Carbonates 32, Environments 1

85
CARBONATE ENVIRONMENTS Brief Introduction

Transcript of Carbonates 32, Environments 1

Page 1: Carbonates 32, Environments 1

CARBONATE ENVIRONMENTS

Brief Introduction

Page 2: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Most modern carbonates are accumulating in warm, shallow waters.

Page 3: Carbonates 32, Environments 1
Page 4: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Basin margins typically start off as ramps

Page 5: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

the ramp slope steepens with continued basin subsidence

Page 6: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Shallow water carbonate sedimentation keeps pace with subsidence around basin margin but can not match the faster rates towards basin center. As water deepens, carbonate sedimentation rates are reduced. Shelf breakof slope results.

Page 7: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

The break of slope is a site of high energy from incoming waves. This promotes carbonate precipitation for reef buildingor oolitic and other sand accumulation. Sheltered conditionsdevelop behind the reef or shoal (lagoon or protected shelf).

Page 8: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Rimmed shelf edge or offshore carbonate banks develop in this way, adjacent to deep water areas.

Page 9: Carbonates 32, Environments 1

Andros Island and Tongue of the Oceans

oolite shoals

shallow waterplatform carbonates

deep water

Page 10: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Page 11: Carbonates 32, Environments 1

Carbonate facies are divided by the shelf margin reef or carbonate sand shoals into back-reef and fore-reef/basin

fondoform clinoform undaform

(1969) GCAGS Transactions, v. 19, p. 11-22

Page 12: Carbonates 32, Environments 1

J.L. Wilson (1975), "Carbonate Facies in Geologic History" Springer-Verlag

Wilson proposed 9 Standard Facies Belts

Page 13: Carbonates 32, Environments 1

Carbonate Environments

• Subaerial exposure– karst

• caves, collapse breccias

– caliche

Page 14: Carbonates 32, Environments 1

del Olmo, W.M., and M. Esteban (1983), AAPG Memoir 33, p.93

Page 15: Carbonates 32, Environments 1

Esteban, M., and C.F. Klappa, (1983), AAPG Memoir 33, p. 6

Page 16: Carbonates 32, Environments 1

Karst, China

Page 17: Carbonates 32, Environments 1

Lechugilla Cave, New MexicoHamblin, W.K., and E.H. Christiansen (2001) “Earth’s Dynamic Systems” 9 th Ed., Prentice Hall

Page 18: Carbonates 32, Environments 1
Page 19: Carbonates 32, Environments 1

Labor Day 2000; 2000/24-22. Mile 490

Collapse breccias above zone of gypsum dissolution, Cretaceous Edwards Group, Texas

Page 20: Carbonates 32, Environments 1
Page 21: Carbonates 32, Environments 1

Caliche zone in modern soil profile, Texas.

Page 22: Carbonates 32, Environments 1
Page 23: Carbonates 32, Environments 1
Page 24: Carbonates 32, Environments 1

from Moore, C.H., (2001), Carbonate Reservoirs, Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier. [book and CD]

Page 25: Carbonates 32, Environments 1
Page 26: Carbonates 32, Environments 1
Page 27: Carbonates 32, Environments 1

Caliche glaebules (“pisoliths”), Del Rio, Texas

Page 28: Carbonates 32, Environments 1

Caliche glaebules, polished surface of a thin section,reflected light

Page 29: Carbonates 32, Environments 1
Page 30: Carbonates 32, Environments 1

“Syncline” and “anticline”, Buda/Del Rio contact,1.1 miles east of Comstock, US-90

Lock, B.E., (2000), GCAGS Trans.

Page 31: Carbonates 32, Environments 1

Terra Rosa, Queretaro, Mexico

Page 32: Carbonates 32, Environments 1

Carbonate Environments

• Subaerial exposure

• Freshwater – lakes and rivers

• freshwater algae (Chara, etc.) and cyanobacteria (stromatolites, oncoliths, etc.)

Page 33: Carbonates 32, Environments 1

Algal-precipitated carbonate (LMC) on bottles etc., lake in New York state, USA

Dean, W.E. and T.D. Fouch (1983), AAPG Memoir 33, p. 115

Page 34: Carbonates 32, Environments 1

Dean, W.E. and T.D. Fouch (1983), AAPG Memoir 33, p. 123

Oncoliths with gastropod nuclei.

