Cannabis Environmental Best Management Practices … · The Cannabis Environmental Best Management...

51
Cannabis Environmental Best Management Practices Guide September 2017

Transcript of Cannabis Environmental Best Management Practices … · The Cannabis Environmental Best Management...

C a n n a b i s E nv i r o n m e n t a l

Best Management Practices Guide

S e p t e m b e r 2 0 1 7

I. Introduction II. Energy

• EnergyEfficiency&Management • RegulatoryDrivers• Measurement&Verification• Scheduling• Lighting• HVAC&Dehumidification

• Energy Supply• On-sitePowerGeneration• Off-siteEnergySupply

III. Water• WaterUsageandQuality

• WaterFiltrationandPurification• IrrigationMethodsandAutomation• WaterRecycling• ImprovingWastewaterQuality

IV. Waste• WasteManagement&Diversion

• OrganicWasteManagement• Universal&HazardousWaste• Packaging• Recycling

V.AppendixA–ResourceDocumentsVI. AppendixB–TermsandDefinitions

T A B L E O F C O N T E N T S

1 2 2 4 5 910152122242525272832343535363739414244

TheCannabisEnvironmentalBestManagementPracticesGuide(theGuide)istheproductoftheDenverEnvironmentalHealth(DEH)CannabisSustainabilityWorkingGroup(CSWG),aninterdisciplinary,collaborative,sustainabilityworkgroupconvenedin2016forprovidingsector-specificsustainabilityresourcesandguidancetothelocalcannabisindustry.TheCSWGincludesexpertsfromcannabisbusinessesandsustainabilityscienceandengineeringfirmsaswellaslegalexpertsandlocalgovernmentofficials.TheGuidewouldnothavebeenpossiblewithouttheinsightandeffortsofCSWGmembersandpeerreviewers.Particularthanksgotothedevelopmentandreviewteam:

EMILY BACKUS DenverEnvironmentalHealthDUNCAN CAMPBELL ScaleMicrogridSolutionsALICE CONOWITZ IntegralConsultingLINDSEY COULTER DenverEnvironmentalHealthLAURA DAVIS GoodChemistryCATHERINE DRUMHELLER OakServicesNICK HICE DenverReliefConsulting

A C K N O W L E D G E M E N T S

KERRA JONES DenverEnvironmentalHealthBRANDY KEEN SurnaJEREMY LAUFFENBURGER DenverEnvironmentalHealthJOSH MALMAN TheClinicJACOB POLICZER TheCannabisConservancyJOANNA SMITH CREATIVE GraphicDesignServicesAMBRA SUTHERLIN BoulderCountyPublicHealthTHE RESOURCE INNOVATION INSTITUTE

3

F r o m t h e E x e c u t i ve D i r e c t o r

Denver’sDepartmentofEnvironmentalHealth(DEH)ispleasedtoreleasethecannabiscultivationenvironmentalsustainabilityguide.DevelopedbyDenver’sSustainabilityWorkingGroup,acollaborativeeffortthatinvolvesbothDEHsustainabilityadvisorsandcannabisindustryprofessionals,theguideaimstohelpcultivatorsreducewasteandconserveresources,turningthisever-expandingindustryintoanetworkofenvironmentalleaders.Specifically,theguideoffersrecommendationsrelatedtoincreasingenergyefficiencywhilereducingwasteandwaterusethathavebeentailoredtotheneedsofcannabiscultivationoperations.EachrecommendationsupportsDEH’soverallgoalofhelpingDenverresidentslivebetter,longer.Thehealthofourenvironmentisinextricablylinkedtoourphysicalhealth,andDEHworksextensivelywithbusinessesacrossallindustries,helpingthemtooperateassustainablyaspossible.Itisencouragingtoseetheinterestandpassionfromcannabiscultivatorsthroughouttheindustry,whohavecometogethertocraftthisguide.Denverisnowhometomorethan591activecultivationlicensesoperatingoutof295locationsthathasthecapacitytoconsumeasignificantamountofnaturalresources.However,theopportunityalsoexistsforeachofthesefacilitiestoleadDenvertowardlowerresourceconsumption,bringingthecommunityinlinewithDenver’s80x50ClimateGoalofreducinggreenhousegasemissions80percentbelow2005levelsby2050.ThisplansetsDenverattheforefrontofeffortstoaddressclimatechangebycreatingstrategiestotargetthelargestsourcesofemissions,commercialenergyusechiefamongthem.Bypartneringwiththecannabiscultivationindustry,DEHseesendlessopportunitiestocontinueourcommitmenttopartnershipsandcommunitycollaboration,andtoaggressivelyworktocombatthethreatsandbroad-reachingimpactsofclimatechange.AsMayorMichaelB.HancockstatedintheCityandCountyofDenver’s2015ClimateActionPlan,“climateactionisthebiggestopportunityofthe21stcenturytoprotectpublichealth,growoureconomyandsecureabrightfutureforgenerationstocome,andwehavethetechnologytomovetocleaner,moresustainableformsofenergy.Wemustcommittobeingboldandinclusiveabouthowwewillmeetthisgoaltogether.”

Sincerely,

Bob McDonald Executive Director City & County of DenverDepartment of Environmental Health

1

I N T R O D U C T I O NCANNABIS SUSTAINABILITY SECTOR OVERVIEW

UndertheleadershipofMayorMichaelB.Hancock,Denverhascommittedtoreducinggreenhousegasemissions(GHG)80percentbelow2005levelsby2050(80x50ClimateGoal).Commercialbuildingsrepresent35percentofcitywideemissions,and—ascannabisbusinessesoccupyanincreasingamountofcommercialbuildingspace—thecannabisindustryplaysanimportantroleinhelpingthecommunitymeetitsemissionreductiontargets.

Nationalandinternationalattentionisincreasinglybeingfocusedonthesustainabilityimpactsofthecannabisindustryinstateswherecannabishasbeenlegalized.Somecannabisbusinesseshaveinitiatedsustainabilityprogramstoreduceenvironmentalimpactsandhavepartneredwithlocalcommunitiesforenvironmentalandsocialgood.However,becausesector-widebaselinesustainabilitymetricsarenotcurrentlyavailable,overallindustrysustainabilityperformanceremainsunverified—leavingpublicperceptionopentoindividualinterpretation.

In2016,DenverEnvironmentalHealthcollaboratedwithlocalcannabisindustryrepresentatives,sustainabilitypractitionersandregionalstakeholderstocreatetheCannabisSustainabilityWorkGroup.Thegroup’smissionistopromotesustainabilityinthecannabisindustrythrougheducation,thedevelopmentanddisseminationofbestpractices,andthefacilitationofdialoguebetweenthecannabisindustry,thecommunityandtechnicalexperts.

BEST PRACTICES GUIDE PURPOSE

TheGuideprovidesrecommendationsforcannabis-specificsustainablepracticesbasedonananalysisofexistingdatafromindividualcasestudiesandregionalandnationalperformancestandardsaswellasindividualtechnicalexpertise.ThepurposeoftheGuideistoprovidecannabiscultivationbusinesseswithasnapshotofrelevantsustainablepracticesandastartingpointforprocessoptimizationtechniquesthatfacilitatecontinualimprovement.Inaddition,therecommendationsweredesignedandwrittenwithDenver’senergyandclimatesustainabilitygoalsinmind,includingthe80x50ClimateGoal.

Alignmentwithregionalstakeholdersiscriticaltopartneringforsuccessinpursuitofsocial,economicandenvironmentalsustainability.Longevityiskey,andcollaboratingforhealthycommunitiesandholisticgrowthwillensurestrongperformanceintheshortandlongterm.

LIMITATIONS

ThecurrentversionoftheGuideaddressesenvironmentalbestpracticesforenergy,waterandwastemanagementinindoorcannabiscultivationfacilities.Therearealsomanyothersustainabilitytopicsthatpertaintothecannabisindustry,includingcommunityengagement,employmentpractices,facilitysiteselection,etc.Asfutureeditionsoftheguidearereleased,additionaltopicsandfacilitytypes—suchasgreenhouses,outdoorcultivators,infusedproductsmanufacturersandretailers—maybeaddressed.

2

ENERGY EFFICIENCY & MANAGEMENTOVERVIEWIndoorcannabiscultivationisaresource-intensiveprocesswithenergydemandsasthegreatestcontributortotheindustry’senvironmentalfootprint.Whilegrowingcannabisinacontrolledindoorspaceleadstofasterproductionandgreaterproductvariety,highenergycostsandincreasingpricecompetitionarepushingcultivators

Figure 1:PrimaryElectricityUseforIndoorCannabisCultivation

Table 1: EndUseElectricityConsumption

togetfamiliarwiththeenergyimpacts.Decisionsrelatingtocultivationfacilitydesignshouldbedrivenbylocation-specificmetricsandcultivationprocesses.Highenergyuseandtheassociatedairqualityandemissionscontributestonegativepublicperceptionthereforeactiveenergyefficiencyeffortscanhelpcannabisbusinessescreatepositiveimprovementswithincommunities.

Accordingtoa2014studyperformedbytheNorthwestPowerandConservationCouncil,electricityisgenerallyusedtoperformkeyfunctionsintheaveragecultivationfacilityasshownbelow:1

1 NorthwestPowerandConservationCouncilMemorandum-ElectricalLoadImpactsofIndoorCommercialCannabisProduction

L i g h t i n g

B a l l a s t

A / CH e a t

Dehumidif i er Grow Systems Fans Irrigation C02

Fertigation

Pumps

Automation

Sensors

E n e r g y

F u n c t i o nPercentage of Total Facility

Electricity Consumption

HVAC and Dehumidification 51%Lighting 38%Space Heating (assuming electric heat) 5%Water Handling 3%CO2 Injection 2%Drying/Curing 1%

ENERGY

Therearethreeprimaryreasonswhycultivatorsshouldlooktoreduceenergyprofiles:

• Economic Competitiveness: Energyuserepresentsasignificantportionofacultivationfacility’stotaloperatingbudget.AstheindustrycontinuestomatureinColorado,themarketisbecomingincreasinglypricecompetitive.Organizationsthatreduceenergyconsumption,andtherebyenergycosts,willbebettersituatedtosucceedinthisincreasinglycompetitivemarket.

• Community Relations:Asthecannabisindustrycontinuestogrow,theelectricdemandsofcultivationfacilitiescouldpotentiallyleadtogridoutagesthataffectthelocalcommunity.Forexample,Oregon’sPacificPowerhasattributedsevenminorcommunityoutagestogrowoperations.2

• Environmental Impact:ElectricityproductionisresponsibleforapproximatelyonethirdoftotalgreenhousegasemissionsintheUnitedStates.Overthepastdecade,variouseffortstomitigateclimatechangehaveresultedinnationalelectricdemandremainingflat(zeropercentgrowth).Incontrast,Denver’selectricityconsumptionhascontinuedtoincreaseoverthepastseveralyearsduetoavarietyoffactors,includingoverallcommunitygrowth.Electricityusefromcannabiscultivationandinfusedproductsmanufacturinggrewby36percentannually,onaverage,between2012and2016.

Whilethereisnosingularsolutionforcultivatorslookingtoreducefacilities’energyprofiles,thelistedbestpracticesareintendedtoprovideaframeworkbywhichorganizationscanbegintodevelopacomprehensiveenergymanagementplan.

2 UtilityDive-MarijuanaGrowHousesTrigger7SummerOutagesforPacificPower

ENERGY

3

4

ColoradostateregulationsandlocalregulationsintheDenvermetroareasignificantlyimpactthemethodsofcannabiscultivationemployedbygrowersandtheper-gramenergyuseofcannabisgrown.Forexample,Denver’szoningandotherlanduseregulationsrequirecannabiscultivationfacilitiestooperateinindustrialareas.Therefore,thecultivationfacilitiesthatresultareprimarilyindoorwarehousesthatuse100percentartificiallight—themostenergy-intensiveoption.Alternatively,inlocalitiesthatallowcannabiscultivationfacilitiesonagricultural,commercial,industrialandmixed-usedlandareas,growerscanchoosethepropertiesandcultivationmethodsthatofferthegreatestreturns.Aspricesdropandenergyusebecomesalargerpercentageofrevenue(andearnings),marketforcesincentivizegrowerstotransitionfromindoorfacilitiestogreenhousesandoutdoorfarms.

