CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?...

23
CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802-2714, [email protected], phone: (814) 865-6718, fax: (814) 865-7823. Department of Economics, SUNY at Binghamton. Brookings Institution. Woodrow Wilson School of Public and International Affairs, Princeton University Department of Economics, Princeton University. School of Law, New York University. Center for Economic Policy Studies (CEPS) Working Paper No. 94 Princeton University September 2003 Abstract We analyze carbon dioxide (CO sequestration as a strategy to manage future climate change in an optimal economic growth framework. We approach the problem in two ways: first, by using a simple analytical model, and second, by using a numerical optimization model which allows us to explore the problem in a more realistic setting. CO sequestration is not a perfect substitute for avoiding CO 2 produc- tion because CO 2 leaks back to the atmosphere and hence imposes future costs. The “efficiency factor” of CO 2 sequestration can be expressed as the ratio of the avoided emissions to the economically equivalent amount of sequestered CO 2 emissions. A simple analytical model in terms of a net-present value criterion suggests that short-term sequestration methods such as afforestation can be somewhat ( 60 %) efficient, while long term sequestration (such as deep aquifer or deep ocean sequestration) can be very ( 90%) efficient. A numerical study indicates that CO 2 sequestration methods at a cost within the range of present estimates reduce the economically optimal CO 2 concentrations and climate related damages. The potential savings associated with CO 2 sequestration is equivalent in our utilitarian model to a one-time investment of several percent of present gross world product. 1

Transcript of CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?...

Page 1: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

CARBON DIOXIDE SEQUESTRATION:WHEN AND HOW MUCH?

KlausKeller�, Zili Yang

�, Matt Hall

�, andDavid F. Bradford

��� ��� ��

Departmentof Geosciences,

ThePennsylvaniaStateUniversity,

UniversityPark,PA, 16802-2714,[email protected],

phone:(814)865-6718,fax: (814)865-7823.�Departmentof Economics,SUNY at Binghamton.�

BrookingsInstitution.�Woodrow Wilson Schoolof PublicandInternationalAffairs,

PrincetonUniversity�Departmentof Economics,PrincetonUniversity.�

Schoolof Law, New York University.

Center for EconomicPolicy Studies(CEPS)Working Paper No. 94

Princeton University

September2003

Abstract

We analyzecarbondioxide (CO� sequestrationasa strategy to managefuture climatechangein an

optimal economicgrowth framework. We approachthe problemin two ways: first, by usinga simple

analyticalmodel,andsecond,by usinga numericaloptimizationmodelwhich allows us to explore the

problemin amorerealisticsetting.CO� sequestrationis notaperfectsubstitutefor avoidingCO2 produc-

tion becauseCO2 leaksbackto theatmosphereandhenceimposesfuturecosts.The“efficiency factor”of

CO2 sequestrationcanbeexpressedastheratio of theavoidedemissionsto theeconomicallyequivalent

amountof sequesteredCO2 emissions.A simpleanalyticalmodelin termsof anet-presentvaluecriterion

suggeststhatshort-termsequestrationmethodssuchasafforestationcanbesomewhat( � 60 %) efficient,

while long term sequestration(suchasdeepaquiferor deepoceansequestration)canbe very ( � 90%)

efficient. A numericalstudyindicatesthatCO2 sequestrationmethodsatacostwithin therangeof present

estimatesreducetheeconomicallyoptimalCO2 concentrationsandclimaterelateddamages.Thepotential

savingsassociatedwith CO2 sequestrationis equivalentin our utilitarian modelto a one-timeinvestment

of severalpercentof presentgrossworld product.

1

Page 2: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

1 Intr oduction

Anthropogenicgreenhousegas emissionsare projectedto changefuture climatesand to causenon-

negligible economicdamages[Munasingheet al., 1996; Weyant et al., 1996]. Efforts to mitigate the

greenhousegasproblemhave traditionally focusedon avoiding the productionof carbondioxide (CO2)

by reducingfossil fuel use(typically referredto as“CO2 abatement”)[Nordhaus, 1992;Tol, 1997]. One

alternative to CO2 abatementwould beto captureCO2 emissionsandsequesterthemin carbonreservoirs

suchasdeepaquifers,deepoceans,or minerals[Lackneret al., 1995;Herzog andDrake, 1996;Hoffert

et al., 2002]. However, large-scalesequestrationpresentsconsiderablescientific,engineering,andeco-

nomicproblems.Oneeconomicproblemis thatCO2 sequestrationis not a perfectsubstitutefor avoiding

CO2 production.This is becausesequesteredCO2 mayleakbackinto theatmosphereandimposefuture

climatedamages.In contrast,avoidingCO2 productionwouldnot imposethelegacy of CO2 leakage.

Whetheror notCO2 sequestrationshouldbeconsideredasaviablealternative to CO2 abatementis an

openandmuchdebatedquestion[Kaiser, 2000]. PreviousstudiesaddressingCO2 sequestrationdevelop

elegantanalyticalexpressionsto analyzethetradeoff betweenCO2 sequestrationandCO2 abatement(e.g.,

Richards [1997], vanKootenet al. [1997], Herzog et al. [2003]) or analyzetheoptimaluseof CO2 se-

questrationin numericalmodels(e.g., Swinehart[1996],Biggsetal. [2000],LecocqandChomitz[2001]).

While breakingimportantnew ground,thesestudiesaresilentonimportantpolicy questions.For example,

theanalyticalmodelstypically neglect thefeedbackeffectscausedby theavailability of theCO2 seques-

trationtechnologyonfuturecarbontaxes.Also, mostnumericalmodelsfocusonafforestation(whichcan

only playaminor role in reducingclimatechange[NilssonandSchopehauser, 1995;Adam, 2001]).Stud-

ies analyzingmorepowerful sequestrationmethods( ������ , deep-oceanor deep-aquiferinjection) assume

negligible marginal costs[Nordhaus, 1992],neglectcostreductionsastechnologiesmature,[Biggset al.,

2000;Herzog et al., 2003]),or neglectCO2 leakage[Ha-DuongandKeith, 2002].

Herewe expandandimproveon thepreviouswork in two respects.First,we refineandapplyanana-

lytical model[Richards, 1997]by estimatingtherelevantmodelparametersandestimatingtheefficiency

factorof CO2 sequestration.Second,weexpandanoptimaleconomicgrowth model[NordhausandYang,

1996]by addingCO2 sequestration,learning-by-doing,andtechnologicalinertia. We usethenumerical

modelto analyzetheoptimaluseof CO2 sequestrationmethodsandtheeffectsof optimal carbondiox-

ide levels. Specifically, we askfive questions:(i) What is the tradeoff (or the ratio of marginal benefits)

betweenCO2 sequestrationandCO2 abatement?(ii) What is the optimal useandtiming of sequestra-

tion? (iii) How doesCO2 sequestrationchangethe optimal tax path? (iv) How do technologicalinertia

andendogenouslearningaffect theoptimaluseof sequestration?and(v) What is thepresentvalueof a

technologythatwouldprovidesequestrationin thefuture?

