Cardiovascular Physiology

103
CARDIOVASCULAR PHYSIOLOGY Dr. Poland Room 3-007, Sanger Hall Phone: 828-9557 E-mail: [email protected]

description

 

Transcript of Cardiovascular Physiology

Page 1: Cardiovascular Physiology

CARDIOVASCULAR PHYSIOLOGY

Dr. Poland

Room 3-007, Sanger Hall

Phone: 828-9557

E-mail: [email protected]

Page 2: Cardiovascular Physiology

CARDIOVASCULAR SYSTEM

HEART(PUMP)

VESSELS(DISTRIBUTION SYSTEM)

RE

GU

LA

TIO

N

AUTOREGULATION

NEURAL

HORMONAL

RENAL-BODY FLUIDCONTROL SYSTEM

Page 3: Cardiovascular Physiology

PULMONARYCIRCULATION

1. LOW RESISTANCE2. LOW PRESSURE

(25/10 mmHg)

SYSTEMICCIRCULATION

1. HIGH RESISTANCE2. HIGH PRESSURE

(120/80 mmHg)

PARALLELSUBCIRCUITS

UNIDIRECTIONALFLOW

Page 4: Cardiovascular Physiology

VEINS

CAPACITYVESSELS

HEART

80 mmHg 120 mmHg

SYSTOLE

DIASTOLE

ARTERIES (LOW COMPLIANCE)

CAPILLARIES

Page 5: Cardiovascular Physiology

THE SYSTEMIC CIRCULATION

CAPACITY VESSELS

Page 6: Cardiovascular Physiology

NORMAL

Page 7: Cardiovascular Physiology

Na+

K+Na+

K+

-70 mV

RESTING

THRESHOLD

-0

Graduallyincreasing PNa

AUTOMATICITY

Page 8: Cardiovascular Physiology

PURKINJE FIBERS

BUNDLEBRANCHES

Sino-atrial(SA) node

Atrio-ventricular (AV) node

Page 9: Cardiovascular Physiology

INTERCALATED DISC (TIGHT JUNCTION)

Page 10: Cardiovascular Physiology

PACEMAKERS (in order of their inherent rhythm)

• Sino-atrial (SA) node

• Atrio-ventricular (AV) node

• Bundle of His

• Bundle branches

• Purkinje fibers

Page 11: Cardiovascular Physiology

ME

MB

RA

NE

PO

TE

NT

IAL

(m

V)

-90

0

0

12

3

4

TIME

PHASE0 = Rapid Depolarization (inward Na+ current) 1 = Overshoot2 = Plateau (inward Ca++ current)

3 = Repolarization (outward K+ current)4 = Resting Potential

Mechanical Response

Page 12: Cardiovascular Physiology

ME

MB

RA

NE

PO

TE

NT

IAL

(m

V)

0 0

-50 -50

-100 -100

SANVENTRICULULARCELL

ACTION POTENTIALS

0

12

3

4

4

0 3

Page 13: Cardiovascular Physiology

SINGLE VENTRICULAR ACTION POTENTIAL

ECGP

Q S

T

R

1 mV

Repolarization of ventriclesDepolarization of ventricles

Depolarization of atria

ENDOCARDIAL FIBER

EPICARDIAL FIBER

ATRIALFIBER

Page 14: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

Page 15: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

II = RA vs. LL (+)

Page 16: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

II = RA vs. LL (+)

III = LA vs. LL (+)

Page 17: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

II = RA vs. LL (+)

III = LA vs. LL (+)

3 Augmented Limb Leads:

aVR = (LA-LL) vs. RA(+)

Page 18: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

II = RA vs. LL (+)

III = LA vs. LL (+)

3 Augmented Limb Leads:

aVR = (LA-LL) vs. RA(+)

aVL = (RA-LL) vs. LA(+)

Page 19: Cardiovascular Physiology

LARA

LL

ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly)

3 Bipolar Limb Leads:

I = RA vs. LA (+)

II = RA vs. LL (+)

III = LA vs. LL (+)