Requirementsforcultivationfacilitiestoopenandoperatewithinaspecifiedperiodoftenpushgrowerstofocusonthefastestratherthanthemostsustainablemethodsofcultivation.Thesetypesofrequirementstypicallyoccurinlicensingsystemsthatlimitthenumberofbusinessesastoensurethatcultivatorsarenotidlysittingontheirlimitedlicense.However,theseregulationscanbeproblematicforbusinessesthatwanttoconstructhigh-techgreenhousescustomizedforcannabiscultivation.Companiesoftenopttocultivatecannabiswithinexistingwarehousestogetupandoperatingfaster.Thisfocusonspeedratherthanenergyefficiencyincreasestheenvironmentalcostsofcannabiscultivation.

TheCity&CountyofDenverhasambitious,community-wideenergyandGHGemissionreductiongoals.Cannabiscultivationfacilities,likeallbusinesses,operatewithinthecontextofthesegoals,andenergy

efficiencyattheindividualbuildinglevelispartofthesolution.Denver’sClimateActionPlan2015describesthesegoalsandpotentialstrategies.

Denver’s climate goals include reducing GHG emissions by 80 percent below 2005 levels by 2050.

InDecember2016,DenverCityCouncilpassedanewbenchmarkingordinance,knownasEnergizeDenver(www.denvergov.org/EnergizeDenver).Theordinancerequiresownersand/oroperatorsoflargecommercialandmultifamilybuildingstoannuallyassessandreportthebuildings’energyperformanceusingthefreeENERGYSTARPortfolioManagertool.In2017,buildingsexceeding50,000squarefeetinsizearerequiredtoreport,andbuildingsexceeding25,000squarefeetinsizewillberequiredtoreportbeginningin2018.ThedatawillbemadepubliclyavailableonanonlinemappublishedbyDenverEnvironmentalHealth.Thecannabisindustryisexpectedtoutilizetwoexemptionstothereportingrequirements:

• Buildingsusedprimarilyforindustrialoragriculturalpurposesareexempt.

• Businessesareexemptfromreportingwhenenergyperformanceisaconfidentialbusinesspractice.

BenchmarkinglawsarebecomingmorecommonthroughouttheU.S.,andsuchexemptionsmaynotapplyinotherlocalities.Cannabisbusinessesthatdonotmeetthesquarefootagerequirement,canparticipatevoluntarilytounderstandandcompareenergyusage.BusinessownerscanreferencethePortfolioManagersectionbelowformoreguidanceonhowtogetstarted.

ENERGYREGULATORY DRIVERS

Measuringandverifying(M&V)building-andsystem-levelenergyuseistypicallythefirststepfororganizationsthatarelookingtoreducetheenergyfootprint.Whileallfacilitiesreceivemonthlyelectricandgasusagestatementsfromutilityproviders,thedataincludedonthesestatementsrepresentsageneraloverviewandtypicallylacksthegranularityneededtodevelopacomprehensiveenergymanagementstrategy.ThebestpracticesoutlinedbelowrepresentoptionsforfacilitymanagerslookingtodevelopaneffectiveM&Vprocess.

Sustainability Aspects and Impacts• Energyconsumption• GHGemissions• Regionalstakeholderalignment• Operationalandcompliance budgets

Process Description

DevelopinganappropriateM&Vprocesswilldependonbothfacility-specificfactors(size,existinginfrastructure,geography,etc.)andanorganization’sspecificeconomicandsustainabilitygoals.Thefollowingbestpracticesareintendedtoprovideastartingpointforfacilitymanagers.

Track Metrics

Thereiscurrentlyapaucityofrelevant,high

MEASUREMENT & VERIFICATIONqualityenergydatainthecannabisindustry.Toimprovethecurrentstateofindustrydata,cultivatorsshouldbeginorcontinuetomeasureandsharefacilities’energyusagedatabothtomakemorestrategicequipmentandprocessdecisionsaswellastocontributetoanunderstandingofthecurrentstateoftheindustry.

Recommendedmetricstotrackinclude:• Grams/Watt(lightingonly)—Dryweightofflowerandtrimproductionmeasuredagainstlightingpower.

• Grams/kWh(totalenergyusage)—Overallproduction-to-energyefficiencyratio;dryweightofflowerandtrimproductionmeasuredagainsttotalbuildingenergyuse.

• Grams/sqftofcultivationspace(efficiency)—Measuresspaceutilizationefficiencypercycleand/orperstrain.

• Micromole/sqft—Lightingintensitymeasurementtoidentifywhenbulbsorfixturesmustbereplaced;alsocancomparemultiplelightingtypes.

• ReturnonInvestment(ROI)—ROIofeachtechnology(basedonreplacementtiming,maintenance/labor,yieldundereachtechnology)overaspecifiedperiod.TheROIofspecificequipmentshouldbecalculatedbyidentifyingtheincrementalcostsandbenefitsoverthecostsandbenefitsofstandardequipment.

• Energyconsumption(unitsandcosts)—Energyconsumedperunitofproductproducedandenergycostsasapercentoftotaloperatingcosts.

5

ENERGY

6

M e t r i c Description Units Notes Average Range

Lighting Yield per Watt

Used to compare lighting technologies and strains.

grams/Watt Measure grams of flower and trim in dry weight. Use lighting wattages, including ballasts. Measure over one grow cycle and annually.

Overall average 1.6g/WLess than 1g/W - 8%1g-1.49g/W - 16%1.5g-1.99g/W - 8%2g-2.49g/W - 10%2.5+g/W - 3%Unknown to Operation 51%

Total Energy Efficiency

Identifies total production efficiency; helps identify trends in building.

grams/kWhs Measure monthly and annuallyUse total kWhs for building.

Total dried product weight ÷ kWh/cycle = Yield per kWh

Space Utilization

Demonstrates if the cultivation space is being maximized for production.

grams/sqft Use square footage of cultivation space only.

39.5g/sq. ft.

Lighting Intensity

Measures whether the lights are providing the desired photosynthetic photon flux density (PPFD); can help identify correct time to replace lights.

micromoles/sqft

Measure at canopy.Measure for each type of lighting, for each stage of growth.

Currently unknown

Daily Light Integral

Measures the daily accumulation of photosynthetically active radiation (PAR) spectrum light reaching the plants.

mol/m2/day Formula: μMol/M2S x 3600 s/hr x photoperiod(hrs/day) ÷ 1,000,000 μMole/Mole = Mol/M2/Day

Denver Outdoor Avg.Winter 15-30 mol/m2/daySummer 25-45 mol/m2/day

Load Factor Used to manage peak power demand; higher Load Factor reduces cost of energy.

kWhs / (peak kW * days * 24 hours per day)

Use monthly electricity figures. Days equals days in billing period.

<0.60 = poor0.60 - 0.75 = fair>0.75 = good

OBTAINING BUILDING DATA FROM XCEL ENERGY

Energyusagedatacanincludedatapertainingtoelectricity,naturalgas,steam,fueloil,diesel,on-sitesolaroranyotherenergysource.ThedatamustcoverconsumptionfromJanuary1throughDecember31ofthepreviousyear.Certainpartiesmayneedtoaccessmorethan12monthsofutilitybillstofullycovertheyear.ConsumptiondatacanbecollectedthroughanXcelEnergyaccount,anaturalgassupplieraccountorfrompastbills.XcelEnergy’sMyAccountportalisahelpfulonlinetoolforobtainingmonthlyusefiguresandannualtotals.

XcelEnergyhasdevelopedadataaccessportalwhichallowstenantsandbuildingownerstoautomaticallyreceiveaggregateenergyconsumptiondataimporteddirectlyintoENERGYSTARPortfolioManageraccounts.ENERGYSTARPortfolioManageraccountsmustbesetuppriortobeginningtheapplication.Visitwww.xcelenergy.com,navigatetotheProgramsandRebatespage,clickontheBusinessicon,thenselecttheNewConstructionandWholeBuildingcategorytolearnmoreaboutenergybenchmarking.

ENERGYTable 2:KeyMetricstoTrack

7

PORTFOLIO MANAGER

Asmentionedabove,benchmarkingenergyuseusingPortfolioManagerisnowrequiredforcommercialandmultifamilybuildingsexceeding25,000squarefeetinDenver.

Foragoodexampleonhowtosetupanaccount,cannabisbusinessownersand/orfacilitymanagerscanrefertotheCityofBoulder:How-toGuideforMedicalandRecreationalMarijuanaBusinessLicenseEnergyReportingandCarbonOffset.

Guidance on Collecting Data

• Threelevelsofdatatoconsider:• Level1—Properlyinterpretingandrecordingmonthlyutilitybills.

• Level2—Requestingutilityintervaldata,ifavailable.

• Level3—Installingdataloggersatthebuildingorsub-meterlevel.

• Utilitybillscontaingreatinformation,butareoftenpoorlyinterpretedandrecorded.Afacilitymanagershouldbreakouttotalenergyused(kWh),peakdemand(kW),consumption-basedcharges,demand-basedcharges,andfeesandtaxesforeachbill.Inputtingthisinfo(alongwithwaterandproductiondata)intoastandardizedspreadsheet,shouldonlytakeafewminuteseachmonth.

Utility Interval Data• Facilitieswithsmartmeterscanrequest15-minuteintervaldatafromtheenergyprovider.

• FacilitiescanalsoopttopayforXcel’sInfoWiseservice,whichusesintervaldatatocreateaweb-basedenergydashboardthatprovidesvariousinsightsandmetrics.Thisservicecosts$150permonth,witha$900equipmentchargeifasmartmeterisnotalreadyinplace.

• Cultivatorscanalsoinstallequipmenttologenergydata.Thiscanbedone

concurrentlywithaBuildingManagementSystem(BMS)/EnergyManagementSystem(EMS)installation,orcanbedonesolelyforloggingenergydata.Installationwillallowforcapturinghigherfrequency,sub-metereddatathatcanprovideagreatdealofinsightintohowafacilityisusingenergy.

• Whenproperlyconfiguredandmonitored,arobustBMS/EMScanquicklyalertafacilitymanageraboutbrokenormalfunctioningequipment,savingfacilitiesfromenergywaste,equipmentfailure,powerlossandevenlossofcropintheeventofmalfunctioningenvironmentalcontrols.SeebelowformoreinformationonBMS/EMSsystems.

Engage Specialists• Anenergyspecialist(suchasaCertifiedEnergyManager)canperformanyoftheabovetasksforacultivator,particularly,ifagrowershouldseekoutanexperiencedcontractortoinstallsub-meters.InterestedcultivatorsshouldconsideralocaltradegrouporassociationsuchasRockyMountainAssociationofEnergyEngineers.

• Additionally,aspecialistcanperformanon-siteenergyauditorengineeringassistancestudy(EAS)torevealandevaluateenergysavingsopportunities.Asmentionedbelow,XcelEnergyoffersrelatedgrants/incentives.

Asthecultivationindustrymatures,theavailabilityofenergy,water,lightingandspaceefficiencymetricsasrelatedtoproductiondatabecomesimperative.Individualcultivators—aswellastheindustryatlarge—shouldhaveintimateknowledgeofthesemeasuresandofhowparticulartechnologiesandbehaviorsaffectresourceandproductionefficiency.

ENERGY

Building Management Systems/Energy Management Systems

FacilitymanagerslookingforacomprehensivedatasolutionshouldconsiderinstallingaBMSoranEMS.AstherearemanydifferenttypesofBMS/EMSsystemsavailableonthemarket,theU.S.DepartmentofEnergyhasdevelopedasuiteofSpecificationandProcurementSupportMaterialstohelpmanagersidentifytherightfitforeachfacility.

Energy Audit/Engineering Assistance Study

Performingacomprehensiveenergyauditorengineeringassistancestudy(EAS)isoftenthequickestwaytoacquiretheinsightsneededtodevelopaneffectiveenergymanagementstrategy,butenactingthisprocesstypicallyrequirespartneringwithaqualifiedthird-partyprovider.Xcel’sEnergyAnalysisProgramisagoodstartingpointforfacilitymanagersthatareinterestedinpursuingtheseoptionsandalsooffersseveralfinancialincentiveprogramstoreduceanorganization’sout-of-pocketcosts.

Itwouldbenefittheoperatortoinstallsub-metersinsidethebuildingtocollectpowerusagedata,forexample,thosemanufacturedbye-mon,orPowerTakeOff.Sub-metersmeasurethepowerusedinaspecificareaand/orbycertainpiecesofequipment,givingamoredetailedpictureofhowandwhereenergyisconsumedinthebuilding.