We proposeaneconomicframework to measuretheefficiency of CO2 sequestration.Specifically, we

estimatethenetpresentvalueof sequesteredCO2, in termsof avoidedabatementcosts,to meeta specific

atmosphericconcentrationconstraint. CO2 sequestrationcanreplacecostly abatementmeasuresin the

2

Page 3: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

presentandhencehasaneconomicvalue. However, leaky CO2 sequestrationimposesfuturecosts.The

net savings ( ���� �� , the initial savings minus the future costs)relative to the initial savings representsthe

efficiency factorof CO2 sequestration.Theresultsfrom our analyticalmodelsuggestthatafforestationis

somewhatefficient ( � 60%),while long-termsequestrationpossibilities,suchasdeepaquifersequestra-

tion or oceaninjection,couldbequiteefficient ( � 90%).

The analyticalmodel providesan intuitive andsimple methodto accountfor future leakageof se-

questeredcarbon.Thesimplicity of theanalyticalmodelneglects,however, severalpotentiallyimportant

effectssuchashyperbolicdiscounting[Weitzman, 1998]or learning-by-doing[ArgoteandEpple, 1990].

We addresstheseshortcomingsby analyzinga numericaloptimalgrowth model.Our numericalanalysis

suggeststhat theavailability of a viablesequestrationtechnologycanlower carbontaxesandtheoptimal

atmosphericCO2 concentrations.In the model,CO2 sequestrationat marginal costswithin the rangeof

presentestimatesis deployed in increasingvolumeto sequesterall the industrialCO2 emissionsby the

middle of the next century. Learning-by-doingandtechnologicalinertia createan “R & D” market for

earlysequestration,beforeit is competitivewith abatementtechnologies.Learning-by-doingallowssoci-

ety to “buy-down” thepriceof sequestrationby employing the technologyearlier. Technologicalinertia

requiresearlier sequestrationto achieve large-scalequantitative goalsin the next century. The poten-

tial economicbenefitsderivedfrom sequestrationareseveralpercentof present-daygrossworld product

(GWP).Theresultsof our analysisaresensitive to severalparameters,suchastherateat which learning-

by-doingoccurs,the maximumrateat which a new technologycanpenetratethe market, or the rateof

carbonleakage.

2 The efficiencyfactor of CO2 sequestration:

A simpleanalytical model

Theefficiency factorfor CO2 sequestrationis asimplemeasureto analyzetheeconomictradeoff between

CO2 abatementandCO2 sequestration.In anoptimalpolicy, differentCO2 control technologiesareused

suchthattheirmarginalsocialvalue(shadow price)areequalized.Thus,in aworld in whichsequestration

hasa constantefficiency, � , relative to that of abatement,and an optimal tax ( � ) is levied on all CO2

emissions(includingthosethataresequestered),theoptimal“refund” leviedfor eachtonCO2 sequestered

shouldbeequalto theproduct ����� . As therelative efficiency of sequestrationapproachesunity (perfect

substitutefor abatement),the refundapproachesfull reimbursement.Conversely, in a credit regime for

sequestration,thefractionof a full creditcorrespondingto thefractionof thesocialvalueof abatement,� ,

shouldbegivenfor eachton sequestered.

Givenits importance,thefirst goalof ouranalysisis to derivetheefficiency factorof CO2 sequestration

to comparesequesteredcarbonwith avoidedcarbonemissions.For example,100tonsof sequesteredCO2

wouldoffset50tonsof avoidedCO2 emissionsatanefficiency factorof 50%. To illustratethestructureof

3

Page 4: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

theproblem,westartwith asimpleanalyticalmodel,similar to theonedevelopedby Richards[1997]. We

expandontheanalysisof Richards[1997]by estimatingrelevantparametersandby deriving ananalytical

expressionfor the economicefficiency of carbonsequestrationconsidering(i) discounting,(ii) changes

in futurecarbontaxes,(iii) leakage,and(iv) anenergy penaltyof carbonsequestration.As we illustrate

in thesubsequentsection,many conclusionsderivedfrom this simplemodelarevalid in a morerealistic

numericalmodel.

The tradeoff betweenCO2 abatementandCO2 sequestrationis affectedin our analyticalmodelby

four factors:(i) theadditionalenergy requirement;(ii) theCO2 leakageover time; (iii) thechangesover

time in marginal abatementcosts;and(iv) thediscountrate. In thefollowing sectionwe developsimple

closedform solutionsto representthesefactorsandderive anexpressionfor theefficiency factorof CO2

sequestration.For analyticalconvenience,weapproximatetheproblemby aninfinite horizonproblem.

The first factoraccountsfor the energy requirementof CO2 sequestration.The additionalenergy is

derivedby burningmorefossil fuel andthusimposesan“energy penalty”. Therelative “energy penalty”

( � is the consequenceof the energy-intensive natureof capturing,transporting,andsequesteringCO2

emissions.� is definedastherelative increasein fossil fuel usedueto CO2 captureandsequestration.The

relative increasein CO2 emissionsthatmustbe sequesteredto yield thesameamountof energy for end

useis: ���� � � (1)

Somefractionof thesequesteredCO2 will leakbackto theatmosphere.We approximatethe leakageby

anexponentialdecayof thesequesteredCO2 stock.Theleakageflux of on ton of CO2 over time ( � �!� � is

thena functionof thedecayrate( " andtheenergy penalty( � :� �#� %$ "�&� � ('*),+.- (2)

where� startsat thetimeof sequestration.

For theanalyticalmodel,we assumeanagreeduponatmosphericCO2 stabilizationpath. Associated

with this stabilizationpathis apathof allowableCO2 emissions.Themarginal CO2 abatementcostsover

time arethena function of theCO2 reductionsover time andthe availableabatementtechnologieswith

their associatedmarginal costs.If we think abouttheCO2 stabilizationpathasimplementedby theappli-

cationof anemissionstax, this carbontax would follow thesamepathasthemarginal abatementcosts,

in this stylizedexample.For theagreeduponCO2 stabilizationpath,any leakagehasto becompensated

by increasedabatement.BecauseCO2 abatementis costly, CO2 leakageimposesadditionalcostsin the

future.Theadditionalcostsareapproximated— in apartialequilibriumsense— by thecarbontax times

theleakageflux.

We estimatefuture carbontaxesby fitting a simpleexponentialfunction to resultsfrom an optimal

growth model. We usetheRICE model[NordhausandYang, 1996] to estimatecarbontaxesthatcorre-

4

Page 5: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

spondto an optimal emissionspathsubjectto atmosphericconcentrationstabilizationtargets. For CO2

stabilizationtargetsbetween450ppmand750ppm,theconstraintoptimalcarbontaxesarewell approx-

imatedfor the next two centuriesby exponentialfunctions. The carbontaxesover time ( /10 ) arehence

approximatedas: /102�#� 3$5476 98:+;- (3)

where 476 is the initial carbontax in U.S.$per ton of C and 4 is the carbontax growth rate. Note that

theoptimalabatementcostsat themargin areequalto theoptimalcarbontax giventheassumedperfect

markets. Thecarbontaxesareprojectedto increaseover time mostlybecausethepositive marginal pro-

ductivity of capitalaswell asthefreeserviceof thenaturalcarbonsinksfavor laterabatementmeasures.