3 Augmented Limb Leads:

aVR = (LA-LL) vs. RA(+)

aVL = (RA-LL) vs. LA(+)

aVF = (RA-LA) vs. LL(+)

Page 20: Cardiovascular Physiology

V1 V2V3

V4

V5

V6

6 PRECORDIAL (CHEST) LEADS

Spine

Sternum

Page 21: Cardiovascular Physiology

ECG Recordings: (QRS vector---leftward, inferiorly and posteriorly

3 Bipolar Limb Leads I = RA vs. LA(+) II = RA vs. LL(+) III = LA vs. LL(+)3 Augmented Limb Leads aVR = (LA-LL) vs. RA(+) aVL = (RA-LL) vs. LA(+) aVF = (RA-LA) vs. LL(+)

6 Precordial (Chest) Leads: Indifferent electrode (RA-LA-LL) vs.chest lead moved from position V1 through position V6.

Page 22: Cardiovascular Physiology

LATE DIASTOLE

ATRIALSYSTOLE

ISOMETRIC VENTRICULARCONTRACTION

VENTRICULAR EJECTION

ISOMETRICVENTRICULARRELAXATION

THE CARDIAC CYCLE

DIASTOLE

Page 23: Cardiovascular Physiology

ISOVOLUMETRIC RELAXATIONRAPID INFLOW

DIASTASISATRIAL SYSTOLE

EJECTION

ISOVOLUMETRICCONTRACTION

SYSTOLE DIASTOLE SYSTOLE

AORTICPRESSURE

ATRIALPRESSURE

VENTRICLEPRESSURE

ECG

PHONO-CARDIOGAM

VO

LU

ME

(m

l)P

RE

SS

UR

E (

mm

Hg)

Page 24: Cardiovascular Physiology

MEASUREMENT OF CARDIAC OUTPUT

THE FICK METHOD:

VO2 = ([O2]a - [O2]v) x Flow

Flow =VO2

[O2]a - [O2]v

Spirometry (250 ml/min)

Arterial Blood (20 ml%)Pulmonary Artery Blood (15 ml%)

CARDIAC OUTPUT

PERIPHERALBLOOD FLOW

VENOUS RETURN

PULMONARY BLOOD FLOW

Page 25: Cardiovascular Physiology

CARDIAC OUTPUT (Q) =VO2

[O2]a - [O2]v

250 ml/min20 ml% - 15 ml%

=

= 5 L/min

.

Q = HR x SV.

SV =Q

HR

.

= 5 L/min70 beats/min

= 0.0714 L or 71.4 ml

CARDIAC INDEX = Qm2 body surface area

.

5 L/min1.6 m2=

= 3.1 L/min/m2

Page 26: Cardiovascular Physiology

THE HEART AS A PUMP• REGULATION OF CARDIAC OUTPUT

– Heart Rate via sympathetic & parasympathetic nerves– Stroke Volume

• Frank-Starling “Law of the Heart”

• Changes in Contractility

• MYOCARDIAL CELLS (FIBERS)– Regulation of Contractility– Length-Tension and Volume-Pressure Curves– The Cardiac Function Curve

Page 27: Cardiovascular Physiology

CARDIAC OUTPUT = STROKE VOLUME x HEART RATE

Autoregulation (Frank-Starling “Law of the Heart”)

Contractility

SympatheticNervous System

ParasympatheticNervous System

Page 28: Cardiovascular Physiology

STRIATED MUSCLE

CARDIAC MUSCLE

SKELETAL MUSCLE

- Functional Syncytium- Automaticity

- Motor Units- Stimulated by Motor Nerves

Page 29: Cardiovascular Physiology

STRUCTURE OF A MYOCARDIAL CELL

Mitochondria Sarcolemma

T-tubule

SRFibrils

Page 30: Cardiovascular Physiology

SARCOLEMMA

10%Mitochondria

THICKMYOFILAMENT

THIN MYOFILAMENT

SRCa++

T-t

ub

ule

20%

80%

Page 31: Cardiovascular Physiology

REGULATAION OF CONTRACTILITY

• Recruitment of motor units

• Increase frequency of firing of motor nerves

• Calcium to trigger contraction

Page 32: Cardiovascular Physiology

INCREASING HEART RATE INCREASES CONTRACTILITY

NormalHeart Rate

Ca++ Ca++

FastHeart Rate Ca++ Ca++ Ca++ Ca++

Page 33: Cardiovascular Physiology

SERIES ELASTIC ELEMENTS

CONTRACTILE COMPONENT

(ACTIVE TENSION)