Upper: - Recent, Michigan

Lower:- Flagstaff Formation(Paleocene), Utah

Page 35: Carbonates 32, Environments 1

Oncoliths, Flagstaff Limestone (Paleocene-Eocene), Utah.Freshwater lake deposits.

Page 36: Carbonates 32, Environments 1

Stromatolites, Green River Formation, Eocene, Utah, USA.

Dean, W.E. and T.D. Fouch (1983), AAPG Memoir 33, p. 119

Page 37: Carbonates 32, Environments 1

SEM views ofChara, ostracods,

small clam, all from freshwater muds,

Lower Cretaceous,Arkansas, USA.

Page 38: Carbonates 32, Environments 1

Travertine dams, pools, southern Tamaulipas State,

Mexico

Page 39: Carbonates 32, Environments 1

Recent travertine, Seven Rivers, New Mexico

Page 40: Carbonates 32, Environments 1

Shore of Great salt Lake, Utah.

inset: ooliths in thin section.

oolith sand

Page 41: Carbonates 32, Environments 1

Carbonate Environments

• Subaerial exposure

• Freshwater

• Eolian– wind-blown carbonate sands (mainly coastal)

Page 42: Carbonates 32, Environments 1

McKee, E. D., and W.C. Ward (1983), AAPG Memoir 33, p. 153

Carbonate eolianite, Castle Rock, Bermuda

Page 43: Carbonates 32, Environments 1

Carbonate Environments

• Subaerial exposure

• Freshwater

• Eolian

• Coastal– transgressive/regressive?– arid/humid?– wave or tide dominated?– supratidal, intertidal, subtidal zones

Page 44: Carbonates 32, Environments 1

CARBONATETIDAL FLAT MODELS

Andros Island, transgressive, humid,

mesotidal

marsh, tidal creeks,intertidal algal flats

beach ridge

Persian Gulf,regressive, arid,

microtidal

sabkha (supratidal),abundant evaporites,intertidal algal mat,

high and low energy lagoon,barrier island

Shinn, E.A. (1983), AAPG Memoir 33, p. 172

Page 45: Carbonates 32, Environments 1

Supratidal

• Arid (sabkha)– deflation surfaces– intrastratal evaporites (mainly gypsum or

anhydrite) as lenticular crystals, nodules, contorted beds (enterolithic), massive layers (“cottage cheese”, mosaic or chicken-wire), halite molds

– dolomite

Page 46: Carbonates 32, Environments 1

Enterolithic (contorted) anhydrite, deflation surface, Abu Dhabi sabkha

Shinn, E.A. (1983), AAPG Memoir 33, p. 196

Page 47: Carbonates 32, Environments 1

cores of sabkha sediments, Abu Dhabi

marine subtidal sediment with gypsum crystals algal mat cottage cheese anhydrite nodules

Page 48: Carbonates 32, Environments 1

Sabkha lithofacies, Arab Formation (Jurassic), Abu DhabiGrotsch, et al. (2003), GeoArabia v. 8, p. 47-86

Page 49: Carbonates 32, Environments 1

Sabkha lithofacies, Arab Formation (Jurassic), Abu Dhabi

Grotsch, et al. (2003),GeoArabia v. 8, p. 47-86

Inner ramp cross-bedded ooliticgrainstones

Mid ramp and outerramp bioturbated

wackestones

Page 50: Carbonates 32, Environments 1

gyps nodule molds

molds from dissolution of gypsum nodules, Cretaceous, Texas

Page 51: Carbonates 32, Environments 1
Page 52: Carbonates 32, Environments 1
Page 53: Carbonates 32, Environments 1

Evaporites may dissolve and leave collapse breccias (Texas Cretaceous)

Page 54: Carbonates 32, Environments 1

supratidal (sabkha)dolomite bed,

Cretaceous, Texas

parasequence boundary

dolomite (dark rock)

Page 55: Carbonates 32, Environments 1

Supratidal

• Arid (sabkha)

• Humid– marshes (peat/coal), roots, cerithid

gastropods

Page 56: Carbonates 32, Environments 1

Shinn, E.A. (1983), AAPG Memoir 33, p. 172

Andros Island

Page 57: Carbonates 32, Environments 1

Intertidal

• Tidal creeks– high to moderate energy; alternating– grainstones, flat-pebble conglomerates– wavy, lenticular and flaser bedding,

bidirectional currents– fining-up

Page 58: Carbonates 32, Environments 1

Shinn, E.A. (1983), AAPG Memoir 33, p. 192Tidal creek, based on Andros Island

Page 59: Carbonates 32, Environments 1

Flat-pebble conglomerate, tidal flats. Kindblade Formation, Ordovician, Oklahoma.