Thelastassumptionrequiredfor theanalyticalmodelis to discountfuturecostsby adiscountfactor( < ),

<��!� =$ ('?>@+;- (4)

whereA is thediscountrate.

Deriving theefficiency factorof a leaky CO2 sequestrationprojectis now anexerciseof calculatingthe

netpresentvalueof theprojectandrelatingit to thecostsof thealternative choiceof carbonabatement.

Technically, the net benefitof sequesteredCO2 at time zero is the avoided carbontax ( 476 ), minus the

presentvalueof futurecostsimposedby theCO2 leakage.Thenetbenefitspertonof CO2 sequesteredcan

beexpressedby:

netbenefit $5476 � +CB7DE+CB 6 ('?>@+ 476 98F+ "��� � ('*),+G<��H- (5)

which canbesolvedanalyticallyfor A�IJ" � 4LKNM . (Otherwise,thecostsof leakagegrow fasterthanthe

rateat which they arediscountedandthepresentvaluesumof costswill exceedall benefitsderivedfrom

thetonof sequesteredCO� .) Thesolutionfor thenetbenefitis:

netbenefit $O476 � ��� "�!A�IP" � 4Q � �&� � � (6)

The expressionin parenthesesreducesthe initial projectbenefitat no leakage(the marginal abatement

costsat the time of sequestration)andcanbe interpretedasan “efficiency factorof CO2 sequestration”.

Wehencerewrite equation(6) as:

� $ netbenefitinitial carbontax

$ � ��� "�RASIP" � 4Q � ��� � - (7)

where � is the efficiency factorof sequestrationcalculatedby the ratio of net benefitfrom a CO2 unit

sequesteredto the net benefitof a CO2 unit of avoided emissions. Note that the efficiency factor of

5

Page 6: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

sequestrationis alsoequalto theratio of themarginal benefitsof sequestrationto themarginal benefitsof

abatementin theadoptedoptimalgrowth framework.

This simple efficiency model is a stylized representationof the complex interactionsbetweense-

questrationandhumanwelfare. However, sucha framework maybe preferableto alternative weighting

schemesthat measureefficiency in termsof carbonthat neglect issuessuchasthe marginal productiv-

ity of capitalor CO2 leakagebeyond an arbitrarily chosentime horizon[Fearnsideet al., 2000; Costa

and Wilson, 2000]. Although this analyticalmodel givesus someinsight into the economictradeoffs

involved with CO2 sequestration,it hasseveral shortcomings.First, the partial equilibrium assumption

implicit in the fixed carbontax path is only reasonablefor very small-scaleuseof CO2 sequestration.

This is becauselarge-scaleCO2 sequestrationwould affect the carbontax pathwhich we assumeto be

unaffected.Second,ouranalyticalmodelneglectsmechanismssuchashyperbolicdiscounting[Weitzman,

1998],backstoptechnologies[ManneandRichels, 1991],or technologicalinertia [Grubler et al., 1999].

Weshallanalyzetheseeffectsin themorerealisticnumericalmodeldevelopedbelow.

3 The optimal useof CO2 sequestration:

An optimal growth model

We usetheRegional IntegratedModel of ClimateandtheEconomy(RICE) [NordhausandYang, 1996]

asa startingpoint. This optimalgrowth modellinks theglobal climateandeconomicsystemby simple

feedbacks.Thecurrentmodelversion(RICE-01)differsfrom theoriginalRICE-96[NordhausandYang,

1996] model in two ways. First, we have updatedthe model parametersto be consistentwith recent

work Nordhausand Boyer [2000]. Second,we modify the model to accountfor carbonsequestration,

technologicalinertia, and learning-by-doing.In the following sectionswe give a brief overview of the

model structureand how we incorporatecarbonsequestration,technologicalinertia, and learning-by-

doing.

3.1 The RICE model

TheRICEmodellinks climaticrelationshipsbetweenatmosphericCO2 concentrationandnetglobalradia-

tive forcing to economicrelationshipsbetweenconsumptionandinvestmentin capital. TheRICE model

aimsto maximizethediscountedsumof utility derivedfrom generalizedconsumptionover a giventime

horizon.

The economiccomponentof the RICE model is a Ramsey type modelof economicoptimal growth

[Ramsey, 1928]. In theRamsey model,asocialplannerchoosespathsof consumption( T ) andinvestment

to maximizeanobjective function UWV . In theRICE model,theobjective function is theweightedsumof

thenaturallogarithmof per-capitaconsumptionwith theweightingfactorspopulationlevel ( X ), a factor

6

Page 7: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

accountingfor the“pure rateof socialtimepreference”Y , andthe“time-variantNegishiweights” Z :

U V $ [\(] +_^\+CB 6 Z`�Rab-c� edgf � T��Rab-c� X&�RaQ-�� X&�!ab-�� � � IhY '?+i� (8)

TheNegishiweightsareaninstrumentto accountfor regionaldisparitiesin economicdevelopment.They

equalizethemarginalutility of consumptionin eachregionfor eachperiodin orderto preventlargecapital

flowsbetweenregions.This techniqueis descriptiveratherthanprescriptive;althoughthechoiceof utility

functionimpliesthatsuchcapitalflowswouldgreatlyimprovesocialwelfare,without theNegishiweights

theproblemof climatechangewould bedrownedby thevastly largerproblemof underdevelopment.A

detailedexpositionof Negishi weightsis given in Nordhausand Yang [1996] and the referencescited

therein.

In thisequation,theterm dgf �jlk] � +Cmn k] � +Cm representstheflow of utility at time � for region a andthesumma-

tion occursfrom somestartingpoint � $oM to a finite time horizon � V . Thefinite time horizonis required

by thenumericalsolutiontechnique.It is, however, just a numericalapproximationto aninfinite horizon

problemasusedin theanalyticalmodel(equation5). Thefinite time horizonis chosensuchthattheend

point hasno significanteffecton thepolicy decisionin theanalyzedtime frame.

Investment( p ) in capitalis specifiedin themodelasthebalanceof output( q ) that is not devotedto

consumptionin agiventimeperiod:

qr�RaQ-�� 3$ Tr�!ab-�� Ispl�Rab-c� � (9)

Investmentcontributesto the capitalstock( t ) of the next period,which thendepreciatesat a constant

proportionalrate( u over time:

ts�RaQ-��vI � =$ � �w� u ts�!ab-�� Ihpl�!ab-�� � (10)

At eachpoint in time, thecapitalstockandlaborsupply(which is exogenouslyspecified)influencegross

world product.In RICE, this relationshipis expressedby a modifiedCobb-Douglasfunction:

qx�!ab-�� 3$5y �Rab-c� z �!ab-�� ts�RaQ-�� .{ X&�RaQ-�� � ' { � (11)

In the model, grossworld output dependson exogenouslyand endogenouslyevolving elements. The

exogenouselementsare the multi-factorproductivity ( z ), the populationlevel, and the constantshare

of capital ( | in the economy. The endogenouslydeterminedelementsarecapitalanda scalingfactor

( y� , which accountsfor the costsfrom investingin carbonmitigation technologiesandclimate-related

damages,asdiscussedbelow.