PARALLEL ELASTIC ELEMENTS

(PASSIVE TENSION)

TOTAL TENSION

Page 34: Cardiovascular Physiology

LENGTH-TENSION CURVE

TOTAL TENSION

ACTIVE TENSION

PASSIVE TENSION

OPTIMAL LENGTH (Lo)

RESTING LENGTHEQUILIBRIUM LENGTH

LENGTHLENGTH

TENSION

Page 35: Cardiovascular Physiology

TENSION

SARCOMERE LENGTH ()

Page 36: Cardiovascular Physiology

TE

NS

ION

MUSCLE LENGTH

PASSIVETENSION

ACTAIVE TENSION

TOTAL TENSION

CARDIAC MUSCLE

Page 37: Cardiovascular Physiology

PR

ES

SU

RE

DIASTOLICPRESSURE CURVE

SYSTOLIC PRESSURE CURVE

HEART

End Diastolic VolumeEnd Systolic Volume

IsovolumetricPhase

Isotonic (Ejection) Phase

StrokeVolume

Pre-load

After-load

Page 38: Cardiovascular Physiology

PR

ES

SU

RE

DIASTOLICPRESSURE CURVE

SYSTOLIC PRESSURE CURVE

HEART

End Diastolic VolumeEnd Systolic Volume

IsovolumetricPhase

Isotonic (Ejection) Phase

StrokeVolume

Pre-load

After-load

INCREASED

CONTRACTILIT

Y

Page 39: Cardiovascular Physiology

PR

ES

SU

RE

DIASTOLICPRESSURE CURVE

SYSTOLIC PRESSURE CURVE

HEART

End Diastolic VolumeEnd Systolic Volume

IsovolumetricPhase

Isotonic (Ejection) Phase

StrokeVolume

Pre-load

After-load

DECREASED

CONTRACTILIT

Y

Page 40: Cardiovascular Physiology

PR

ES

SU

RE

DIASTOLICPRESSURE CURVE

SYSTOLIC PRESSURE CURVE

HEART

End Diastolic VolumeEnd Systolic Volume

IsovolumetricPhase

Isotonic (Ejection) Phase

StrokeVolume

Pre-load

After-load

INCREASED

FILLIN

G

Page 41: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

ST

RO

KE

VO

LU

ME

DIASTOLIC FILLING

Cardiac Output = Stroke Volume x Heart Rate

ConstantIf:

Then: CO reflects SV

Right Atrial Pressure (RAP) reflects Diastolic Filling

Page 42: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

RAP mmHg

15-

10-

5-

-4 0 +4 +8

Volume

Pre

ssur

e

THE FRANK- STARLING “LAW OF THE HEART”

Page 43: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

RAP mmHg

15-

10-

5-

-4 0 +4 +8

THE FRANK- STARLING “LAW OF THE HEART”

IncreasedContractility

Page 44: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

RAP mmHg

15-

10-

5-

-4 0 +4 +8

THE FRANK- STARLING “LAW OF THE HEART”

DecreasedContractility

Page 45: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

RAP mmHg

15-

10-

5-

-4 0 +4 +8

THE FRANK- STARLING “LAW OF THE HEART”

IncreasedHeart Rate

Page 46: Cardiovascular Physiology

CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

RAP mmHg

15-

10-

5-

-4 0 +4 +8

THE FRANK- STARLING “LAW OF THE HEART”