Resources:

• XcelEnergy-BusinessPrograms&Rebates

• SampleEnergyAuditForm

8

ENERGY

9

Scheduling

CultivationfacilitiesintheDenvermetroareareceiveelectricservicefromXcelEnergyandarebilledaccordingtototalelectricityconsumption(kWhs)andpeakdemand(kW).Whilethesetwobillingaspectsarerelated,howafacilityisoperatedcanhavesignificantimpactsonpeakdemandandtheactualcostofenergy.Managingtheoperationofvarioussystemswithinthefacilitybysettingstaggeredroomschedulescansignificantlyreduceenergycostsandnegativeimpactsonthepowergrid.Reducingpeakdemandalsocreatescommunity-levelenvironmentalbenefits,becauseenergyprovidersutilize“peakerplants”thataregenerallyolder,lessefficientandhavehigheremissionstoprovideadditionalelectricityduringtimesofhighdemand.

Sustainability Aspects and Impacts• Energyconsumption• GHGemissions

• Operationalandcompliancebudgets

Process Description

Load-factor Optimization

Energy-efficienttechnologiescanimproveboththetotalenergyuseandpeakdemandofafacility.Operatingschedules,

ontheotherhand,playacriticalroleinminimizingpeakdemandoverthemonth.Growrooms,particularlyintheflowerstage,representthelargestsourcesofpeakenergyneedswhenfactoringinlighting,coolingandventilation.Allgrowroomschedulesshouldbestaggeredoverthe24-hourperiodsotheminimumnumberofroomsrunconcurrently.Anyoverlapofschedules,evenforonehourorless,leadstohigherspikesinpeakelectricitydemandandhighercosts.Similarly,otherenergy-intensiveprocessessuchasextraction,cleaningorelectricheatingcanbestaggeredandscheduledcarefullywithlightingcyclestominimizepeakpowerdemands.

Time of Use

XcelEnergydoesnotchargetime-of-usebillingforSecondaryGeneralratecustomers(theratecategorymostcultivationfacilitiesfallunder).Kilowatt-hourscostthesamedayornight,butenergycanbesavedbyrunningextraequipmentduringcoolereveningperiods.Ifitisnecessarytooperateextragrowroomssimultaneously,cultivatorsshouldtrytoschedulethoseperiodsovernightwhenoutdoorairtemperaturesarelower.Thiscanreducethecoolingloadduringthesetimesofextraproduction,therebyreducingenergyuseandsavingmoney.

ENERGY

9

10

Lightingisthemostenergy-intensivecomponentofthecultivationenvironment.Thedesignofafacility’slightingsystemandthetypesoflampsutilizedinthegrowprocesswillaffectbothcropyieldandquality.Lightingdesignalsoplaysasignificantroleinthefacility’soverallsustainabilityprofile.Employeehealthandsafetyshouldbeconsideredinthedesignanddeliveryofindoorlightingaswell.

Sustainability Aspects and Impacts• Energyconsumption• GHGemissions• Solidwastegeneration• Employeewell-being• Climate• Operationalandcompliancebudgets

Process Description IndoorcultivationfacilitiestypicallyutilizeacombinationofHighPressureSodium(HPS),CeramicMetalHalide(CMH),Fluorescentand/orLight-EmittingDiode(LED)lamps.Inadditiontolamptype,lightingsystemdesignandtimeoflampusearealsocriticaltomaximizingenergyefficiencyincultivationfacilities.Duetotheoperationalimpactoflightingchoices,ahostofproduction-relatedfactorsmustalsobeconsideredascultivatorsselecttheappropriatelightingtechnology.Lightingtechnologiesshouldbemeasuredintermsofphotosyntheticallyactiveradiation(PAR)orthemeasureofthespecificlightspectrumcharacteristics.PARaccountsforthespectrumoflightbetween400nanometers(nm)and700nm,mostofthelightspectrumusedforphotosynthesis.Infraredandultravioletlightspectrums(sometimes

useful,althoughwidelydebated)falloutsideofPARreadingsandthusdonotregisterwithstandardlightspectrummeasuringequipment.Theintensityofthelightingsystemorphotosyntheticphotonfluxdensity(PPFD)ismeasuredinmicromolespersecondpermetersquare(µmol/s-m2)andshouldbecarefullymonitoredforoptimalplantgrowth.PPFDcanalsobethoughtofas“PARpersquaremeter”.

Equipment Overview

Cultivatorshaveseveralchoiceswhenitcomestolightingtechnology.Historically,thetopthreelightingtechnologiesusedhavebeenT5fluorescent,metalhalide(MH)andHPS.Therearenowseveraldifferentoptionstochoosefromincluding(butnotlimitedto):LED,lightemittingplasma(LEP),CMHandvariouscombinationsofthese.ManyoftheselightingtypeshavespecificspectrumsofPARandaregenerallyusedforonestageofgrowthoranother.Prescribingspecificheightsabovecanopyforlightingsystemsisnotrecommended,asPPFD,ageoffixture,benchheightandplantheightwillalldictatethelocationofthefixture.ThereshouldbeaperpetualreviewofmicromolelevelsforcannabisandtheneedtoadjustfixtureswiththeaidofagoodlightmetertoobtainthenecessaryPPFD.

Lightingfixturesemitenergyintheformoflight,asmeasuredinPARorphotosynthenticphotonflux(PPF),andreflectorsdirectthelighttowardsthecanopywithvaryinglevelsofsophisticationandsuccess.LEDstendtobedirectionalinnatureandthusgenerallydonotrequirereflectors.Knowingthelightingoutputofafixturealonewithoutunderstanding,properlyconfiguringandmeasuringthelightingintensityatthecanopywillresultinsub-optimallightingconditions.

LightingENERGY

11

Light Technology

General Use/Growth Stage

SpectrumRated Life in

HoursIntensity* in

PPFD Efficacy in µmoles/J

T5 Fluorescent Plant propagation — mothers and clones

Full spectrum with ability to fine tune colors

20,000 150 - 300 TBD

Metal Halide Vegetative growth Full spectrum with blue and green peaks

6,000 - 15,000

500 - 800 TBD

Ceramic Metal Halide

Both stages of growth Full spectrum, UV 20,000 800 1.46

High Pressure Sodium (single- ended)

Flower growth stage or both stages

Full spectrum with yellow and red peaks

5,000 - 20,000

700 - 900 1.16

High Pressure Sodium (double- ended)

Flower growth stage or both stages

Full spectrum with yellow and red peaks

5,000 - 20,000

700 - 900 1.70

Light Emitting Diode

All stages of growth Full spectrum with ability to fine tune colors, UV

50,000 800 - 1200 1.70

Light Emitting Plasma

Vegetative growth or both stages

Full spectrum, UV 30,000 700 - 900 1.00

Belowaregeneralusesandspecificationsforeachofthesetechnologies.3,4

3 Yorio,Neil.(2014)TowardsSustainableLightingForCommercialCannabisProduction.BiologicalInnovationandOptimizationSystems(BIOS)4Nelson,JacobA.andBugbee,Bruce.(2014)EconomicAnalysisofGreenhouseLighting:LightingEmittingDiodesvs.HighIntensityDischargeFixtures.PLOSone.

BEST PRACTICESSystem DesignWhendesigningforindoorcultivation,itisimportanttoidentifyandunderstandtargetlightlevelsforoptimalgrowth.ThecorrectmeasurementforobtainingbestresultsisPPFD,orthenumberofphotonsofPARthatarehittingthetopofthecanopy.Thismeasurementonlygivesthetotalamountofphotonsthattheplantsuseintheprocessofphotosynthesis.PPFDuniformityiscriticaltomaximizingcropyield.Themoreuseablephotonsconsistentlyhittingthecrop,thequickerthecropwillgrow.Manydouble-endedHPSfixtureshavemultiplereflectoroptions.Todecreasetheamountofphotonswastedonthesideofthegrow

rooms,moredirectionalreflectorsareplacedaroundtheperimeteroftheflowerrooms.Broaderreflectorsareplacedinthecenteroftheroom.Theresultislesswastedlightonwallsandmoreefficientproduction.

OnceanoperatorhasdeterminedthetargetPPFD,thecultivatorshouldworkwithanengineerorvendortodesignthesystemaroundthetarget.Ifamanufacturercannotassistinthedesignandtechnicalreview,thecultivatorshouldconsiderseekingamorecapablevendor,orbesuretohaveanappropriateconsultantontheteam.Mastercontrollersshouldbeusedwithquantummetersfor24-hourmonitoringoflightlevels.Itisalsoabestpracticetomakesuregrowershaveaccesstohandheldquantummetersfordailymonitoring.

*Intensity is measured at manufacturer’s recommended mounting height.

Table 3: LightingTechnologiesforCannabisProduction

ENERGY

Maximizing Production & Efficiency

Racks

Manycultivatorsaremovingtotieredproductiononverticalracksorshelving.Thisstrategyismostcommoninvegetationroomswhereplantsaresmallerandrequirelowerlightintensity.FluorescentlightsorLEDsaretypicallyusedinthesestackingsituationsbecausetheyradiatelessheatandcanbeplacedclosertoplants.Acommonquestionis,“Howfarawayfromthecanopyshouldlightshang?”

Whileeachlightisdifferent,themostimportantfactorstoconsiderwhenhanginglightsarethetemperatureofthecanopyandhowmanymicromolesarehittingit.Ensuringtheplantsareconsistentlyreceivingtheappropriatemicromoleleveloflightingandtheappropriatetemperaturelevelisessentialforefficientgrowth.

Pruning

Pruningisimportanttomaximizeproduction.Someplantsmayneedtobetoppedinthevegetativestagetokeepthemshortandbushy.Artificiallightscanonlyachieveapproximately24inchesofpenetrationonadensecanopy.TallerplantstakemoretimetogrowandultimatelyproducelessyieldperkWh.Forthesereasons,itisimportanttopruneplantsmultipletimesthroughoutthegrowthcycle.Typicalpruningactivitiesconsistofpruningoffallbranchesonthebottomthirdoftheplant.Lowerbranchescanoccasionallybeleftontheplantiftheyreachthetophalfofthecanopy.Interiorbranchesintheplantcanopycanalsoberemovediftheyaresmallerthanone-eighthofaninch.Thisheavypruningwillcreatelargertopcolaswithenhancedterpeneprofileandhigherpotency.

Greenhouses

Greenhouses will continue to take over a large portion of the cannabis industry as regulations become more favorable. Any expansion plans should at least take into consideration greenhouse production, as it can be a much more sustainable approach. With greenhouse production, lights will only be needed occasionally for supplemental light. Weather stations wired to a quantum meter should be used to ensure lights are only activating when the meter dips below the minimum micromole target. These weather stations allow for the most efficient use of electricity.

When designing greenhouse cultivation facilities, many of the system designs with regard to lighting will be different when compared to indoor cultivation. Greenhouse lighting is still based on desired PPFD, but must take into consideration how much natural light/sunlight will be obtained. Light fixture count will undoubtedly decrease in most geographies compared with indoor operations, as the lights will only be used to supplement during periods of low sunlight levels.

Another aspect of greenhouse lighting system design is controllability. Many light fixtures and associated ballasts or drivers have the ability to be dimmed. There are times in both stages of growth that the plants may desire a light level lower than the full output. Therefore, cultivators can reduce energy consumption with a dimming control system. A control system can also stagger the power up and power down of any room and can help prevent unnecessary power spikes and potential damage to electrical equipment.

12

ENERGY

13

TrellisingTrellisnetsshouldbeusedinmostgrowsystemstohelpmaximizeplantdensity.Cultivatorsshouldinstalltrellisnettinginthefirstweekoftheflowerstagebeforeplantsstretch.Installinglowtrellisingearlywillhelpkeeptheplantsstableandencourageheavierbudset.Itisimportanttoweavetheplantsupthroughthetrellisdailyforthefirst30daysofthefloweringcycle.Thegoalistomaximizeproductionbymakingsurethereisatleastonebranch/budcomingupthrougheachfour-inchsquareonthetrellisnetting.Monitoringthecanopyviaastepladdercanbehelpfultomakesuretherearenogapsinthecanopy.Adjustable Light Fixtures Itcanbebeneficialtohaveadjustableratchetsonthelightdependingonthetechnologyandlayout.Havingtheabilitytomovethelightclosertoshorterplantscangreatlyincreasethelevelofmicromolestheplantreceives.Itcanalsobehelpfultopullthelightsupandawayfromtallerplantstopreventburn.Cultivatorsshouldbesuretousenon-combustiblecablesorchainswhenusingadjustablelightingfixtures.Lighting Maintenance & ReplacementPropermaintenanceoflightingandlightingcomponentsisimportantforperformanceandefficiency.Adirtyopticlensorreflectorcouldreduceperformancebymorethan10percent.Differentlightingtechnologieshavedifferentmaintenanceconsiderations.High-Intensity Discharge Lighting • Aluminum Reflectors:Calcium,dustandsulfurwilldamagereflectorsanddecreaseefficiency.Cultivatorsshouldusecautionincleaningreflectors,asanywipingofthereflectorwilldamagethefinish.Cultivatorsshoulddipthereflectorinatwopercentvinegarsolutionandletitairdry,takingcaretoneverwipethereflector.Thisshouldbedoneonceeverysixmonthsormoreoftenifheavyaccumulationofdustisnoticed.Trackingmicromolelevels

atthecanopylevelwillinsuretheproperamountofphotonsishittingplants.Mostmanufacturersrecommendreplacingreflectorsevery12monthsalongwiththebulb,howevertrackinglightlevelsandonlyreplacingreflectorswhentheyareunderperformingisamoresustainableapproach.