The economicandthe naturalsystemsarelinked in the modelby the anthropogenicCO2 emissions

7

Page 8: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

( } ). The CO2 emissionsdependon the economicoutput, the exogenouslydeterminedenergy-intensity

of GWP ( ~ , the CO2 abatementrate ( � ), and the exogenouslyevolving land-useCO2 emissions( � )

accordingto: }x�!ab-�� 3$ ~3�RaQ-�� q��!ab-�� �� ��� �=�Rab-c� i� Ih�x�RaQ-�� � (12)

Without carbonmitigation the carbonemissionsfollow a baseline“businessasusual” (BAU) scenario.

IncreasingrelativeCO2 abatementimposesincreasingrelativeabatementcosts( � ):

�x�Rab-c� %$5�9� �Ra �3�RaQ-�� �!� k]mi- (13)

with �9� �Ra and ��� �Ra beingmodelparameters.CO2 emissionsact to increasetheatmosphericCO2 stock

(M � + . However, increasedCO2 concentrationsin the atmospheredrive someproportioninto the upper

ocean(M � � . Eventuallymostof a givenCO2 pulseemittedinto theatmosphereis absorbedby thedeep-

ocean(M ��� accordingto afirst-orderlinearmodeldefinedby:

� � + �!�@I � =$ \�] }r�RaQ-��,I � I �9�.� � � + �!� I �H��� � �c�*�#� - (14)

� � �*�#�vI � =$��9�R� � � + �#� I ���.� � � �?�!� I �H�.� � �����!� - (15)

and � �����!�@I � 3$5�H�.� � �c�*�#� I ���.� � �����!� � (16)

Thevariables��� � � aretheentriesin thecarboncyclemodeltransitionmatrix [NordhausandBoyer, 2000].

AtmosphericCO2 levelsabove thepreindustriallevel of 590Gigatonsof carboncausea netradiative

greenhousegasforcing ( � ): ���!� 3$5� � � dgf,� � � + �!� �h�(� M(���=d_f ��� - (17)

wherethe factorof 4.1 is thechangein radiative forcing dueto a doublingof atmosphericCO2 concen-

trations. Note that physicalvariables,suchasthe atmosphericCO2 stockor temperature,areall global

in themodel. As such,temperaturechangein themodelis really thetemporalandspatialaverageof the

changein globalsurfacetemperature.Increasedradiative forcing is translatedinto globalmeantempera-

turechange�!� by asimpleclimatemodel:

���!� =$ ���#� �N� I �R~ �c�� ���!� � �¢¡£���#� �N� � �R~ � �#���!� �N� � � V �!� �¤� ci� � (18)

In this equation�¥9¦ denotesthethermalcapacityof theoceanicmixedlayerand � ¡ is theclimatefeedback

parameter. Theclimatesensitivity ( ��V ) of themodelis definedastheequilibriumtemperatureresponseto

adoublingof atmosphericCO2. Theclimatesensitivity is givenby � V $¨§x© ��ªi«�¬ �­ , where®¯� �;° j7± � is the

radiative forcing causedby a doublingof CO2. Theparameter~ � representstheratio of theheatcapacity

8

Page 9: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

of thedeepoceanto transferratefrom theoceanicmixedlayer to thedeepocean. �²V is thedeviation of

thedeep-oceantemperaturefrom thepreindustriallevel approximatedby:

� V �!� =$ � V �#� �N� I �R~ � �!���!� �¤� � � V �#� �N� ci� � (19)

To completethecircle linking climateto theeconomy, temperaturechanges( � , equation18) causeeco-

nomicdamages( ³ ), which arespecifiedasa fractionof thegrossworld product:

³´�RaQ-�� 3$ µ¶� �Ra ���!� I µ·� �Ra ���!� � � (20)

Thecostsof carbonmanagementandthe climatedamagesaresubtractedfrom thegrossworld product,

therebydeterminingthescalingfactor y :

y �!ab-�� %$ ��� ³´�!ab-�� � ���RaQ-�� � (21)

3.2 Representationof CO2 Sequestration

We addsequestrationasanadditionalcarbonmanagementoption to thestandardabatementoptioncon-

sideredin the original RICE-01 model. The carbonsequestrationflux ( ¸ ) is removed from industrial

emissions( } � � ) andstoredin a carbonreservoir (M >.¹ from which it leaksbackinto theatmosphere

following anexponentialdecay:

� >.¹ �!�@I � =$ \ ] ¸&�!ab-��@I � I � �.� � >.¹ �!� � (22)

All sequesteredcarbonis presumedin this exerciseto enterthe samereservoir; this is mathematically

equivalentto anarbitrarynumberof reservoirs for our assumptionof a linearrateof decay. Theoriginal

equationdescribingtheatmosphericCO2 budget(14) is hencemodifiedas:

� � + �#�,I � =$ \(] � }x�!ab-��@I � � ¸��!ab-��@I � .� I �9�.� � � + �!� I ����� � � �*�!� I � � � � >.¹ �!� � (23)

Sequestrationis representedasa carbonbackstoptechnology, similar to the representationof non-

abatementoptionsin previous economicmodels( ������ , Ward [1979], Manneet al. [1995]). A backstop

technologyimplies that the marginal costsof sequesteringCO2 canbe approximatedasindependentof

thesequesteredquantity. This somewhatcrudeapproximationmight be justifiedbecausethecapacityof

carbonsequestrationmethods(suchasinjection into deepaquifers,the deepoceans,or CO2 absorption

out of theatmosphere)exceedsthenecessaryCO2 emissionreductions[Elliot et al., 2001;Herzog et al.,

2001;Ha-DuongandKeith, 2002].NotethattheCO2 sequestrationmethodbasedon CO2 absorptionout

of the air [Lackner, 2003] is a very closeapproximationto the type of backstoptechnologyconsidered

9

Page 10: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

here,as the marginal costsareratherinsensitive to the fraction of anthropogenicCO2 emissionsbeing

sequestered.

In themodel,wesubtracttheproductof theCO2 sequestrationflux andthemarginalsequestrationcosts

( ºr�!� ) from world output.Theoriginalproductionfunction(equation11) is hencemodifiedaccordingto:

q��!ab-�� =$ y �Rab-c� z �!ab-�� ts�RaQ-�� .{ X&�RaQ-�� � ' { � ¸��RaQ-�� º��!� � (24)

Sequestrationbecomesanadditionalchoice(besidesCO2 abatementandcapitalinvestment)to maximize

the objective function. We neglect the possibility that CO2 sequestrationmight occurout of the atmo-

sphere.As a result,sequestrationfluxeshave to bebelow theindustrialemissions.