DecreasedHeart Rate

Page 47: Cardiovascular Physiology

P1 P2

P1 > P2

FLOW

FLOW = PR

P = FLOW x R

R =

mm Hg

L/minor

ml/secmm Hgml/sec

Peripheral Resistance Units (PRU)

PFLOW

Page 48: Cardiovascular Physiology

LAMINAR or STREAMLINE FLOW

P2P1

P1 > P2

-Cone Shaped Velocity Profile-Not Audible with a Stethoscope

Page 49: Cardiovascular Physiology

MEASURING BLOOD PRESSURETURBULENT FLOW

1. Cuff pressure > systolic blood pressure--No sound.2. The first sound is heard at peak systolic pressure.3. Sounds are heard while cuff pressure < blood pressure.4. Sound disappears when cuff pressure < diastolic pressure.

Page 50: Cardiovascular Physiology

RESISTANCES IN SERIESRT = RA + RC + RV

RESISTANCES IN PARALLEL

R1

R2

R3

PAPV

FlowT = Flow1 + Flow2 + Flow3

PRT

PR1

PR2

PR3

= + +

1 RT

1 R1

1 R2

1 R3

= + +

1 R1

1 R2

1 R3

RT1

+ +=

Page 51: Cardiovascular Physiology

If: R1 = 2; R2 = 4; R3 = 6 PRU’s

Then a series arrangement gives:

RT = R1 + R2 + R3

RT = 12 PRU’s

But a parallel arrangement gives:

RT = =1.94 PRU’s

1

1 R1

1 R2

1 R3

+ +

Page 52: Cardiovascular Physiology

v = Pr2 /8l

Q = vr2

Poiseuille's Law

Pr4

8lQ =

PRFlow =

R = 8l/r4

Page 53: Cardiovascular Physiology

TOTAL PERIPHERAL RESISTANCE

TPR = Aortic Pressure - RAPFLOW

TPR = 100 - 0 mmHg 83.3 ml/sec (5 L/min)

= 1.2 PRU’s

SYSTEMIC CIRCULATION:

PULMONARY CIRCULATION:

Pul. R. =Pul. Art. P. - LAPFLOW

Pul. R. = 15 - 5 mmHg83.3 ml/sec

= 0.12 PRU’s

Page 54: Cardiovascular Physiology

VASCULAR COMPLIANCEC =

VP

PR

ES

SU

RE

(m

mH

g)

VOLUME (L)

1 2 3 4

Arteries

Veins

100- Sym

Sym

Cv = 24 x Ca

Ca = =2.5 ml/mmHg

Cv = = 60 ml/mmHg

250 ml100 mmHg

300 ml5 mmHg

Sym

Sym

Page 55: Cardiovascular Physiology

MEAN CIRCULATORY PRESSURE

PR

ES

SU

RE

(m

mH

g)

7-

1 2 3 4 5 6

UnstressedVolume

Stressed Volume

VOLUME (L)

MCP = 7 mmHg

Page 56: Cardiovascular Physiology

CAPILLARIES

• Pressure inside is 35 to 15 mmHg

• 5% of the blood is in capillaries

• exchange of gases, nutrients, and wastes

• flow is slow and continuous

Page 57: Cardiovascular Physiology

Metarteriole

Arteriole

PrecapillarySphincters

Capillaries

Venule

?

Page 58: Cardiovascular Physiology

VASOMOTION = Intermittent flow due to constriction-relaxation cycles of precapillary shpinctersor arteriolar smooth muscle (5 - 10/min)

AUTOREGULATION OF VASOMOTION:

1. Oxygen Demand Theory (Nutrient Demand Theory)O2 is needed to support contraction (closure)

2. Vasodilator TheoryVasodilator substances produced (via O2)e.g. Adenosine Heart CO2 Brain Lactate, H+, K+ Skeletal Muscle