• Bulbs: Cultivatorsshouldmakesurelightsareunpluggedandhavehadatleast20minutestocoolbeforecleaningorreplacing.Usingglasswipestowipedownthebulbandlensisadvised,ifapplicable.Cultivatorsshouldwipedownlightsonceeverytwomonthsorinbetweenharvests,butshouldnotwipethebaseofthelamporthesocket.Mostmanufacturersrecommendreplacingbulbsevery12monthsalongwiththereflector.However,bulbsusedona12hourson/12hoursoff(“12/12”)schedulewilltypicallyhavemoreratedlifehoursremainingafteroneyear.Trackingmicromolelevelsatthecanopylevelwillinsuretheproperamountofphotonsishittingtheplants.Trackinglightlevelsandonlyreplacingbulbsorlenseswhentheyareunderperformingisamoresustainableapproach.

• Ballasts: Whilemagneticballastsshouldbereplacedeverytwotothreeyearsbecauseofdecreasedefficiency,electronicballastscanoftenperformeightto10years.Buyingalightusedtoconsistofpurchasingabulb,ballastandreflectorseparately.However,mostnewtechnologyincludesanelectronicballastwiththereflector,sonochoiceneedstobemade.

• Magnetic:Magneticballastsprecededelectronicballast,areheavier,lessefficient,createmoreheatandarenoisierthanelectronicballasts.However,theymaycomewithalongerwarrantythanelectronicballasts,arelessexpensiveandeasiertorepair.

• Electronic: Electronicballastshavesensitivecircuitrythatismoredifficulttorepairthanmagneticballasts.Manyelectronicballastshavedimmableoptionsthatcanhelpputlesslightontheplantsduringsensitive

ENERGY

stagesofgrowth.Thedimmableoptioncanalsobehelpfulincontrollingtheroomtemperatureinextremeweatherconditions.Asmentionedabove,theelectronicballastismoreefficient,createslessheatandnoise,andtypicallylastslongerthanamagneticballast.RFI(radiofrequencyinterference)hasbeenaproblemwitholderelectronicballasts,butmanufacturershavebeenworkinghardtocorrectthatdeficiency.

• Cords/Connection: Cultivatorsshouldthoroughlycheckelectricalcordsforanydamage,cutsorabrasionsthatcouldaffectperformance.Also,cordsshouldbeinspectedforsecureconnectionattheoutletaswellasthefixture.

LED• Optics: QualityLEDmanufacturerswillutilizeaglassopticoverthediodes.Theseopticsshouldbecleanedeverytwomonthswithanon-solventcleanerandnon-abrasivemicrofibercloth.

• Diodes:Mostdiodesareratedfor50,000hours.Thismeanstheycouldrun,intheory,formorethanadecadewithoutreplacementona12/12schedule.However,theyarestillrelativelynew

andthetechnologyisstillimproving.Evenifthediodeiscapableoflasting50,000hours,driverswouldalsoneedtolastthatlong,andconsiderationwouldneedtobetakenforhowoftentheopticlenswouldneedreplaced.

• Fans:SomeLEDfixturesalsoincludecoolingfans.MostadvancedLEDmanufacturersbuildlightswithoutfans.Thesefanshavemovingpartsthatcanfailandmayneedtobereplaced.Cultivatorsshouldlookforwetlocation-ratedfixtures,indicatedwithanIP65label.

Cost of LightItisimportanttoconsiderallapplicablecostswhendesigningorupdatingafacility’slightingsetup.Purchasepriceisasmallportionofthetotalcostovertheequipmentlifetime.Costtooperate,usefullife,maintenancecostanddisposalcost—aswellasfailurescenariosandassociatedcosts—shouldbecalculatedandincludedinlightingdecisions.

14

Resources:• GavitaLighting-LumensareforHumans• GreenhouseProductNews-GreenhouseLightingOptions• ACFGreenhouses-IndoorPlantGrowLightGuide

• EconomicAnalysisofGreenhouseLighting-LightEmittingDiodesvs.IntensityDischargeFixtures

ENERGY

15

Climatecontrolsystemscanaccountfor50percentormoreofthetotalenergyconsumptioninanindoorcultivationfacility.5Climatecontrolconsistsofmultiplecomponentsofheating,ventilation,airconditioning(HVAC)anddehumidification.Assuch,properclimatesystemdesign,installation,commissioning,andmaintenancearecrucialaspectsofasustainablecultivationprocess.Properclimatedesigniscriticaltooperationalefficiencyandbiosecurity.Inmostcases,climatecontrolwillbethesinglelargestcapitalinvestmentacultivatormakesafterrealestate.Whilepurpose-builtcannabiscultivationfacilitiesallowforoptimalclimatedesign,themajorityofindoorcultivationsitesarerepurposedfacilities—whichaddsalayerofcomplexitytotheHVACoptimizationequation.

Sustainability Aspects and Impacts• Indoorairquality• Odor control • Energyconsumption• GHGemissions• Regulatorycompliance• Climate• Communityrelations• Employeewell-being• Operationalandcompliancebudgets

Process Description Inadditiontorequiringdifferentapproachesforpurpose-builtversusretrofittedfacilities,optimizingclimatesystemoperationswilldependonmyriadfacility-specificfactorssuchassize,layout,growingmethod,lightingsystemdesign,wateringscheduleandlocalambientconditions.DuetothecomplexityofHVACanddehumidificationsystems,itisstronglyrecommendedthatfacilitymanagersconsultwithamechanicaldesignerfamiliarwiththecultivationspace.Engineeringfirmsstamping

HVAC & DehumidificationmechanicaldesignsmustbelicensedbytheColoradoSecretaryofState.InstallingcontractorsoperatinginDenvermustbelicensedbythecityinadditiontoholdingalicensefromtheStateofColorado.FacilitymanagersmayalsofinditbeneficialtoselectengineeringfirmswithspecificsustainabilitycredentialssuchasaCertifiedEnergyManager®orLEED®accreditations.ItisimportanttonotethattypicalHVACsystemsaredesignedforcomfortcoolingandoccupancyventilation.Thesesystemscanpresentchallengesincultivationenvironmentsthatwillneedtobeunderstoodandaddressedatthedesignphase.Systemsspecificallydesignedforprocesscoolingwilloftenaddressthesechallengesandshouldbeconsideredwhenbudgetallows.Coolingisnottheadditionofcoldair,itistheremovalofheat.TheactofcoolingissimplytheabsorptionandrelocationofBritishthermalunits(BTUs)—theamountofthermalenergyrequiredtochangethetemperatureofonepoundofwateronedegreeinonehour.Themoreenergyefficienttheheatexchange,themoreenergyefficientthecoolingsystem.CommonlyusedequipmentratingsSEER(SeasonalEnergyEfficiencyRating),EER(EnergyEfficiencyRating)andIPLV(IntegratedPartLoadValue)arelimitedtospecificusesandoftenspecificequipment.Onthesurface,ahighratingmightmakeonesystemlookmoreenergyefficientthananother.Forinstance,whencomparingtheEERratingona100-tonchillerandtheEERratingonathree-tonmini-splitairconditioner,itmightappearthatusing33minisplitsismoreenergyefficient.Thisisnotthecase,astheothercomponentsofthechillersystem(fancoils,pumps,transportenergy,etc.)arenotaccountedforinthisrating.Further,addinguptherunningloadamps(RLA)of33three-tonminisplitsandcomparingthosetotheRLAofone100-tonchillerwillshowthatthe100-tonchillerconsumessignificantlylessenergyinoperation.Itisimportanttounderstandtheefficiencyofthesystemasawholefortheintendedpurposewhenevaluatinganyclimatesystem.

5 EvanMills-TheCarbonFootprintofIndoorCannabisProduction

ENERGY

COOLING METHODOLOGYEvaporative CoolingEvaporativecoolingisalow-energycoolingmethodinwhichheatisabsorbedfromthespacethroughtheevaporationofwater.Whenwaterevaporates,BTUsareabsorbedandtemperaturesarereduced.Thisisanenergy-efficientmethodofcoolingforcomfortapplicationsandisespeciallyattractiveindryclimates,butalsorequiressubstantialamountsofwater.Thismethodisnotrecommendedforcultivationspacesduetotheintroductionofhumiditytothespace.Mini SplitsSmall,ductlessHVACunitsallowforquickownerinstallationatrelativelylowcost.Theseunitshavehighefficiencyandlowambienttemperatureoptionsavailable.Theyareaviableoptionforsmall-scalefacilities(lessthan1,000squarefeetinsize)butshouldnotbeconsideredinlargeoperationsduetothelimitationonavailabletonnageand,therefore,additionalspaceandelectricalconnectionpointsrequired.Thesesystemslackdirectdehumidificationcontrolandaredesignedforcomfortcoolingapplication,thoughtheywillprovidesomeindirectdehumidificationcapability(ifthespace’srelativehumidityishighenough)asabyproductofthecoolingprocess.Theimportantthingtonoteisthatthedehumidificationcapabilitycannotbedirectlycontrolledand,thereby,doesnotallowthecultivatorprecisecontroloftheindoorrelativehumidity(RH).Standard HVAC SystemsGenerallydescribedasrooftopunits(RTUs),theseunitsarecommonandrelativelyinexpensive.ThecompleteHVACsystemcomprisesasupplyfan,filtration(limited),compressor,condenserandevaporatorcontainedinasinglehousing.Airfromthecultivationspaceismovedthroughductstotheunit’sevaporator,whereheatisremoved,andcoldairisreturnedtothecultivationspace.Thisisgenerallyaninexpensiveoptionwithmid-rangeenergyefficiency,butcanpresentchallengesassociatedwithexcessiveductwork,redundancy,lowtemperatureoperationandrequirementsforbuildingventilation.ManyexistingfacilitiesareusingRTUsinwaysthatarefarbeyondtheoriginaldesignintentofthesystems.Thisleadstopoorperformanceandhighenergybills.Frequently,microbialproblemsariseduetotheinabilityofthesesystemstosuccessfullymanagethecultivationenvironment.

16

ENERGY

17

Variable Refrigerant Flow VariableRefrigerantFlow(VRF)systemsarerefrigerant-basedheatpumpsystemsthatallowtheuseofoneoutdoorcondensingunitwithmultiplefancoilunit(FCU)zoneswithinafacility.EachFCUhasvariablecoolingcapacitytomeetload,promotingahigherlevelofindoorunitzoninganddistributedcoolingwithoutductworkthatwouldbetypicalofapackagedHVACsystem.Further,VRFsystems,whichincludevariablespeedcompressorsthatoffervaryingcoolingloads,allowforvariationinpowerconsumption.Withthesesystems,heatcanberedirectedtocoolingzones(andviceversa)toofferenergysavings.Thisistypicallymoreusefulinanofficeenvironmentwhereloadsvarybasedonexternalenvironmentalconditionsthanincultivationfacilitieswhereloadsstayconsistent.Overall,VRFisamoreenergy-efficientoptionthantraditionalHVACmethodsbutiscomparativelyexpensivetopurchaseandinstall.VRFalsocarriesthepotentialriskofleakagefromexposedrefrigerantpiping.Chilled Water SystemsChilledwatersystemsofferastandardsolutionforlarge-scaleprocesscooling,datacenters,large-scalebuildingssuchashospitalsandairports,andenergy-intensivemanufacturingoperations.Inthissystem,thepackagedwatercoolingmachine(i.e.,chiller)maintainsaconstantdischargewatertemperature(typicallyaround45degreesF)fromthewarmerwaterreturningfromthespace,therebyremovingBTUsandheatload.Thischilledwateristhenpumpedindoorstodistributedfancoilsorairhandlersthroughoutthespace.Chillerscomeintwotypes:air-cooled,whichcanbelocatedoutdoorsandexpelheattotheambientair,orwater-cooled,whichcanbelocatedinsideandexpelheattoacoolingtower.ChilledwatersystemsaretypicallymoreexpensivethantraditionalHVAConsmallandmid-sizedfacilities,butonlargefacilitiesthey

areanextremelycompetitiveoption.Alongwithhighenergyefficiency,chilledwatersystemsoffer:

• Theabilitytoisolatecultivationspaceswithoutdedicatingcompressorstospecificzonesofthefacility.Thispromotesthehighestlevelsofsystemredundancyandallowsforareductioninthenumberofcompressorsneededwhencultivatorsare“flipping”floweringrooms,whichreducessystemcost,electricalinfrastructureandpeakloadoperation.