Shoe, for scale

Page 60: Carbonates 32, Environments 1

dolomitized tidal bedding, Cretaceous, Texas

Page 61: Carbonates 32, Environments 1

“herring-bone” cross bedding (tidal, bi-directional), Cretaceous, Texas.

Page 62: Carbonates 32, Environments 1

“herring-bone” cross bedding (tidal, bi-directional), Cretaceous, Texas.

Page 63: Carbonates 32, Environments 1
Page 64: Carbonates 32, Environments 1

Intertidal

• Tidal creeks

• Flats– fine grained sediments– scoured surfaces common– burrowed– algal laminations, stromatolites, birdseye

structures– surface crusts (dolomite)

Page 65: Carbonates 32, Environments 1
Page 66: Carbonates 32, Environments 1

Birdseye (= fenestral) structure, Mississippian, Kentucky, USA.

scoured surface

Page 67: Carbonates 32, Environments 1
Page 68: Carbonates 32, Environments 1

Algal mat, Baffin Bay, south Texas coast

Page 69: Carbonates 32, Environments 1

“crinkly” algal mat lamination, Permian, New Mexico

Page 70: Carbonates 32, Environments 1

Stromatolites, tidal flats. Kindblade Formation, Ordovician, Oklahoma.

5 cm

Page 71: Carbonates 32, Environments 1

Arid tidal flats, Sonoran coast, Mexico (siliciclastic sands): note tidal creeks feedsediment on to the flats. Dark areas are halophyte plants.

Page 72: Carbonates 32, Environments 1

Dolomitic crust (white) beneath erosional surface, Cretaceous tidal flats, El Abra.

Page 73: Carbonates 32, Environments 1

Modern tidal flats, Sonora. Dolomitic crusts eroded by tidal creek.

Page 74: Carbonates 32, Environments 1

Subtidal/Lagoon

• High or low energy, depending on lagoon size, etc.– carbonate mudstones to grainstones

• Salinity may fluctuate (fresh water flooding, high salinities from evaporation)– high stress: flora and fauna may not be normal marine

• miliolid forams etc., serpulids, ostracods, no echinoderms.

• Shoaling-up cycles

Page 75: Carbonates 32, Environments 1

Peritidal cycles(supratidal/intertidal/subtidal),

Cretaceous, Texas

Page 76: Carbonates 32, Environments 1

Peters et al., GeoArabia v. 8 (2), 2003

Page 77: Carbonates 32, Environments 1

Peters et al., GeoArabia v. 8 (2), 2003

Surface-exposedsalt domes, Oman.

Blocks of interbedded

shallow waterlimestone are

scattered over the ground.

Page 78: Carbonates 32, Environments 1

] saltlimestone reservoirs

Limestones were interbeddedwith the original salt (latestPrecambrian) and contain

stromatolites, crinkly laminationand other shallow water features. Microbial mat

limestones are dark and fetid,believed to be source rocks in deeper parts of the basin. Red

clastics are interbedded withthe carbonates.

Peters et al., GeoArabia v. 8 (2), 2003

Page 79: Carbonates 32, Environments 1

Peters et al., GeoArabia v. 8 (2), 2003

Page 80: Carbonates 32, Environments 1

Beach and/or Barrier Island

• High energy, coarsening-up sequence

• Seaward-dipping lamination, low-angle cross-bedding (summer-winter variation in beach foreshore slope), some higher angle landward-dipping cross-beds (offshore bars).

• Festoon cross-bedding in tidal channels (coarse-based units)

• Beach-rock (vadose and phreatic cement textures, marine cement mineralogies)

Page 81: Carbonates 32, Environments 1

Inden, R.F., and C.H. Moore (1983), AAPG Memoir 33, p. 213

Page 82: Carbonates 32, Environments 1
Page 83: Carbonates 32, Environments 1

Festoon cross-bedding, tidal inlet channel

Page 84: Carbonates 32, Environments 1

Beach rock, Bahia Adair, Sonora.

Page 85: Carbonates 32, Environments 1

Thin-section photomicrograph, beach rock from Bahia Adair. Note aragonite needle cements