Presentestimatesof themarginal costsof CO2 sequestrationvary widely andareprimarily basedon

theoreticalcalculations.Giventheconsiderabletechnologicalandlogisticalchallengesof largescaleCO2

sequestration,the cost estimateshave to be taken with a grain of salt. Williams [2003], for example,

considersanintegratedgasificationcombinedcyclepowerplantusingcoal.For hydrogenproduction,the

marginal costof CO2 sequestrationis estimatedasroughly50U.S.$pertonC. For electricityproduction,

theestimatedmarginalcostsarearound100U.S.$pertonC.For comparison,ChiesaandConsonni[2000]

analyzenaturalgas-firedcombinedcycle power plantsandestimatesthat carbontaxesbetweenroughly

125to 180U.S.$perton C would rendertheCO2 sequestrationoptioncompetitive. We adopta marginal

costfor large scalecarbonsequestrationof 100 U.S.$per ton C asour centralestimateandexplore the

implicationsof this parameteruncertaintyin asensitivity study(discussedbelow).

3.3 Representationof Learning-by-Doing

Technologicalimprovementsresultingfrom large-scalemanufactureof varioustechnologieshave been

shown to decreasethe costsof thosetechnologiesin a phenomenontypically referredto as “learning-

by-doing” [ArgoteandEpple, 1990]. Learning-by-doingis especiallyimportantfor relatively new tech-

nologiessuchasCO2 sequestration.To representlearning-by-doingfor CO2 sequestration,the costof

sequesteringoneton of carbondioxide ( º ) decreasesin our modelasa functionof cumulative installed

capacity( 00 ) accordingto: 0�0(�!�@I � =$ 0�0(�!� I \�] ¸��!ab-�� � (25)

and ºr�#� 3$ º 6�� 00(�!� 002�#� 6H � '*»2� (26)

Notethattheaboveequationimpliesthatcumulativecapacityis irrespectiveof theregion in whichtheca-

pacityis installed,meaningthatcost-reducingtechnologiesdevelopedin eachregionareperfectlyshared.

10

Page 11: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

Thecostcurve is characterizedby anexponent( ¼ ) thatis a functionof the“progressratio” (½¢A ):

¼ $ � dgf �¾½7A dgf �¿� � (27)

The progressratio is definedasthe relative costsafter a doublingof the installedcapacity. We assume

a progressratio of 85% to representtechnologiesbetweenthe researchanddevelopmentphaseandthe

commercializationphase[Grubler et al., 1999]. As initial installedcapacity, we assume10 Gt C to

representa relatively immaturetechnology.

Introducinglearning-by-doingcanintroducelocal maximainto theunderlyingoptimizationproblem

[Messner, 1997]. Basically, the technologiescanbe trappedin a local basinof attractionif the existing

maturetechnologyis cheaperthanthenew (but initially moreexpensive) technology. The local maxima

canseverelylimit theappliedlocalsearchalgorithmimplementedin GAMS/MINOS[Brookeetal., 1998].

We testwhetherthesolutionis a local (asopposedto a global)solutionby startingthemodelsimulations

at differentinitial conditionsfor abatementandsequestrationsfor thebasecase.The fact thatall model

simulationsconverge to basicallythe sameresultarguesstronglyagainstthe existenceof relevant local

maximain theobjectivefunction.Themodelis formulatedin GAMS [Brookeetal., 1998]andis available

from theauthors.

3.4 Representationof TechnologicalInertia

Market penetrationratesof new technologiesarelimited by factorssuchascapitalturnover or diffusion

of knowledge.Thepenetrationratesof technologiessuchasnaturalgas,cars,or oil canbeapproximated

asan exponentialincreaseof deliveredquantity [Grubler et al., 1999]. Thusa constantmaximumal-

lowablegrowth rateseemsan appropriateconstraintto prevent the obviously unrealisticstrategy of an

instantaneousscale-upof sequestration.An instantaneousscale-upwould imply infinite penetrationrates,

inconsistentwith theobservations.

Historical ratesof market penetrationcanbe quite high. For example,thegrowth rateof the energy

suppliedby gashasbeenaround7.5 % per year in the U.S. over the last 150 years(seeGrubler et al.

[1999]). However, becauseof theextensive infrastructurenecessaryfor large-scalecarbonsequestration,

it seemsmoreappropriateto compareit to otherinfrastructure-intensive technologies(suchasrailroads),

which requiremoretime to penetratethemarket. For this reasonwe choosea growth constraintof 5 %

per year for carbonsequestrationin our model. The increasein CO2 sequestrationover time is hence

constrainedby amaximumallowablegrowth rate( À :¸��!ab-��@I � :Á � � IPÀ ¸��Rab-c� � (28)

Thegrowth constraintfor CO2 sequestrationgivenabove is region-specific.Thus,while costreductions

11

Page 12: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

from technologicaladvancescanbesharedbetweenregions,the increasesin capacityto sequesteremis-

sionscannot: eachregion must investtime andresourcesinto the necessaryinfrastructureto sequester

CO2.

4 Resultsand Discussion

4.1 Analytical Model

We first examineresultsderivedfrom theanalyticalmodel(equation7) to illustratesomegeneralproper-

tiesof theproblem.As aninstructiveexample,considertheefficiency factorof afforestation.We choose

economicparametervalueswhich approximatetheoptimalpolicy in theRICE model,resultingin a dis-

count rateof 5 % year' �anda carbontax growth rateof 1.5 % year' �

(consistentwith concentration

stabilizationat 650 ppm). We further assumea half-life time of carbonin newly plantedforestsof 40

years,andan energy penaltyof 10%. This yields an efficiency factorof 61%. For comparison,deep

aquifersequestration(assuminga half-life time of 1000yearsandanenergy penaltyof 15%)would have

anefficiency factorof morethan95%.

Thissimplemodelsuggestsfour mainconclusions.First,ahigherdiscountrateincreasestheefficiency

factorby lesseningthepresent-valuecostsassociatedwith futureleakage.Second,ahigherenergy penalty

decreasestheefficiency factorby anincreasein overall energy production.Third, smallerreservoir half-

life times(equivalentto larger leakagerates)decreasetheefficiency factorby allowing carbonto escape

sequestrationearlier(Figure1). And fourth,ahighercarbontaxgrowth ratedecreasestheefficiency factor

by increasingthecostof cuttingemissionsto compensatefor leakedCO2.

4.2 Optimal EconomicGrowth Model

Theanalyticalmodelis usefulto expressthetradeoff betweensequesteredandabatedCO2 emissionsin a

closedform solution.Thesimplicity of theanalyticalmodelcomes,however, at thepricethatthesystem

hasto be extremelysimplified. For example,the analyticalmodelneglectsthe effectsof (i) learning-

by-doing, (ii) hyperbolicdiscounting,(iii) technologicalinertia, and (iv) the availability of the carbon

backstoptechnologyonoptimalcarbontaxes.Weusethenumericalmodelto analyzetheseeffects.

The first questionwe addresswith the numericalmodel is how the availability of the CO2 seques-

tration technologyaffectsoptimal carbontaxes. To isolatethis effect, we useexponentialdiscounting,

neglect the technologicalinertia constraintsand learning-by-doing.CO2 sequestrationis availableat a

constantmarginal costof 100U.S.$perton C anda reservoir half-life time of 200a. Theoptimalcarbon

taxesfor this simulationin thecasewithout sequestration,with perfectsequestrationandwith a “leaky”

sequestrationareshown in Figure2.