• Ahighlevelofinstallationflexibility,allowingforchangingcapacitywithinanygivenspacewithoutchangingthecentralsystemdesign.

• Dedicateddehumidificationcontrolwhencoupledwithareheatsystem;dehumidificationcanoccurwithoutsub-coolingthespace.

• Theabilitytodesignforredundancyasbackupscantakeoverifonepieceofequipmentfails.

Water Cooled Condensers, Cooling Towers and Geothermal SystemsGenerallyspeaking,water-cooledHVACequipment(i.e.,chillers,packagedunitaryunits,ground-sourceheatpumps)createamoreenergy-efficientheatremovalprocessthroughthecondenserandreduceoperatingcostssubstantially.Water-cooledcondensersareavailableforbothtypicalairconditioningpackagedunitsandchilledwatersystems.Onawater-cooledcondenser,thewatercanbefairlywarm(insomecasesaswarmas90degreesF)andstillbeeffective,socoolingtowersandgroundloopscanbeutilizedinthesecases.However,coolingtowerstypicallyrequireintensivemaintenanceandconsumelargeamountsofwater.Thus,theyaretypicallynotcosteffectiveuntilthetotalloadreaches500to600tons.Onsitepondsand/orexcavatedgeothermalloopscanbeusefulinthesecases,assumingthecapacityforheatabsorptionisavailable.

ENERGY

18

DEHUMIDIFICATION METHODOLOGYCultivationfacilitiesarenotoriouslyhigh-humidityenvironmentsduetothemassiveamountsofwaterbeingaddedtothespace.Ultimately,thewaterthatisappliedtoplantsistranspiredbytheplantsandthenneedstoberemovedfromthespace.Theneedsofdehumidificationequipmentwillchangeastheparametersintheroomchange.Thewarmertheroomscanbekeptduringlights-offperiods,themoreefficientlydehumidificationequipmentwilloperate.Standalone DehumidifiersStandalonedehumidifierstypicallyconsistofsmall,free-hanging(plugandplay)dehumidificationunitsusedtosupplementthedehumidificationofferedbythecoolingsystemduringlights-onperiodsandasprimarysourceofdehumidificationduringlights-off.Standalonedehumidifiersaremoreenergyintensivethanlarger-scaledehumidificationmethodsduetotheuseofsmallcompressors,andoutputislimitedbytemperatureparametersinthespace(thelowerthetemperature,thelessoutputtheunitsproduce).Generally,standalonedehumidifiersarethemostaffordableandeasiestsystemstointegrate,butduetotheirplugandplaynaturetheycanbedifficulttointegratewithotherclimatecontrolequipment.ReheatReheatdescribesheatingthespacetoallowthecoolingsystemtorun24hoursadaytoproducedehumidificationwithoutreducingtemperatures.Reheatallowsformoreenergy-efficientdehumidificationvialargercompressors.Energyisrequiredtoproduceheat,whichinsomecasescanoffsettheconsumptionsavings.Reheatcanalsobenefittheefficiencyofstandalonedehumidifiersbyraisingthetemperatureinthespace.Increasingtemperaturehastheaddedeffectofdecreasingrelativehumidity(RH)throughexpansionofair.Reheatcanbeproducedbythefollowingmethods:

• Electric reheat:Electricheatstripsareutilizedtoproduceheat.Electricheatisnotparticularlyenergyefficient(consumptioniscomparabletoorhigherthanstandalonedehumidifiersinoverallconsumption),andtheenergyuseshouldbecomparedcarefullytostandalonedehumidifierstodeterminewhichsolutionismoreefficientinaspecificfacility.

• Hot gas reheat: Heatremovedfromthespacethroughtherefrigerantsystemisreroutedtoareheatcoiltobeusedtoheattoneutraltempsbeforebeingreturnedtothespace.Thismethodisnear-zeroenergyreheat,butislimitedincapacityandisgenerallynotrecommendedinlowambientconditionsduetodifficultymanagingrefrigerantpressures.Additionalstandalonedehumidificationorreheatfromothersourceswillberequiredinconjunctionwiththissource.

• Natural gas or propane reheat:Naturalgasorpropaneisusedtoproduceheatinordertoreducetheambientairrelativehumidity.Moreadvancedairhandlers(inchilledwaterorstandardHVACsystems)willoftenhavethisasanintegratedoption,orthisfunctioncanbeachievedwithstandalonegasheaters.

• Hot water reheat:Commoninchilledwatersystems,hotwaterissuppliedtoFCUsthroughagas-firedboilersystem.Superiorenergyefficiencycanbeachievedbymodulatingflowratesofhotandchilledwater,allowingthesystemtoconsumeexactlywhatitneeds.

• Heat recovery: Whenwater-cooledcondensersareinuseandroomsarerunningonoppositelightcycles(i.e.,someroomsarelitwhileothersaredark),heatremovedfromthelitroomcanbeabsorbedfromthecondenserandreturnedtoadarkroomthroughthehotwaterloopdescribedabove.Thisimprovestheefficiencyofthecondensingunitandallowsfornearlyfreereheat.

ENERGY

Desiccant

Desiccantdehumidifiersusedesiccantmediatoabsorbmoisturefromthespacebyrejectingtheaddedmoisturetoanexhaustairscavengerairstream.Forthissystemtoworkoptimally,thedesiccantmediaisheatedontheexhaustsidesothatthemoisturecanbereleasedoutsidetotheenvironment,andthedesiccantisreused.Desiccanthumidifiersrequirethelowestamountofenergyandcanoperateinawiderangeoftemperatures,butcanbecostprohibitiveandaregenerallyonlyusedonlarge-scalefacilities.

Economizers

“Economizer”isanothertermforfreecooling,utilizingtheoutdoorambientenvironmenttoassistwithtemperaturemanagementofthecultivationspace.Air-sideeconomizersareunitsthatutilizeventilationasacoolingmethodwhenambienttemperaturesarebelowthesetpointinthecultivationspace.Whileair-sideeconomizersareanenergy-efficientsolution,theycreatemoreproblemsincultivationenvironmentsthantheysolvewithregardtoCO2enrichment,biosecurityandodorcontrol,andaregenerallynotrecommended(See“VentilationandCO2”sectionforadditionaldetail).

Water-sideeconomizers(orfluidcoolers)canbeutilizedinbothchilledwatersystemsandinwater-cooledcondensingunitsandallowforfreecoolingwithoutventilation.Whenutilizedinchillersystems,water-sideeconomizerscanreducewintertimeenergyconsumptiondramaticallybybypassingthecompressorsentirelywhentemperaturesdropbelow40degreesF,utilizingcoldoutdoortemperaturestochillthewater.Onwater-cooledcondensers(incertaingeographies)fluidcoolerscanbeutilizedinplaceofcoolingtowersforthecondensingwaterloop.

19

ENERGY

20

AIR MOVEMENTAirmovementovertheplantcanopyiscriticalfortranspirationofmoistureandthepreventionofpestsandfungus.Cultivatorsshouldexaminecubicfeetperminute(CFM)perwattwhenevaluatingcanopyfansforefficiency.Destratificationfansareimportanttoenergy-efficientclimatemanagementwhenceilingheightsexceed10feet.Destratificationfanscreateverticalairflowandensurethatheatandhumiditytrappedattheplantcanopyreachtheceiling,wherethecoolinganddehumidificationequipmentistypicallylocated.Airflowandairspeedneedtobestudiedmorecloselyincontrolledcannabisenvironmentssotheindustrycancreateabaselinestandardforairspeed.VENTILATION AND CO2

InmanyCO2-enrichedenvironments,ventilationorair-sideeconomizationmaywastesignificantamountsofCO2(whichcanconflictwiththeenergycodeandefficiencyeffortsoverall).CultivatorsshouldcarefullyweighefficiencygainsassociatedwithventilationagainstCO2wastetodetermineaccuratecostsandgreenhousegasemissionsassociatedwithboth.Limitingventilationcanalsobehelpfultobiosecurityeffortsandinminimizingexposuretocontaminants,possiblyreducingrelianceonpesticidesorfungicides.Althoughcommon,CO2generatorsshouldnotbeusedinmodernindoorgrowfacilities.Generatorscontributehighlevelsofwasteheatwhileoperatingandmanyarenotventedproperly,leadingtodangerousindoorenvironments.BottledCO2isabettersubstitutepractice.DESIGN STANDARDSTheAmericanSocietyofHeating,RefrigerationandAirConditioningEngineers(ASHRAE)publishescommonlyacceptedHVACstandardsforarchitectsandengineers.Asastartingpoint,facilityownersmaybenefitfromfamiliarizingthemselveswithASHRAE90.1,EnergyStandardforBuildings.ASHRAEhasalsopublishedanAdvancedEnergyDesignGuideSeriesfocusedonreducingenergybuildinguse,whichisavailableasafreePDFdownload.BEST PRACTICESOneofthemostcommonmistakesmadebybusinessownersisfailuretoinvestinregularHVACsystemmaintenance.Whileinitialsystemdesignandequipmentprocurementarecritical,allHVACsystemsrequireregularmaintenance

toensurepeakoperatingefficiency.Periodicinspectionsshouldbecompletedduringwhichtimefiltersshouldbeinspectedandreplaced,condenser/evaporatorcoilsshouldbecleanedandelectricalconnectionsshouldbechecked.TheU.S.EnvironmentalProtectionAgency(EPA)recommendssemi-annualmaintenancecheckupsforallcommercialHVACsystems.Asdescribedabove,selectingthemostenergy-efficientHVACanddehumidificationsystemsishighlydependentonoperationalfactors,includingthesizeofthefacilityandthebudget.Belowaresomegeneralenergyefficiencyrecommendations:

• Forverysmallfacilities,mini-splitsystemsareahighlyefficientHVACoption.

• Forlargerfacilities,variablerefrigerantflowandchilledwatersystemsofferhigherefficiencyandredundancy.

• Ifusingstandalonedehumidifiers,cultivatorsshouldconsiderpintsperkWhwhenevaluatingforefficiency.Cultivatorsshouldalsopayattentiontoperformancecurves—dehumidifiersareratedatAssociationofHomeApplianceManufacturers(AHAM)standardsof80degreesand60percenthumidity,butsomemanufacturerspublishoutputat86degreesand80percenthumidity,whichcanbemisleadingifitnotbeingcomparedusingacommonreference.

• Hotwaterandheatrecoveryarethetwomostefficientchoicesforreheatdehumidification.

• Desiccantdehumidificationishighlyefficientbutcostly.

• CultivatorsshouldsealspacestoreduceCO2 exhaust,improvebiosecurityandreduceodorsemanatingfromthefacility.

• Cultivatorsshouldkeeproomswarmeratnighttomanagelatentload.

Cultivatorsshouldprovideshadeforrooftopunitstoreduceoperatingtemperatureandextendlife. Resources:ASHRAE,AirConditioning,RefrigerationandHeatingInstitute,SeesamplePreventativeMaintenancescheduleinappendix.

ENERGY

21

OVERVIEW

Whiletheprevioussectiondiscussedbestpracticespertainingtoenergydemandreduction,acomprehensiveenergymanagementstrategyshouldalsoconsideropportunitiesforsupply-sideimprovements.NearlyallcultivationfacilitiesinDenverreceiveelectricitydirectlyfromthegrid.ForXcelEnergycustomers,thismeansthattheelectricitybeingconsumedinDenverfacilitiesisgeneratedusingamixoftechnologiesasoutlinedbelow.

on-sitepowergeneration.Whileahostofon-sitegenerationtechnologiesexistinthemarketplace,twoofthemorecommonon-siteoptionsforcultivatorstoconsideraresolarphotovoltaic(PV)andcombinedheatandpower(CHP).Whiletheeconomic,environmentalandresiliencybenefitsofthesetechnologieswillvarydependingonfacility-specificfactors,oneadvantageallon-sitegenerationoptionsshareistheeliminationoftransmissionlosses.Roughly5percentofgrid-generatedelectricityislostinthetransmissionanddistributionprocess.8OnsiterenewablessuchasPVmayonlyoffset10percentto15percentofafacility’senergyconsumption,unlessanareaotherthantherooffootprintofthecultivationbuildingisavailabletohostPVpanels.

