()(Jby given iscurrent where

d

2

μσετ

εμ

μ

qp

pp

pDpqp

tp

ppqDFppqt

o

o

pp

oppo

=

<

∇+−=∂∂

+∇−+=∂

Changhee Lee, SNU, Korea34/41

m.equilibriuestablish -re carrier to for the required time theof measure a is

.exp0 .)(

τεμ

)(-t/)p(tp(t)pqp

tp

dpo ==∴−≈

∂∂

18

Organic SemiconductorEE 4541.617A

2009. 1st Semester

,)(/1

)()(density charge Trapped

)()(),(levelsenergy discrete multipleor singlein confined Traps

xpNxSNxp

xSEENxEh

tt

tt

tt

θ

δ

+≈

−=

Space-charge-limited current

trapsofon distributi spatial uniform-non Ignoring

.89

. where

)(/1

3

2

dVθJ

eNNg

θ

xpN

efftroSCLC

kTE

t

vpt

tt

t

μεε

θ

=

=

+

ECB

Changhee Lee, SNU, Korea35/41

.89

,

3

2

dVθJ

ddpp

troSCLC

efft

t

μεε=

=+

=

EVB

Discrete trap levels

Organic SemiconductorEE 4541.617A

2009. 1st SemesterSpace-charge-limited current

Changhee Lee, SNU, Korea36/41

19

Organic SemiconductorEE 4541.617A

2009. 1st Semester

DOS

Energy

Space-charge-limited current: analytic solutionkT

EE

cf

Fc

eNn−

−=

ccE

FDkT

EEt

t dEEfeTk

Nn∞−

−−

= ∫ )(

Space-charge-limited current

EC (ELUMO)

EF

t

c

kTEE

tt e

kTNEG

−−

=)(

Et

Fc

Fc

kTEE

t

EkT

EE

tB

t

tB

eN

dEeTk

N

Tk

−−

∞−

−−

=

≈ ∫

T 1

Changhee Lee, SNU, Korea37/41

tkT

Exponential trap distribution

TTm

Nn

NNn

Nn

t

m

c

ft

TT

c

ftt

t

=

=≈∴1

)()(

Organic SemiconductorEE 4541.617A

2009. 1st Semester

NJN

dxdFF

xFxnqJNnqNxqnxnxnq

dxxdF

mtm

f

m

c

f

o

t

o

t

o

tf

=

=

≈≈+

=

/1/1

/1

.)()(

.)()( :equation flowCurrent

.)()()]()([)( :equationPoisson

μεεεεεε Jlog

LawGurneyMott

Space-charge-limited current

.dxxFV

NqJN

mmxF

xNqJNF

mm

Nqdx

d

m

c

mm

o

t

m

co

tmm

co

∫=

+=∴

=+

++

+

0

11

1

/11

)( condition,Boundary

.)()1()(

.)(1

)(

μεε

μεε

μεε

3

2

dV

89J

LawGurney -Mott

εμ=

Changhee Lee, SNU, Korea38/41

. ,)1

()112( 12

111

TTm

dV

Nmm

mmNqJ t

m

mm

t

omc

m =++

+= +

++− εεμ

ΩV Vlog0TFLV

.)12

1)(1()(

SCLC Trapped Ohmic112

mm

m

v

o

ro

t

mm

mm

NpNqdV

+

Ω +++

=

εε .])12

1()1(89[

SCLC free-Trap SCLC Trapped

11

12

−+

+++

=

mmm

v

mt

roTFL m

mm

mNNqdV

εε

20

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Ca/PPV/Ca electron-only devices

Space-charge-limited current

Trap-limited SCLCTrap-free SCLC

Changhee Lee, SNU, Korea39/41

P.W.M. Blom, M.C.J.M. Vissenberg, Materials Science and Engineering 27, 53-94 (2000)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

. ,

SCLC limited-Trap

12

1

TTm

dVNNJ t

m

mm

tv =∝ +

+−μ

318

eV 15.0≈tE

SCL current with an exponential trap distribution

3-18 cm10≈tN

Changhee Lee, SNU, Korea40/41P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin and M. E. Thompson, J. Appl. Phys. 79, 7991

(1996).

21

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTrap-limited SCL current with field-dependent μ

Changhee Lee, SNU, Korea41/41

W. Brütting, S. Berleb and A. G. Mückl, Org. Electronics 2, 1 (2001)