12

Page 13: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

0 200 400 600 800 10000

10

20

30

40

50

60

70

80

90

100

reservoir half−life time [year]

sequ

estr

atio

n ef

ficie

ncy

(η)

in %

r=2% a−1

r=3.6% a−1r=7% a−1

Figure1: Relationshipbetweenthe reservoir half-life time of a sequestrationprojectand its efficiencyfactor( � ) (equation7 in thetext) for differentdiscountrates( A ).

In this example, the optimal carbontax increasesin all threecasesin the next 150 yearsand ap-

proachesthemarginal costsof carbonsequestration.If carbonsequestrationis not available,thecarbon

tax continuesto rise. If a perfectbackstoptechnologysuchasnon-leakingcarbonsequestrationwithout

a technologicalinertiaconstraintis available,thecarbontaxesareboundby thebackstopprice(equalto

100U.S.$perton C in this example).

Sequestrationactshereasa backstoptechnologyby forcing themarginal costof abatementto remain

below a flat price. In the casewhereCO2 sequestrationis the perfectsubstitutefor abatement( �c�£ �� , no

leakage),societyis indifferentbetweenthe two technologiesassoonasthemarginal costsof abatement

andsequestrationareequal( ���� �� , at theintersectionof theabatementcostscurvewith theflat sequestration

costcurveat100U.S.$pertonC shown in Figure2). In thecasewhereCO2 sequestrationresultsin future

CO2 leaks,it is not a perfectsubstitutefor abatement.As a result,leaky CO2 sequestrationis only used

at a highercarbontax thanthemarginal costof thetechnology. SinceCO2 sequestrationis not a perfect

substitutefor abatement,it is worth lessin theoptimalgrowth framework, andthepriceat which carbon

sequestrationis usedexceedsthe marginal costsof $100per ton. In fact, the ratio of the marginal cost

of sequestrationto themarginal costof abatementwhenbothareusedrepresentstheefficiency factorof

sequestrationintroducedbefore. Reassuringly, the estimatedsequestrationefficienciesagreequite well

betweenthe analyticaland the numericalmodel. (The valuesare 78 to 86% in the numericalmodel

comparedto 84%in theanalyticalmodelusingthesamemodelparameters.)This impliesthattheoptimal

choicebetweenCO2 sequestrationandCO2 abatementin thissimplifiedexampleis well approximatedby

theanalyticalefficiency factorderivedin equation(7).

13

Page 14: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 22500

20

40

60

80

100

120

140

160

180

carb

on ta

x [$

per

ton]

year

no sequestrationperfect sequestrationleaky sequestration

Figure2: Theeffect of CO� sequestration(with andwithout CO� leakage)on optimalcarbontaxes. Seetext for details.

We now analyzetheeffectsof hyperbolicdiscounting,learningcurves,andtechnologicalinertia. Our

modelsuggeststhattechnologicalinertia,hyperbolicdiscountingandlearning-by-doingall actto increase

theoptimaluseof carbonsequestrationin thenearfuture(Figure3).

In this simulation,two phenomenaaredriving earlieruseof sequestration.First, employing the rel-

atively new technologyof CO2 sequestration,reducesthe futuremarginal costs.This effect is moreim-

portantfor relatively new technologies.Second,sequesteringcarbonin smallamountsearlyonallowsthe

scaleup in time to achievesequestrationof all industrialemissionsearlyin thenext century(Figure3).

Theintroductionof sequestrationtechnologiescandramaticallyreducetheoptimalatmosphericcon-

centrationof CO2, dependingon themarginal costof CO2 sequestration(Figure4).

With a relatively expensiveCO2 sequestrationtechnology(for example150U.S.$perton C) CO� se-

questrationis not usedandthe atmosphericCO2 concentrationsexceed750 ppmV in 2250. For a CO2

sequestrationcostof 100U.S.$per ton C (thecentralestimate),CO� sequestrationis usedandthepeak

of theoptimalCO2 trajectorydecreasesto lessthan550ppmV(Figure4). Thesecondaryincreasein CO2

concentrationin thelong run (Figure4A) is dueto therelatively early leakageof sequesteredCO2 at the

200yearreservoir half-life time. For a 2000yearreservoir half-life time, theoptimalCO2 concentrations

donotshow thissecondaryincrease(Figure4B).NotethattheoptimalCO2 pathsfor arguablyrealisticas-

sumptionsaboutpresentCO2 sequestrationcostscanbeconsiderablylower thanpreviousoptimalgrowth

analyses( ����l� , Tol [1997]or NordhausandBoyer[2000]).

Cheaperclimatecontrolstrategiescanimprovetheweightedsumof presentandfuturewelfares(equa-

tion 8) by reducingthemarginalcontrolcosts.In anoptimalgrowth framework, reducedmarginalcontrol

14

Page 15: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 22500

5

10

15

20

[GtC

per

yea

r]

year

productionemissionssequestrationabatement

2000 2050 2100 2150 2200 2250−8

−6

−4

−2

0

2

4

6

8

[GtC

per

yea

r]

year

sinksleakage∆ atmosp.

Figure 3: Optimal carbonfluxes over time for the basecase. The simulationsassume(i) hyperbolicdiscounting,(ii) a technologicalinertiaconstraint,(iii) learning-by-doing,(iv) aninitial CO2 sequestrationcostof 100 U.S.$per ton C, and(v) a reservoir half-life time of 200 years.The emissionsin the upperpanelincludetheCO2 emissionsdueto land-usechanges(equation12). Seetext for details.

costsresultin reducedglobalwarming(Figure5a)and,in turn, in reducedclimatic damages.

CO2 sequestrationcan hencebe a valuabletechnology. We usethe optimal growth framework to

estimatethe economicvalueof the sequestrationoption asa function of initial price andreservoir half-

life time (Figure5b). Thevalueof theCO2 sequestrationtechnologyis estimatedby theamounta social

plannerwould bewilling to pay todayfor a sequestrationtechnology. Thevalueof a CO2 sequestration

technologyis high whensequestrationis relatively cheap,nearly6 % of present-dayGWPat $50U.S.$

perton C anda reservoir half life time of 200years.In otherwords,a budgetof 6 % of presentGWP(as

a onetime investment)to successfullydevelopa CO2 sequestrationtechnologyat a marginal costof $ 50

U.S.$pertonC andareservoir half life timeof 200yearswouldpassacost-benefittestin ourmodel.The

valueof CO2 sequestrationtechnologiesincreaseswith cheaperoptionsandwith longerreservoir half life

times.

15

Page 16: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 2250300

400

500

600

700

800

half life time 200 years

atm

osph

eric

CO

2 [ppm

v]

A

year

150 $/tC100 $/tC80 $/tC50 $/tC20 $/tC

2000 2050 2100 2150 2200 2250300

400

500

600

700

800

B

half life time 2000 years

atm

osph

eric

CO

2 [ppm

v]

year

150 $/tC100 $/tC80 $/tC50 $/tC20 $/tC

Figure4: OptimalCO� trajectoriesasa functionof initial CO� sequestrationcostsandreservoir half-lifetime. Theupperpanel(A) assumesa reservoir half-life timeof 200years.Thelowerpanel(B) assumesahalf-life timeof 2000years.