• Off-Site Optimization:Thesecondapproachisenteringintoanalternativeenergysupplycontractwithautilitycompany.Asdiscussedmorespecificallyinthetopicbreakout,Denverbusinesseshavemultiplecleanenergyprocurementoptions.Whileutilizingthisapproachdoesnottypicallyhavethesameeconomicoroperationalbenefitsassociatedwithon-sitegeneration,off-siteoptimizationlikelyrepresentsthesimplestalternativeforcultivatorslookingtoreducetheenvironmentalimpactoftheirfacilities.

Aswiththedemandreductionstrategiespresentedintheprevioussection,thereisnotaone-size-fits-allsolutiontosupply-sideenergymanagement.Whilethefollowingbestpracticesareintendedtoprovideastartingpointfordiscussion,facilitymanagersarestronglyencouragedtoconsultwithalicensedprofessionalpriortoacting.

Xcel Energy – Power Supply Mix for Colorado Customers6

Total Generation Mix (%)

Median Lifecycle C02

Emissions (grams/kwh)7

Coal 52.7% 1001

Natural Gas 25.3% 469

Wind 18.9% 12

Solar 1.2% 46

Hydroelectric 1.7% 4

Other* 0.2% -

*Includes biomass, oil and nuclear generation

6 XcelEnergy-EnergythatWorksforColorado7 IPCCRenewableEnergySourcesandClimateChangeMitigation 8 U.S.EnergyInformationAdministration

Therearetwoprimaryapproachestosupply-sideenergyoptimizationthatcultivatorsshouldconsideraspartofabroaderenergymanagementstrategy:

• On-Site Power Generation: One approachforfacilitymanagerslookingtomakesupply-sideimprovementsis

Energy SupplyENERGY

Table 4:XcelEnergy-PowerSupplyMixforColoradoCustomers

REGULATORY DRIVERS

Denverdoesnothaveregulationsthatplacespecialconditionsonenergyuseforcannabisbusinesses.However,otherlocaljurisdictionshavepassedrequirementsforrenewableenergyuseand/oroffsetpurchases,anditisexpectedthatthistypeofregulationwillbecomemorepopularasmunicipalitiesinCaliforniaandacrosstheU.S.developregulationsforthecannabisindustry.

BoulderCountyMarijuanaLicensingrequirescommercialmarijuanagrowerstoeitheroffsetelectricityusewithrenewableenergyorpaya2.16-centchargeperkWh.ProceedsfromthisrequiredfeewillbefunneledtotheBoulderCountyEnergyImpactOffsetFund.Thisfundisusedtoeducateandencouragebestcannabiscultivationpracticesregardingenergyuse,andtofundothercarbonoffsetprojectssuchasthedevelopmentofmorerenewableenergy.

ON-SITE POWER GENERATION Powergeneratedon-site,commonlyreferredtoasdistributedgeneration(DG),candelivereconomic,environmentalandoperationalbenefitstocultivationfacilitiesincertainsituations.TwoDGtechnologiescultivatorsshouldevaluatearesolarphotovoltaicarrays(SolarPV)andnaturalgascogenerationsystems(CombinedHeat&PowerorCHP).Whiletheseon-sitegenerationoptionscanresultinexcellentreturnsforfacilities,implementationisacomplexprocessandrequirestechnicalexpertise,detailedcoordinationwiththelocalutilityandcarefulfinancialplanning.Cultivatorsshouldconsultwithanexperiencedtechnicalspecialistaspartoftheassessmentprocess.

Sustainability Aspects and Impacts• GHGemissions• Landuse• Climate• Regionalstakeholderalignment• Operationalandcompliancebudgets

ENERGY

Process Description

Performingadesktopfeasibilitystudy(alsoknownasaqualificationstudy)istypicallythefirststepintheon-sitepowergenerationprocurementprocess.Facilitymanagersshouldretainatechnicalspecialisttoperformthisstudy,whichisprovidedfreeofchargebymanyon-sitepowergenerationspecialists.Whiletherearemanyapproachestodesktopfeasibilitystudies,theprocesstypicallyrequiresfacilitymanagerstofilloutabriefsurveyandprovidesixto12monthsofutilitybills.Usingthisinformation,specialistscanbuildahigh-levelmodelthatprovidesa“ballpark”economic,environmentalandoperationalimpactassessment.

Ifthedesktopfeasibilitystudyindicatesanattractivevalueproposition,thenextstepisperformingaLevel1Feasibilityanalysis.TheEPAprovidesasampleLevel1FeasibilityAnalysisforfacilitymanagerstoreviewintheeventaprojectproceeds,aLevel2FeasibilityAnalysisissubsequentlyperformed.Duringthisprocess,project-specificdesignengineeringisaccomplished,equipmentoptionsareformallyevaluatedanddetailedfinancialanalysisiscompleted.FollowingtheconclusionoftheLevel2FeasibilityAnalysis,theprojectteamistypicallyreadytosubmitnecessarypermits,withconstructionbeginningshortlythereafter.

Financialplanningforcannabisbusinessescanbedifferentfromtraditionalbusinesses.Manyfinancialstimulifromlocal,county,stateandfederalentitiesexisttoacceleratetheadoptionofenergyefficiencymeasuresandrenewabletechnologies,andtheyshouldbethoroughlyleveraged.However,foracannabisbusinessitwouldbewisetoconsultwithfinancialspecialistsbeforemakingassumptionsabouttaxtreatmentswithregardtorenewableinvestmenttaxcredits,utilityrebatesandoperatingexpensedeductionsversuscapitalexpenses(depreciation).

22

23

Energy Type NotesSolar PV Solar Photovoltaic Systems (Solar PV), convert sunlight into usable electricity. Solar panels use sunlight

to generate electricity, and inverters convert that electricity from variable direct current (DC) to alternating current (AC) at the correct voltage, frequency, and phase needed to tie into the facility’s electrical infrastructure and the larger electrical grid. For cannabis cultivation facilities, these systems will most frequently be installed on the building’s roof, though some properties might be able to benefit from solar system installed on the ground (ground-mounted) or in the facility’s parking lot. Because the economic returns from on-site solar systems are typically dependent on utility-specific regulations, facility owners should consult with utilities prior to project design.

Cogeneration (CHP)

CHP systems use a natural gas generator (engine, turbine, or fuel cell) to produce electricity and repurpose the waste products to offset the facility’s HVAC and CO2 needs. When done properly, this process can reduce a cultivation facility’s emissions footprint by 25 percent to 45 percent, generate attractive economic returns and serve as reliable source of power during grid outages. While CHP systems offer an exciting value proposition, these systems also feature comparably complex technology and require significant technical expertise throughout the design, build and maintenance phases. Cultivators looking to benefit from CHP technology should enlist a qualified third party to guide the process.

Wind Small wind turbine systems can be installed alone or in conjunction with solar photovoltaic systems. The small size and variability of energy produced by these systems makes them most applicable for supplementing another power source. The amount of energy small wind turbines can provide depends on the site, size and height of the turbine, but small wind systems for commercial buildings typically generate 20 kilowatts to 100 kilowatts. To determine the amount of wind energy available at a site, installing an anemometer for at least 12 months prior to system purchase is recommended. Wind power is not commonly used in metropolitan areas as permitting and conformance with local zoning and building codes may prove challenging.

ENERGYTable 5:No-CarbonandLow-CarbonEnergySourcesforCultivationFacilities

Figure 2: ComparisonofenergyinputsandassociatedoutputsofstandardorgridenergyuseversusaCombinedHeatandPower(CHP)system.

E le c t r ic C h ille r

Absorpt ion Chiller

Power Plan t

Reciprocating Engine

De l ive re d C O 2 T ank s

Exhaust Treatment

CHILLED WATER/AIR CHILLED

WATER/AIR

ELECTRICITY ELECTRICITY

NATURAL GAS OR BIOGAS

EXHAUST GAS

WASTE HEAT

CLEAN CO2

CLEAN CO2

UNUSED WASTE HEAT

COAL

UNUSABLE EXHAUST

Status-Quo C omb i ne d H e a t & Power

Resources:• NationalRenewableEnergyLaboratory–SolarEnergyBasics• EnvironmentalProtectionAgency-CHPBenefits• NationalRenewableEnergyLaboratory–Commercial&IndustrialSolarBestPractices• U.S.EnvironmentalProtectionAgency-CHPProjectDevelopmentSteps• XcelEnergy-DistributedGenerationGuidelines• BoulderCountyMarijuanaEnergyImpactOffsetFund

24

reachingouttodeveloperstoassistintheevolutionofthisportionofthecleanenergyindustry.

Sustainability Aspects and Impacts• GHGemissions• Landuse• Climate• Regionalstakeholderalignment• Operationalandcompliancebudgets

Best Practices

InDenver,electricityconsumerscanalsochoosetoindependentlycontractwiththeowner/operatorofaqualifiedsolararray.Underthisarrangement,athirdpartybuildsacommunitysolarsystemandsellstheelectricaloutputtoXcel.Xcelthencreditsthecustomerforthatelectricityonthecustomer’smonthlyelectricbill,commonlyreferredtoasnet-metering.Itisimportanttonotethatcultivatorsmayormaynotsavemoneybyparticipatinginthisarrangement,asagreementsaremadedirectlywiththeownerofthecommunitysolararray.Theutilitysimplyactsasafacilitatorinthisarrangement.Contractsaregenerallylonger-term,wheremonthlyelectricsavingsoutweighfinancingcostsleadingtopositivecashflowforthecustomer.

Resources:• XcelEnergy–CommunitySolarProgram• ColoradoEnergyOfficeCommunitySolar

Information

OFF-SITE ENERGY SUPPLYAnalternativeforcultivatorslookingtoreducetheenvironmentalfootprintassociatedwithelectricityproductionistoexploreoff-siteenergysupplyopportunities.DenverfacilitiesservedbyXcelEnergyshouldinvestigatetheSolarRewardsCommunityprogram,commonlyreferredtoassolargardens.

Program Description

Coloradowasthefirststatetooffercommunitysolaropportunitiesforcustomersofinvestor-ownedutilitycompanies,andDenvergrowfacilitiescanbenefitfromrenewableenergyproductionsituatedandmanagedoffsite.Customers“subscribe”toaportionofthesolararrayandbenefitfromthearray’soutputovermedium-andlong-termcontracts.AnyentitywithanXcelelectricaccountcanbenefitfromthisarrangement,includingbuildingowners,rentersormanagingparties.Recently,communitysolardevelopershavebeenhesitanttocontractwiththecannabisindustry.Itisimportanttocontinue

ENERGY

25

WATER OVERVIEWIndoorcannabiscultivationwithinDenverandsurroundingmunicipalitiesiscurrentlyreliantonthemunicipalwaterdistributionsystemforirrigationandoperationaleffluentdischarge.Assuch,therearespecificprocesspointsofenvironmentalimpact,includingnetconsumptiveuse(influent–effluent),filtrationandtreatment,andeffluentdischargewaterquality.Ingeneral,theenvironmentalimpactsofmunicipalconsumptivewateruseincludestate-specificissuessuchasincreasedurbandemandresultinginreducedwateravailabilityforruralagriculturalproductionandassociatedwatershedimpacts,water-energynexusconcernsandindirectcarbonemissionsassociatedwithmunicipalwatertreatmentsystems.Inaddition,forindoorcultivationoperations,influentfiltrationandtreatmentrequirementsresultinsolid

wastegeneration,energyconsumptionandefficiencychallenges,whileeffluentwaterqualityisimpactedasaresultoftheagriculturalinputsrequiredforcultivation.Theflowofwaterthroughatypicalindoorcannabiscultivationispresentedbelow.Whileconsumptivewateruseandwaterqualityhavebeenpreliminarilyidentifiedassignificantaspectsforindoorcannabiscultivation,itisimportanttonotethattheseconcernsarenotuniquetothecannabissector.Neitherasector-specificwaterusebaselinenorproductionunittheoreticalminimumiscurrentlyavailable.However,theimplementationofproactiveoperationalefficiencyandmonitoringpracticescanreadilyaddressthepotentialwateruseandqualityenvironmentalimpacts,whilesettingthestageforleadershipinprocessintegrationofprogressivetechnologiesforuseandcostoptimization.