3. Myogenic Activity

Page 59: Cardiovascular Physiology

DIFFUSION BETWEEN BLOOD & INTERSTITIAL FLUID

Plasma ProteinsBLOOD

O2 CO2 GlucoseINTERSTITIAL

FLUID

CELL

active transport

Page 60: Cardiovascular Physiology

FLUID BALANCE

40-

30-

20-

10-

0-

PR

ES

SU

RE

(m

mH

g)Filtration vs. Reabsorption

Outward Forces:1. Capillary blood pressure (Pc = 35 to 15 mmHg)2. Interstitial fluid pressure (PIF = 0 mmHg)3. Interstitial fluid colloidal osmotic pressure (IF = 3 mmHg)

TOTAL = 38 to 18 mmHgInward Force:1. Plasma colloidal osmotic pressure (C = 28 mmHg)

Page 61: Cardiovascular Physiology

CAPILLARY FLUID SHIFT

Pout > c Pout < c

Pc Pc

FAVORS FILTRATION FAVORS REABSORPTION

PULMONARY CIRCULATION

Page 62: Cardiovascular Physiology

FLUID BALANCE

40-

30-

20-

10-

0-

PR

ES

SU

RE

(m

mH

g)Filtration vs. Reabsorption

Filtration Reabsorption

Vialymphatics

RADIAL FLOW

Page 63: Cardiovascular Physiology

Anchoring Filaments

“PUMP” Compression Smooth muscle contraction

2 - 4 L/day ( 125 ml/hr)

LYMPHATIC CAPILLARY

Page 64: Cardiovascular Physiology

Effects of gravity on arterial and venous pressures.Each cm of distance produces a 0.77 mmHg change.

Sphincters protectcapillaries

VENOUS PUMP keeps PV < 25 mm Hg

Veins Arteries

190 mm Hg

100 mm Hg0

Page 65: Cardiovascular Physiology

ARTERIESVEINS (RAP)

7 mmHg7 mmHg

RAP

Art. BP

Peripheral Blood Flow

HEART

CO = PBF

Page 66: Cardiovascular Physiology

Cv = 24 x Ca P RAP Pv Pa P= Pa - Pv TPR PBF=TPR(mmHg) (mmHg) (mmHg) (mmHg) (PRU’s) (ml/sec)

7 7 7 0 1.2 0 6 31 25 1.2 20.8 5 55 50 1.2 41.7 4 79 75 1.2 62.5 0 3 103 100 1.2 83.3 (5 L/min)

RELATIONSHIP BETWEEN RAP and PBF

Page 67: Cardiovascular Physiology

THE VASCULAR FUNCTION CURVE

10-

5-

0-

PBFor

VENOUSRETURN(L/min)

-4 0 +4 +8RAP (mmHg)

Page 68: Cardiovascular Physiology

WAYS TO ALTER THE VASCULAR FUNCTION CURVE

• CHANGE THE MEAN CIRCULATORY PRESSURE

• CHANGE BLOOD VOLUME

• CHANGE VENOUS CAPACITY

• CHANGE TOTAL PERIPHERAL RESISTANCE

Page 69: Cardiovascular Physiology

MEAN CIRCULATORY PRESSURE

PR

ES

SU

RE

(m

mH

g)

7-

1 2 3 4 5 6

UnstressedVolume

Stressed Volume

BLOOD VOLUME (L)

VOLUME MCP

VOLUME MCP

Normal

Hemorrhage

Infusion

Page 70: Cardiovascular Physiology

MEAN CIRCULATORY PRESSURE

PR

ES

SU

RE

(m

mH

g)

7-

1 2 3 4 5 6

UnstressedVolume

Stressed Volume

BLOOD VOLUME (L)

Normal

VENOCONSTRICTION

Page 71: Cardiovascular Physiology

MEAN CIRCULATORY PRESSURE

PR

ES

SU

RE

(m

mH

g)

7-

1 2 3 4 5 6

UnstressedVolume

Stressed Volume

BLOOD VOLUME (L)

Normal

VENODILATION

Page 72: Cardiovascular Physiology

Cv = 24 x Ca P RAP Pv Pa P= Pa - Pv TPR PBF=TPR(mmHg) (mmHg) (mmHg) (mmHg) (PRU’s) (ml/sec)