Thebenefitsof CO2 sequestrationwould justify asubsidyfor this technologyin theoptimaleconomic

growthmodel.Thisis illustratedin themarginalCO2 abatementcostsfor CO2 sequestrationandabatement

alonganoptimalpath(Figure6).

In thisexample,CO2 sequestrationis usedevenif it is (initially) moreexpensivethanCO2 abatement.

Theuseof themoreexpensiveCO2 sequestrationoptionis justifiedbecausethelearning-by-doingreduces

the unit costsfor the relatively new technology. In this example, it is optimal to subsidizeearly CO2

sequestration.

In Figure6, sequestrationis usedearlyon, eventhoughit is initially moreexpensive thanabatement.

Suchusedrivesdown thecostof futureCO2 sequestrationwhile capacityrampsup by themaximumrate

at which new technologiescanpenetratethe market (equation28). Around the year2150,the capacity

for CO2 sequestrationis largeenoughthatessentiallyall industrialemissionscanbesequestered.By then

16

Page 17: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 22500

1

2

3

4

5

year

tem

pera

ture

Cha

nge

[o C]

A

150 $/tC100 $/tC50 $/tC20 $/tC

0 50 100 1500

2

4

6

8

10

12

14

16

initial price of sequestration

valu

e of

tech

nolo

gy [%

199

5 G

WP

]

B 200 years reservoir half−life2000 years reservoir half−life

Figure5: Effect of differentinitial CO2 sequestrationcostson optimaltemperaturechangesandthevalueof thesequestrationtechnology. Shown aretheoptimaltemperaturechangesfor half-life timeof 200years(upperpanel,A). Thelower panel(B) givesthevalueof CO2 sequestrationtechnologiesasa functionofinitial priceandreservoir half-life time.

sequestrationtechnologieshave maturedin the model to the point that cost reductionsfrom increased

cumulative capacityare small, andwe get the relationshipthat we would expect betweenthe price of

sequestrationandthepriceof abatementasderivedin ouranalyticalmodelandillustratedin Figure2. The

ratio of thesemarginal costsis the marginal economicefficiency of sequestrationrelative to abatement.

Clearly, early sequestrationefforts are quite valuablein this example. In the nearterm, the marginal

sequestrationcostsareabove the marginal abatementcostsasspecifiedby the initial conditionsin the

model. In the optimalpolicy, the marginal costsfor theoptimaluseof CO2 declinedueto learning-by-

doing. In thelong run, themarginal costsfor optimalCO2 sequestrationfall below themarginal costsfor

optimal CO2 abatementbecauseleaky CO2 sequestrationis inefficient (dueto leakage)andhencehasa

lowershadow valuethanCO2 abatement(similar to Figure2).

17

Page 18: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 22500

10

20

30

40

50

60

70

80

90

100

year

mar

gina

l cos

t [$

per

ton]

sequestrationabatement

Figure6: Marginal costsfor CO� sequestration(stars)andCO� abatement(circles)for an initial seques-trationpriceof 100U.S.$perton C.

5 Caveats

Our analysisis subjectto considerableparameteruncertaintyandtheresultsare— of course— sensitive

to thechosenparameters.Weexploresomeeffectsof parameteruncertaintyby asimplescenarioanalysis.

(Notethatthisapproachstill assumesperfectknowledgewithin eachscenario).Weexaminethesensitivity

of theoptimalCO2 trajectorieswith respectto thetechnologicalinertia,theprogressratio,andthepresent

experiencein CO2 sequestration.This sensitivity analysissuggeststhat the modelconclusionsarevery

sensitiveto theconstraintontechnologicalinertiaandtheprogressratio,butarelesssensitiveto thepresent

experiencein CO2 sequestration(Figure7). It is somewhatreassuringthatthealternativechoicesof model

parametersshown in Figure7 do not considerablyaffect theoptimaltrajectoriesof CO2 andcarbontaxes

over thenext few decades.

Our modelsasnothingmorethanthinking tools to analyzethe interactionsof the socialandnatural

systemin a consistentway. Importantlimitationsof our analysisincludethe limited treatmentof uncer-

tainty andthecrudeapproximationsof thenaturalandeconomicsystem.Finally, it is importantto recall

two of our main assumptions.(i) CO2 sequestrationis both availableandsafein large quantities;(ii)

Decisionsarebasedon adiscountedutilitarian framework.

18

Page 19: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

2000 2050 2100 2150 2200 2250350

400

450

500

550

600

650A

CO

2 con

cent

ratio

n [p

pm]

base casepr=75%pr=95%

2000 2050 2100 2150 2200 22500

50

100

150

carb

on ta

x [$

per

ton

C]

Bbase casepr=75%pr=95%

2000 2050 2100 2150 2200 2250350

400

450

500

550C

CO

2 con

cent

ratio

n [p

pm]

base casecc=20 GtCcc=5 GtC

2000 2050 2100 2150 2200 22500

50

100

150

carb

on ta

x [$

per

ton

C]

D

base casecc=20 GtCcc=5 GtC

2000 2050 2100 2150 2200 2250

400

500

600

700

800

E

CO

2 con

cent

ratio

n [p

pm]

year

base caseα=7% per aα=3% per a

2000 2050 2100 2150 2200 22500

50

100

150

year

carb

on ta

x [$

per

ton

C]

Fbase caseα=7% per aα=3% per a

Figure7: Sensitivity studywith respectto therepresentationof theprogressratio (panelsA andB, param-eterpr, asdefinedin equation27),theinitial installedcumulativebaseof CO� sequestration(panelsC andD, parametercc, asdefinedin equation25),andthetechnologicalinertia(panelsE andF, parameterÀ , asdefinedin equation28). Eachsensitivity studycomparesthebasecasewith a high andlow valuefor theparameterin question.

6 Conclusions

Ouranalysissuggeststhreemainconclusions.First,theanalysisof thenetpresentvalueof CO� sequestra-

tion yieldsanexpressionfor theefficiency factorwhich seemspreferableto previouscarbonaccounting

methods.Second,a subsidyfor the initially noncompetitive technologyof CO2 sequestrationcanbe a

soundeconomicpolicy. Subsidiesfor CO2 sequestrationcanhelp to overcometechnologicalinertia, to

reducemarginal costsvia learning-by-doing,andto increasepercapitaconsumption.Third, andfinally,

CO2 sequestrationpresentsapotentiallow-costsolutionto thegreenhousegasproblem.CO2 sequestration

couldreducemitigationcostsandclimatedamagesconsiderably.

19

Page 20: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

Acknowledgments Financialsupportfrom theCarbonMitigation Initiative at PrincetonUniversityandtheEn-

vironmentalConsortiumat PennStateis gratefullyacknowledged.We aregratefulto S. Pacala,M. Oppenheimer,

R. Socolow, andB. Williams for helpful discussions.Any remainingmistakesaresolely the responsibilityof the

authors.