Discharge

Reservoir or Fert igat ion

SystemPUMP

Filtrat ion System

Runoff

Mu nic ip al Wat e r

C o o l ing De h u mid if ic at io n

Cleaning

Plants

Irrigat ion System

Water

Figure 3: WaterFlowforCannabisCultivationFacilities

WATER USAGE & QUALITY

26

Thesustainabilityimpactsofwateruseandqualityinclude:• Economic Competitiveness –Theintroductionofwateruseefficiencymeasurescanloweroperationalcostsbyreducingdirectresourcepurchase(i.e.,lowervolumeequalslowercost).Inaddition,wateruseefficiencymayalsoresultinlowerlevelsofconsumablesuseduetoareductionininfluenttreatmentvolumeandlesswearandtearonprocessequipment.

• Community Relations –Asdiscussedabove,concernsaboutmunicipalconsumptivewateruseinColoradoincludeincreasedurbandemandresultinginreducedwateravailabilityforruralagriculturalproductionandassociatedwatershedimpacts,increasedenergyusageforoperationalinfluenttreatmentandindirectcarbonemissionsassociatedwithmunicipalwatertreatmentsystems.Byproactivelyintegratingwateruseefficiencytechniquesandeffluentwaterqualitymonitoring,acannabiscultivationoperationcandemonstratethecommitmenttointegratedresourcemanagementandcommunitypartneringthatisrequiredtocultivatestrategicrelationshipswithmunicipalleadershipandneighborhoodresidents—whileanticipatingregulatorychanges.

• Environmental Impact –Waterandenergyareinextricablylinked,asthereisasignificantamountofenergyembeddedinthewatersupplyduetofactorsintrinsictothewaterandenergyinfrastructure.Waterandwastewaterutilitiesaccountforapproximately5percentofoverallU.S.electricityuse,resultinginsignificantGHGemissions.9Inaddition,regionalwaterresourceconcerns—suchaslossofagricultureinruralareasandbiodiversityandwatershedimpactsofpipingwateroutsideofitsnativewatershed—areofincreasingconcern.Assuch,introducingefficienciesinwateruseandqualitycanresultinquantifiablereductionsinGHGemissionsandwatershedimpacts.

Thefollowingtopic-specificsectionswillprovideguidanceandrecommendationsforwaterfiltrationandpurification,irrigationmethodsandautomation,wastewaterrecyclingandimprovingwastewaterqualityforanindoorcultivationfacility.REGULATORY DRIVERSCannabisfacilitiesinDenverreceivewaterandwastewaterservicethroughDenverWaterandMetroWastewater,respectively.FeesfrombothservicesarebasedonincomingwaterusageandaregenerallycombinedintoonemonthlybillissuedbyDenverWater.For2017,thecombinedratesforwaterandwastewaterare$6.88per1,000gallons.Highersummerwaterusemayresultinhigher-tiercharges.MetroWastewatercurrentlydoesnotrequireanypre-treatmentofeffluentforcannabisfacilities.

9ElectricPowerResearchInstitute(EPRI).2002.“WaterandSustainability(Volume4):U.S.ElectricalConsumptionforWaterSupplyandTreatment–TheNextHalfCentury.Seealsohttps://www.theclimateregistry.org/

26

Water

27

(ormaterials)downstormdrains.Nothingisallowedinstormdrainsexceptrainwaterandsnowmelt.Stormdrainsemptydirectlyintolocalwaterways.Best PracticesIndustrybestpracticesforwaterusespanfromtaptodrainandcansubstantiallyreducewaterneedswhileimprovingwaterquality.Manypracticescanbeinstitutedregardlessofspecificgrowingorwateringprocedures.

Recapturingandreusingwaterwithinafacility’swateringprocessisallowedandcanbeverybeneficialforwaterefficiency.Conversely,facilitywaterreusedforalternatepurposesisconsideredGraywaterandisonlyallowedinspecificinstances,suchasforusingaswashwaterforoutdoorirrigationonnon-consumableplants.ReviewCityofDenverGraywaterRegulationspriortoanypossiblegreywaterapplication.Rainwatercaptureforindoorwateruseisnotallowed,norisitpermittedtodumpanyliquids

Resources:• ColoradoStateUniversity-SoilandWaterTestingLaboratory• DenverWaterQualityReports• Exampleofwatertestingreport

WATER FILTRATION & PURIFICATIONTomeetthedemandsofrapidmaturationandhighyieldsforindoorcannabisproductiontheappliedwatermustmeetstrictspecifications.Acultivationfacility’sincomingwater—regardlessofwhetheritistapwaterorwellwater—shouldbetestedbyatrustedanalyticallab,suchastheColoradoStateUniversitysoilandwatertestinglab,tounderstandifadditionalfilteringisnecessarypriortoplantapplication.Similarly,excessprocesswatercapturedviafloodtraysorthroughHVACcondensatewillexhibitdifferentcharacteristics,requiringtheneedforanalysisandpurificationbeforesubsequentapplications.Therearemultiplewaystoimprovethequalityofincomingwaterincludingcarbonfiltering,reverseosmosisandUVsterilization.

Sustainability Aspects and Impacts• Waterconservation• Waterquality

Process DescriptionAccordingtotheColoradoStateUniversityCooperativeExtension,irrigationwatershouldbeevaluatedforfourbasiccriteria:

1. Totalsolublesaltcontent(salinityhazard).

2. Relativeproportionofsodiumcations(Na+)toothercations(sodiumhazard).

3. Excessiveconcentrationofelementsthatcausestoxicityorionicimbalanceinplants.

4. Bicarbonateanion(HCO3-)concentrationasrelatedtocalcium(Ca++)plusmagnesium(Mg++)cations.

Whenitcomestoafacility’sincomingwatersupply,salinityhazardsandsodiumhazardsareofparticularconcern.Generally,incomingwaterwillnotmeetthestrictspecificationsforoptimalplantgrowth,therefore,somelevelofpurificationisneeded.Watertobeappliedtoplantsshouldbepurifiedandnutrifiedondemandorpurifiedandheldinstoragetanksuntilnutrientscanbeaddedpriortoapplicationtothecrop.Watercanbepurifiedusingseveraldifferentmethodsincludingcarbonfiltration,reverseosmosisandUVsterilization.

Best PracticesWhenconsideringenvironmentalinputs,watertreatmentusingcarbonfiltrationhasemergedasthemostefficientmethodtoreducecontaminants—suchaschlorine,chloromine,sodiumandbicarbonatelevels—inafacility’sincomingwater.Carbonfiltersareveryeffectiveatachievingthedesirednutrientloadforcannabisplantswhenfilteringisperformedaccordingtomanufacturer’sspecifications.Additionally,filteringleadstoverylowlevelsofwaste.Onlywaterusedtoperiodicallycleanfiltersisdisposedof,whereassterilizingwaterthroughreverseosmosisgeneratessubstantialwaterlossesinthebrinebyproduct.

Water

28

IRRIGATION METHODS & AUTOMATIONAccurateirrigationisessentialtothegrowthofhealthyplantsandtheoverallperformanceofacultivationfacility.Inefficientwaterusenotonlywastesthispreciousresource,butcancausefacilitydamagebyencouragingfungalgrowth,createworkersafetyhazardsandaddextraloadtotheHVACsystem,wastingenergy.Avarietyofirrigationmethodsareusedintoday’scannabisindustry.Selectingboththerightmethodforagivenfacilityandfollowinggoodoperationalpracticesforthatmethodareequallyimportantforachievingoptimalefficiencyandplantgrowth.

wickupthewaterthroughthedrainageholes.Thismethodcanbemoredifficultwithlargepots.Mostoftenwiththefloodmethod,traywaternotabsorbedbytheplantsisrunthroughapipetoaholdingtanktobere-used.Typically,therecycledwaterwillbetreatedtokillanywaterborneplantpathogens(i.e.,Pythium,Phytopthora,Fusarium),whichcanbedonechemicallyorthroughUVlightexposure.Floodtablesusealotofwaterperirrigationcycle,sothismethodisbestusedwhenthemajorityofthewaterwillbeabsorbedorwhenthecultivatorispreparedtosanitize,re-nutrifyandre-usethewater.Floodtablesareoftenusedwithrockwoolmediumsandtherunoffiscapturedinatankdirectlybelowthetraytobesanitizedandre-nutrifiedinplace.AeroponicsManycultivatorsuseaeroponicsystemssuchasanEZ-Clonemachineforpropagation.Aeroponicsystemsutilizespraynozzlestomistthestemorrootswithanutrientsolution.Cultivatorsusinglarge-scaleaeroponicsystemsaremorelikelytouseachannelsysteminwhichtherootsofmanyplantsareenclosedwithinachannelandspraymisterslinetheinsideofthechannel.Anothermethodisthebucketsystem,inwhichnutrifiedwaterandairaremaintainedinbucketsintowhichtherootsgrow.Wick SystemsUsingawick,theplantspullnutrientsolutionupfromareservoirthroughcapillaryaction.Thissystemisbettersuitedforsmallerplants.Heavyfeederslikecannabiscanloseweightandyieldifthewickingprocessistooslow.NFT SystemsTheNutrientFilmTechnique(NFT)consistsofaveryshallownutrientsolutionthatcascadesdownwardinatubeortraytowardthereservoirwhereitisreused.Itismostcommonlyusedonsmallerplantswithashortcropcycle,andcannabisplantsareverysensitivetointerruptionsinelectricityandthewatercycle.Thissystemalsoallowsonlyarelativelysmallspaceforcannabisrootstothrive.Anovercrowdingorovergrowingofrootsinthesesystemscanleadtodiseaseandlossofcrops.

Sustainability Aspects and Impacts • Waterconservation• Waterquality• Pestcontrol

Process Description Sevendifferentmethodsarecommonlyusedinindoorcultivationfacilities:floodtables,aeroponicsystems,wicksystems,nutrientfilmtechnique(NFT),waterculturesystems,dripirrigationandhandwatering.Flood TablesFloodtablesareverypopularinagricultureandhorticulturegreenhouses.Generallyusedwithseedtrays,plugtraysorsmallpots,floodtables(alsoknownasebbandflowtables)workbyperiodicallyfloodingtheentiretraywithnutrientswhilepots

Figure 4: Irrigation&FertigationSystemDiagram.Source:Netafim

Water

29

Water Culture SystemsInwaterculturesystems,theplantisheldinabasketjustabovethenutrientsolutionandtherootshangdownintothenutrientsolution.Therootsdonotsuffocatebecausethereservoiriscontinuouslyaerated.Thisallowstheplanttoreceiveanidealamountofnutrientsaswellasoxygen.

Hand Watering Wateringbyhandusinghosesorwateringcansisprobablythemostcommonwateringmethodcurrentlybeingused.Manygrowerspreferthehands-onaspectofhandmixingandhandfeedingeachplant.However,thismethodallowsforthelargestmarginoferror.Nutrientmixingbyhandcaneasilyvarybydayorbyemployee,leadingtoinconsistentfinalsolutions.Thetotalvolumeofwaterbeingappliedtoeachplantcanvarygreatly,especiallyifstaffareinattentive.Nevertheless,mostcultivationoperationsusethehandwateringmethodatsomestageofplantgrowth.Cultivatorsmusthavegoodstandardoperatingproceduresandemployeetrainingforhandwateringtominimizemistakes.

Drip WateringDripirrigationiswidelyconsideredthemostwaterefficientwayofirrigatingacrop.Nutrifiedwaterispumpedthroughirrigationtubesanddripemitterstoeachplant.Manyoptionsexistforflowvolumesandtypesofemitters.Cultivatorsshouldconsultwithanirrigationspecialisttohelpdeterminethecorrectemitterbasedonwaterpressure,lengthofirrigationruns,containersizes,numberofplantstobeirrigatedatonce,etc.Dripirrigationallowsthecultivatortofinetunehowmuchwaterisgiventoeachplant.High-qualitydripemittersarepressurecompensated,soeachplantgetsthesameamountofwaterregardlessofpositionontheirrigationline.Manycultivatorsusingdripirrigationsystemswaterseveraltimesperday(pulseirrigation),deliveringthetotaldesiredvolumeofwateroveralongerperiod.Thisallowsthecultivatortocarefullymanagetheamountofwaterrunoff.Dripirrigationisusuallyaccompaniedbyafertigationsystemthatautomaticallyinjectsnutrientsintothewaterlineaccordingtospecificationsandcanberunonprogrammedtimeschedules.