7 7 7 0 1.2 0 6 31 25 1.2 20.8 5 55 50 1.2 41.7 4 79 75 1.2 62.5 0 3 103 100 1.2 83.3 (5 L/min)

8 8 8 0 1.2 0 7 32 25 1.2 20.8 6 56 50 1.2 41.7 5 80 75 1.2 62.5 4 104 100 1.2 83.3 (5 L/min) 0 3 128 125 1.2 104.2 (6.25 L

min

RELATIONSHIP BETWEEN RAP and PBF

MCP

Page 73: Cardiovascular Physiology

THE VASCULAR FUNCTION CURVE

10-

5-

0-

PBFor

VENOUSRETURN(L/min)

-4 0 +4 +8RAP (mmHg)

MCP

MCP

Blood Volumeor

Venoconstriction

Blood Volumeor

Venodilation

Page 74: Cardiovascular Physiology

Cv = 24 x Ca P RAP Pv Pa P= Pa - Pv TPR PBF=TPR(mmHg) (mmHg) (mmHg) (mmHg) (PRU’s) (ml/sec)

7 7 7 0 1.2 0 6 31 25 1.2 20.8 5 55 50 1.2 41.7 4 79 75 1.2 62.5 0 3 103 100 1.2 83.3 (5 L/min)

7 7 7 0 2.0 0 6 31 25 2.0 12.5 5 55 50 2.0 25.0 4 79 75 2.0 37.5 0 3 103 100 2.0 50.0 (3 L/min)

RELATIONSHIP BETWEEN RAP and PBF

TPR

Page 75: Cardiovascular Physiology

THE VASCULAR FUNCTION CURVE

10-

5-

0-

PBFor

VENOUSRETURN(L/min)

-4 0 +4 +8RAP (mmHg)

TPR

TPR

Vasoconstriction

Vasodilation

Page 76: Cardiovascular Physiology

CARDIAC & VASCULAR FUNCTION CURVES

RAP mmHg

15-

10-

5-

-4 0 +4 +8

CARDIACOUTPUT

or

PERIPHERALBLOOD FLOW[Venous Return]

(L/min)

Page 77: Cardiovascular Physiology

CHANGES IN CARDIOVASCULAR

PERFORMANCE

BY ALTERING THE CARDIAC FUNCTION CURVE- CHANGING CONTRACTILITY- CHANGING HEART RATE

BY ALTERING THE VASCULAR FUNCTION CURVE- CHANGING MEAN CIRCULATORY PRESSURE

Blood VolumeVenous Capacity

- CHANGING TOTAL PERIPHERAL RESISTANCE

Page 78: Cardiovascular Physiology

MOTOR CORTEXHYPOTHALAMUS

VASOMOTOR CENTERPRESSOR AREA

DEPRESSOR AREACARDIOINHIBITORY AREA

Vagus

HEARTArterioles

VeinsAdrenalMedulla

BaroreceptorsCarotid SinusAortic Arch

ChemoreceptorsCarotid BodiesAortic Bodies

Bainbridge Reflex ( Heart Rate)Atrial Receptors Volume Reflex ( Urinary OUTPUT)

a. Vascular Sympathetic Toneb. ADH Secretionc. Aldosterone Secretion

Chemosensitive Area

GlossopharyngealNerve

SympatheticNervousSystem

Page 79: Cardiovascular Physiology

BP (Kidney) Renin

Angiotensinogen (renin substrate)

Angiotensin

Aldosterone

Kidney

sodium & water retention

Vasoconstriction

Venoconstriction

RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM

Page 80: Cardiovascular Physiology

HORMONAL REGULATION

• Epinephrine & Norepinephrine– From the adrenal medulla

• Renin-angiotensin-aldosterone– Renin from the kidney– Angiotensin, a plasma protein– Aldosterone from the adrenal cortex

• Vasopressin (Antidiuretic Hormone-ADH)– ADH from the posterior pituitary

Page 81: Cardiovascular Physiology

HypothalamicOsmoreceptors

BP via Posterior Pituitary Vasopressin (ADH)(Atrial Receptors)