20

Page 21: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

References

Adam,D., Royal societydisputesvalueof carbonsinks,Nature, 412, 108,2001.

Argote,L., andD. Epple,Learningcurvesin manufacturing,Science, 247, 920–924,1990.

Biggs,S., H. Herzog,J. Reilly, andH. Jacoby, Economicmodelingof CO� captureandsequestration,

presentedat theFifth InternationalConferenceon GreenhouseGasControlTechnologies,Cairns,Aus-

tralia,August13 - August16,2000.

Brooke,A., D. Kendrick,A. Meeraus,andR. Raman,Gamsauser’s guide,1998.

Chiesa,P., andS. Consonni, Natural gasfired combinedcycleswith low co� emissions, Journal of

Engineeringfor GasTurbinesandPower-Transactionsof theAsme, 122(3), 429–436,2000.

Costa,P. M., andC. Wilson, An equivalencefactorbetweenT� � avoidedemissionsandsequestration

- descriptionandapplicationsin forestry, Mitigation and AdaptationStrategiesfor Global Change, 5,

51–60,2000.

Elliot, S., K. S. Lackner, M. K. Dubey, H. P. Hanson,andS. Barr, Compensationof atmosphericCO�buildup throughengineeredchemicalsinkage,Geophys.Res.Lett.,28, 1235–1238,2001.

Fearnside,P. M., D. A. Lashof,andP. M. Costa, Accountingfor time in mitigating global warming

throughland-usechangeandforestry, Mitigation andAdaptationStrategiesfor Global Change, 5, 239–

270,2000.

Grubler, A., N. Nakicenovic, andD. G. Victor, Dynamicsof energy technologiesandglobal change,

EnergyPolicy, 27, 247–280,1999.

Ha-Duong,M., andD. Keith, Climatestrategy with CO� capturefrom air, in EnergyPolicy, pp.submit-

ted,2002.

Herzog,H., K. Caldeira,andE. Adams,Encyclopediaof oceansciences, AcademicPress,London,UK,

2001.

Herzog,H., K. Caldeira,andJ.Reilly, An issueof permanence:Assessingtheeffectivenessof temporary

carbonstorage,ClimaticChange, 59, 293–310,2003.

Herzog,H. J.,andE.M. Drake, Carbondioxiderecoveryanddisposalfrom largeenergy systems,Annual

Review of EnergyandtheEnvironment,21, 145–166,1996.

Hoffert, M. I., K. Caldeira,G. Benford,D. R. Criswell,C. Green,H. Herzog,A. K. Jain,H. S.Kheshgi,

K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins,M. E. Mauel,L. J. Perkins,

21

Page 22: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

M. E. Schlesinger, T. Volk, andT. M. L. Wigley, Advancedtechnologypathsto globalclimatestability:

energy for agreenhouseplanet,Science, 298, 981–987,2002.

Kaiser, J., Soakingupcarbonin forrestsandfields, Science, 290, 922,2000.

Lackner, K. S., A guideto CO� sequestration,Science, 300(5626),1677–1678,2003.

Lackner, K. S., C. H. Wendt, D. P. Butt, E. L. Joyce, andD. H. Sharp, Carbondioxide disposalin

carbonateminerals,Energy, 20, 1995.

Lecocq,F., andK. Chomitz, Optimal useof sequestrationin a global climatemitigation stratgey: Is

therea woodenbridgeto a cleanenergy future, World BankWorking Papers– environment,pollution,

biodiversity, air quality. Number2635.,2001.

Manne,A., R. Mendelson,andR. Richels, A modelfor evaluatingregionalandglobaleffectsof GHG

reductionpolicies,EnergyPolicy, 23, 17–34,1995.

Manne,A. S.,andR. Richels,Buyinggreenhouseinsurance,EnergyPolicy, 19, 543–552,1991.

Messner, S., Endogenizedtechnologicallearningin anenergy systemsmodel, Journal of Evolutionary

Economics,7, 291–313,1997.

Munasinghe,M., P. Meier, M. Hoel, S.W. Hong,andA. Aaheim, Climatechange 1995,economicand

social dimensionsof climate change, contribution of working group ii , CambridgeUniversity Press,

1996.

Nilsson,S.,andW. Schopehauser, Thecarbon-sequestrationpotentialof theglobalafforestationprogram,

ClimaticChange, 30, 267–293,1995.

Nordhaus,W. D., An optimaltransitionpathfor controllinggreenhousegases,Science, 258, 1315–1319,

1992.

Nordhaus,W. D., andJ. Boyer, Warmingtheworld: Economicmodelsof global warming, MIT Press,

2000.

Nordhaus,W. D., andZ. L. Yang,A regionaldynamicgeneral-equilibriummodelof alternativeclimate-

changestrategies,AmericanEconomicReview, 86(4), 741–765,1996.

Ramsey, F., A mathematicaltheoryof saving, EconomicJournal,37, 543–559,1928.

Richards,K. R., The time valueof carbonin bottom-upstudies, Critical Reviews in Environmental

ScienceandTechnology, 27(special),279–292,1997.

22

Page 23: CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH?CARBON DIOXIDE SEQUESTRATION: WHEN AND HOW MUCH? Klaus Keller , Zili Yang , Matt Hall , and David F. Bradford ... in a credit regime

Swinehart,S. C., 1996, Afforestationasa methodof carbonsequestration: A costbenefitanalysis, Ph.

D. thesis,StanfordUniversity.

Tol, R. S. J., On theoptimal controlof carbondioxideemissions:An applicationof FUND, Environ-

mentalModelingandAssessment,2, 151–163,1997.

vanKooten,G. C.,A. Grainger, E. Ley, G. Marland,andB. Solberg, Conceptualissuesrelatedto carbon

sequestration:uncertaintyand time, Critical Reviews in EnvironmentalScienceand Technology, 27,

65–82,1997.

Ward,F. A., Thenetsocialbenefitsfrom a research-inducedcost-reductionof anenergy backstoptech-

nology, AmericanJournalof Agricultural Economy, 61, 668–675,1979.

Weitzman,M. L., Why thefar-distantfutureshouldbediscountedat its lowestpossiblerate,Journal of

EnvironmentalEconomicsandManagement,36, 201–208,1998.

Weyant,J.,O. Davidson,H. Dowlatabadi,J.Edmonds,M. Grubb,E. A. Parson,R. Richels,J.Rotmans,

P. R. Shukla,R. S. J. Tol, W. Cline, andS. Fankhauser, Climatechange 1995,economicand social

dimensionsof climatechange, CambridgeUniversityPress,1996.

Williams, R. H., Towardszeroemissionsfor transportationusingfossil fuel, Presentationat the VIII

BiennialAsilomarConferenceon Transportration,Energy, andEnvironmentalPolicy: ManagingTran-

sitions,AsilomarConferenceCenter, Monterey, CA. K. S. KuraniandD. Sperling(eds.),forthcoming.,

2003.

23