Vasoconstriction WaterVenoconstriction Retention

VASOPRESSIN(ANTIDIURETIC HORMONE)

XX

Page 82: Cardiovascular Physiology

RENAL--BODY FLUID CONTROL MECHANISM

8-

7-

6-

5-

4-

3-

2-

1-

-8

-7

-6

-5

-4

-3

-2

-1

UninaryOutput

(x normal)

FluidIntake

(x normal)

50 100 150

Normal

ARTERIAL BLOOD PRESSURE (mmHg)

P alone

All Mechanisms

3 x Normal

Page 83: Cardiovascular Physiology

HYPERTENSION (140/90 mmHg)Secondary Hypertension (10%) [e.g., Pheochromocytoma]Essential Hypertension (90%)

- Normal cardiac output- Cardiac hypertrophy [left ventricle]- “Resetting” of the baroreceptors- Thickening of vascular walls

ARTERIAL PRESSURE-URINARY OUTPUT THEORYHypertension causes thickening of vascular walls

NEUROGENIC THEORYThickening of vascular walls causes hypertension

TREATMENT: Reduce stressSympathetic blockers Low sodium dietDiuretics

Page 84: Cardiovascular Physiology

HEMORRHAGEP

ress

ure

7-

1 2 3 4 5Blood Volume (L)

MCP

-4 0 +4 +8RAP (mmHg)

COor

PBF(L/min)

COBP

Page 85: Cardiovascular Physiology

CARDIAC & VASCULAR FUNCTION CURVES

RAP mmHg

15-

10-

5-

-4 0 +4 +8

CARDIACOUTPUT

or

PERIPHERALBLOOD FLOW[Venous Return]

(L/min)

Response to Hemorrhage HR & ContractilityVenoconstriction ( MCP)Vasoconstriction ( TPR)

Page 86: Cardiovascular Physiology

RESPONSE TO HEMORRHAGE Sympathetic tone via baroreceptor reflex

Heart rate and contractility– Venoconstriction ( MCP)– Vasoconstriction ( arterial BP & direct blood to

vital organs)

• Restore Blood Volume– Capillary fluid shift ( BP favors reabsorption) Urinary output ( Arterial BP, ADH, Renin-

Angiotensin-Aldosterone)

• Restore plasma proteins & hematocrit

Page 87: Cardiovascular Physiology

SYNCOPE (FAINTING)

Postural syncope(Blood pooling in the extremities)

Vasovagal syncope

Carotid sinus syncope

Page 88: Cardiovascular Physiology

SYNCOPE (FAINTING)Blood pooling in the extremities

PR

ES

SU

RE

(m

mH

g)

7-

1 2 3 4 5 6

Unstressed

Volume

Stressed Volume

BLOOD VOLUME (L)

Unstressed Vol. Stressed Vol. MCP

Normal

Syncope (Fainting)

Page 89: Cardiovascular Physiology

Pre

ssu

re

7-

1 2 3 4 5Blood Volume (L)

MCP

-4 0 +4 +8RAP (mmHg)

COor

PBF(L/min)

COBP

SYNCOPE (FAINTING)Blood pooling in the extremities

Page 90: Cardiovascular Physiology

CARDIAC & VASCULAR FUNCTION CURVES

RAP mmHg

15-

10-

5-

-4 0 +4 +8

CARDIACOUTPUT

or

PERIPHERALBLOOD FLOW[Venous Return]

(L/min)

Response to Syncope (Fainting HR & ContractilityVenoconstriction ( MCP)Vasoconstriction ( TPR)

Page 91: Cardiovascular Physiology

CARDIAC FAILURECAUSES: Impairment of electrical activity

Muscle damageValvular defectsCardiomyopathiesResult of drugs or toxins

PROBLEM: Maintaining circulation with a weak pump( Cardiac output & cardiac reserve; RAP)

SOLUTIONS: Sympathetic tone via baroreceptor reflex - Heart rate and contractility

-Venoconstriction ( MCP)-Vasoconstriction ( Arterial BP)

Fluid retention ( MCP)-Capillary fluid shift-ADH-Renin-angiotensin-aldosterone

Page 92: Cardiovascular Physiology

CARDIAC & VASCULAR FUNCTION CURVES

RAP mmHg

15-

10-

5-

-4 0 +4 +8

CARDIACOUTPUT

or

PERIPHERALBLOOD FLOW[Venous Return]

(L/min)

Cardiac Failure

Adjustments to Failure

SYMPTOMS:Systemic EdemaPulmonary CongestionEnlarged Heart

Page 93: Cardiovascular Physiology

PR

ES

SU

RE

DIASTOLICPRESSURE CURVE

SYSTOLIC PRESSURE CURVE

HEART

End Diastolic VolumeEnd Systolic Volume

IsovolumetricPhase

Isotonic (Ejection) Phase

StrokeVolume

Pre-load

After-load

CARDIAC

FAILURE

Page 94: Cardiovascular Physiology

TEMPERATURE REGUALTION

• Body Temperature

• Heat Production

• Heat Loss

• Temperature Regulation– Heat Exhaustion– Heat Stroke– Hypothermia

• Fever

Page 95: Cardiovascular Physiology

COLDWARM

Page 96: Cardiovascular Physiology

Upper limit of survival?Heat strokeBrain lesionsFever therapyFebrile disease andHard exerciseUsual range of normal

Temperatureregulationseriouslyimpaired

Temperatureregulationefficient in

febrile diseasehealth and work

Temperatureregulationimpaired

Temperatureregulation

lost Lower limitof survival?

Page 97: Cardiovascular Physiology

HEAT PRODUCTION

BASAL METABOLIC RATE- Catecholamines-Hyperthyroidism

FOOD INTAKE (Specific Dynamic Action)-lasts up to 6 hours after a meal

PHYSICAL ACTIVITY-Exercise (20 x BMR)-Shivering (5 x BMR)

Page 98: Cardiovascular Physiology

HEAT LOSS

COOL HOTRADIATIONCONDUCTION 70% CONVECTION

VAPORIZATION 30% Insensible Water Loss * *Sweating *

Page 99: Cardiovascular Physiology

SKIN HYPOTHALAMUS

SweatingVasodilation

VasoconstrictionShivering

W

W

W

Set

point

C

WarmReceptors

ColdReceptors

Preoptic Area

Page 100: Cardiovascular Physiology

Interaction Between Peripheral & Central Sensors

Cooling the skin raises the set point above which sweating begins.Warm skin--sweating occurs above 36.7CCold skin--sweating occurs above 37.4 C

The body is reluctant to give off heat (sweat) in a cold environment.

Warming the skin lowers the set point below which shivering begins.Cold skin: shivering occurs at 37.1CWarm skin: shivering occurs at 36.5C

The body is reluctant to produce heat (shiver) in a warm environment.

Page 101: Cardiovascular Physiology

LIMITS TOTEMPERATURE REGULATION

Heat Exhaustion: Inadequate water/salt replacementBody temperature may be normalSymptoms: cerebral dysfunction

nauseafatique

Vasodilaton causing fatigue or fainting

Heat Stroke: Temperature regulation lostSymptoms: high body temperature

NO sweatingdizziness or

loss of consciousnessBody temperature MUST be lowered!

Page 102: Cardiovascular Physiology

FEVER = an abnormally high body temperaturePYROGEN = a fever producing substance

PYROGEN WBC bacterial toxins, leukocytes,viruses, pollen, + monocytes = endogenous pyrogenproteins, dust

Arachidonic Acid

Prostaglandins Aspirin

RAISES THE “SET POINT”

FEVER

Page 103: Cardiovascular Physiology

Actual CoreTemperature

Onset ofFever

FeverBreaks

ReferenceTemperatureor Set Point

ShiveringVasoconstriction

SweatingVasodilation