29

Water

30

I r r i g a t i o n M e t h o d Efficiency Benefits Drawbacks

Hand Watering Low • Eyesonallplantsduringwatering• Givesgrower“handson”feel

• Inconsistencyofvolumeperpot• Inconsistencybetweenemployees

responsiblefortask

Drip High • Automated• Precisevolumeofwater• Allowscultivatortowateralarge

numberofplantsatonce

• Potentialcloggingofdripper• Manualinserting/removalofdripper

whenmovingplants• Highcosttoinstallandmaintain

Flood Tables High • Automated• Lesschanceofunder-wateringplants• Easyandinexpensivetobuild

• Largeamountsofwaterusedatonce• Increasedhumidityifreservoirsdonot

havelids• Manuallabortocleanandrefill

reservoirs

Best Practices

Theselectionofwateringmethodsishighlyinfluencedbyanindividualcultivator’spersonalpreferences,asthebenefitsanddrawbacksofeachmethodarevaried.Itisgenerallyrecommendedtoselectthemostefficientmethod(s)thatfitwithinthebudgetandexpertiseoffacilitystaff.However,anyfacilityexceeding2,500squarefeetinsize

AutomationAutomatedwateringsystemsarehighlyrecommendedtohelpcontrolaccuracyandefficiencyandtoincreasedatacollectionaswellastheeaseofminingthatdata.Cultivatorsminingthemostdataforanomalies,efficienciesandtrackingwillcontinuetostayonthecuttingedgeoftheindustry.Automateddatacollectioninsuresreal-timedataiscollecteddaily.Severalmajormanufacturerscurrentlyofferenvironmentalandfertigationpackagesthattieintoonesoftwareprogram,allowingforastreamlineddatacollectionprocessandeasy,intuitivedatamining.Productionisallaboutrepeatability,anddatacollectionhelpsinsurerepeatability.Datacollectionalsohelpsimproveproceduresbytargetingissuesandconcerns.

Measurement

Thewaterappliedtoplantsshouldbemeasuredduringeachphaseofgrowth.Thisismosteasilyachievedwhenusinganautomatedwateringsystemasdescribedabove.Similarly,cultivatorsshouldmeasurerunofftoensurethatwaterisnotbeingwasted,andshouldsetalowrunofftarget.Tenpercentto15percentrunoffperwateringeventisanefficientandachievabletarget.Ongoingmeasurementagainstthistargetwillhelpmaintainoverallwaterefficiencyandidentifyfactorsthataffectwateruse,suchasemployeeturnover,schedulechangesandequipmentchanges.

shouldseriouslyconsideranautomatedwateringsystem.Clearstandardoperatingproceduresandfrequenttrainingofstaffwithirrigationresponsibilitiesareessentialtoensuringthatthechosensystemoperatesoptimally.Table6belowhighlightssomeofthebenefitsanddrawbacksofthethreemostcommonlyusedirrigationmethods:

Water

Table 6: IrrigationMethodsforIndoorCannabisCultivation

31

Electrical Conductivity

Manygrowersarefeedingplantsbasedonspecificelectricalconductivity(EC)levelsidentifiedbythenutrientlinetheyareusing.ItisimportanttofrequentlymonitortheEClevelsofboththenutrientwaterbeinggiventotheplantsandtheECleveloftheplantingmedium.CultivatorshavehadsuccesswithveryhighEClevelsandverylowEClevels.

• Averagesforvegetativegrowth:1.0-2.5EC.

• Averagesforfloweringgrowth:2.0-4.0EC.

Growersshouldtestrunofffrequentlytodetermineifanysaltsarebuildingupinthemedium.Totalvolumesofwaterappliedtotheplanttocreaterun-offmayhingeonthesenumbers.Iftheplantsareabletoabsorballwaterprovided,frequentflushingmaynotbenecessary.

Resources:

Hydroponic and aeroponic system resources:• HomeHydroSystems-AeroponicSystems• HowtoGrowMarijuana-Aeroponics• CurrentCultureH20-HydroponicSystemInfo

Drip irrigation resources:• IrrigationTutorials-TheBasicPartsofaDripSystem• IrrigationTutorials-DripIrrigationDesignGuidelines

Procedure for flushing plants: • AmericanAgriculture-FlushingPottedPlants

Water

31

32

WATER RECYCLINGTheagricultureindustrybynaturerequiressignificantamountsofwater,whichmaystresslocalwatersheds.Indooragricultureissimilarlywaterintensive,yetcultivatingcannabisincontrolledindoorenvironmentsprovidesmultipleopportunitiesforwaterefficienciesandwaterrecycling.Indoorcultivationroomscanbethoughtofasclosedsystemsforwateruse.Virtuallyallexcesswaterrunoffandwatervaporcanbecapturedanddeliveredbacktothebeginningofthewateringprocess.

producessomeamountofexcesswaterwhichcanbecapturedandpipedbacktowaterstoragetanks.Thisexcesswatershouldbefilteredandsterilizedagaintoavoidcontaminantsandthenstoredforthenextroundofwatering.ThesecondwaterrecyclingmethodinvolvescapturingHVACcondensate.Healthycannabisplantsnaturallytranspireamajorityoftheappliedwateraftereachwateringcyclethroughthephotosyntheticprocess.Thiswatervaporpassesthroughthecultivationroom’sHVACequipmentandisexpelledtotheoutdoorenvironment.Whilepassingthroughacooling,ventilationand/ordehumidificationunit,thewatervaporcondensesbacktorelativelycleanliquidwaterandcanbeeasilydirectedtoafacility’swaterstorageareatobeginthewaterprocessanew.

Best PracticesWatershouldnotbeasingle-passingredientforcannabisproduction.Cultivationfacilitiesequippedwithwaterstoragecaneasilyincorporatewaterrecapturemethodsintoexistingcultivationpractices.Watercanbecapturedasfollows:

• Asexcessrunoffwhilewatering:Bestaccomplishedwhenallrunoffwateriscontainedindrainlinesorditches.

• AsHVACcondensateanddehumidificationwater:Veryclean(almostreverseosmosisquality)waterthatmostcultivatorsarenottakingadvantageof.

• Throughpiping:Thismethodcanbesomewhatcostly,comparedtothecostofwater,butwellworththeinvestment,especiallywhenthereisaneedtodilutecapturednutrifiedwaterfromotherareasofthefacility.

• Throughasedimentfilter:Thismethodremovesmuchofthelarger-sizedorganicandinorganicmaterialfromthewater.

• Pipecapturedwatertoaholdingtank.

Note:Thiswaterre-usepracticeisnottobeconfusedwithDenver’supdatedgraywaterregulations.Graywater—whichincludeswashwater,showerwaterandsinkwater—canonlybeappliedtooutdoorlandscapes,notre-usedindoorsnorappliedtoconsumablecrops.

Sustainability Aspects and Impacts• Waterconservation• Waterquality

Process DescriptionWaterappliedtocannabisplantsthroughhandwatering,floodtraysordripmethodscanbeeasilycapturedintwocomplementaryways.First,applyingwaterontoplantsgenerally

Figure 5:Irrigationwaterrecaptureprocess

IRRIGATION

PRODUCTIONAREA

FILTER

CLEANWATERRESERVOIR

SAMPLING

DRAIN/RUNOFF

RETENTIONRESERVOIR

Water

33

Recapturedwatermustbepurifiedagain.Thereareseveraloptionsavailable,butselectionshouldbebasedonwhatthecultivatoristryingtoremovefromtheirrigationwater.CultivatorsshouldlookfortechnologiesthatkillwaterbornepathogenssuchasPythium,Phytopthora,FusariumandRhizoctonia.Optionsinclude:

• UVtechnologies,whichareverypopularinthegreenhouse/nurseryindustry.

• Coppertechnologies,whicharehelpfulforuseagainstpythiumandphytopthora.

• ElectrochemicallyActivatedWater(ECA).• Waterstoragelocatedimmediatelyabove-streamofthewaterfilteringprocess.

Subsequentroundsofwateringshouldfirstbepulledfromthisstoragetankbeforerequiringanynew“tap”watertobedrawn.Thisrecapturedwatercanmakeupthevastmajorityofthenextwateringcycle’swater.

Resources:• DEHRulesandRegulationsGoverningGraywater

TreatmentWorks• GreenhouseManagement-10TipsforRecycling

IrrigationWater• GreenhouseProductNews-Grower101,Water

Disinfection• GreenhouseManagement-DisinfectingRecycled

IrrigationWater• CleanWater3-TreatmentTechnologies

Examples of UV purification products: • HortimaxGrowingSolutions• SuperiorAquaSystems

Examples of copper purification products:• Aqua-Hort• PrivaVialuxLineWaterDisinfection

Examples of ECA products:• Horti-Daily• RoyalBrinkman

Figure 6:Exampleofpipeddrainagefromtrays

Figure 7:Pipeddrainagerunningintofloorsink

Figure 8:Exampleofcoarsefilterontraytokeeplargedebrisoutofrecycledwater

Figure 9:SedimentFilter

Figure 10: HortamaxVitaliteUVFilter

Figure 11:BrinkmanECASystem

Water

34

IMPROVING WASTEWATER QUALITY

Certainpracticesincannabisproductioncanleadtounintendedhighlevelsofcontaminantsinafacility’swastewaterdischarges.Suchcontaminantscanaddstresstotreatmentfacilitiesandmaybelargelyunnecessary.

Sustainability Aspects and Impacts• Waterquality• Waterconservation• Indoorairquality

appropriatelyasdescribedonthelabel.Ahigherconcentrationofsolventdoesnotnecessarilycleanbetterandwillleadtopoorindoorairqualityanddifficultiesinprocessingthewastewater.

Best PracticesCultivatorsshould:

• Usecleaningproductsasdirected;diluteconcentratedproductsaccordingtotheintendedcleaningpurposeonthelabel.

• UseenvironmentallyfriendlycleanerssuchasthoseratedbyGreenSeal,EcoLogoorSaferChoice.

• Usefiltrationforwaterpurificationtoavoidsignificantwaterdischargesfromreverseosmosis.

• Usewaternozzlesforanycleaningoperationstoavoidexcesswateruse.

• Avoidover-wateringcropsasthiscanleadtounintendedhighlevelsofchemicalsandsuspendedsolidsinsanitarydrains.

• Refrainfromdumpinganyliquidsintostormdrains.

Resources:• GreenSeal• Eco Logo• EPASaferChoice

Additional ConsiderationsStormdrainsemptydirectlyintolocalwaterways.Thereisnotreatmenttostormdraineffluent.Infact,bylawnothingisallowedtobedumpeddownstormdrains—onlyrainwaterandsnowmelt.Cultivatorscanhelpkeeplocalstreamscleanbynotdumpingintostormdrains,keepingpropertyfreeoflitterandusingdry,absorbentcleanupmethodsforliquidspillsoutdoors.

Process DescriptionPurifyingwaterusingreverseosmosisgeneratessignificantvolumes(atleasta1:1wastewatertowaterratio)ofbrinewhichmustbediscardedtosanitarydrains.Theconcentrationofbrine(highinsaltsandminerals)createsdifficultiesinremovalatwatertreatmentplants.Itisbesttoavoidthereverseosmosisprocessaltogetheranduseotherwaterfiltrationmethods(seeWaterFiltrationandPurificationabove).Highconcentrationsofcleaningagentsinwastewateraredifficulttoprocessaswell.Whencleaningcultivationroomsandassociatedequipment,cultivatorsshouldusecleaningproductsaccordingtothemanufacturer’sspecifications.Concentratedcleaningsolventsshouldbediluted

Water

35

OVERVIEWThecannabisindustrygenerateswasteandcanbenefitfromtheadoptionofsustainablewastemanagementpractices.CurrentlyinDenver,landfillingisthemainformofwastedisposalwithrecyclingandcompostingusedtoalesserextent.Therefore,cultivationfacilitiesshouldaimtoreduce,reuseandrecycleasmuchaspossible.Cannabisoperationsshouldconsiderthesourcesoftheresourcesusedandpurchaseitemsthataremadefromnatural,compostableorrecycledmaterials,whenavailable.Theindustrycanfurtherreducethewastegeneratedandlandfilledbydesigningcompliantpackagingthatminimizesmaterialsorbyimplementingpackagecollection.Thesustainabilityimpactsofwastemanagementanddiversioninclude:

• Economic Competitiveness:Operationalefficienciesrequiredforoverallsolidwastereductionresultinbudgetoptimizationthroughreducedrawmaterialsprocurementanddisposalcosts.Reductionofrawmaterialuseandmaterialre-useresultsinconsumablesreductionandsolidwasteoutputreduction.Thiswastereductionislinkedtowaterandenergyusagelevels,sotheimplementationofefficiencystrategiesforthewaterandenergysustainabilityfactorscanresultinlowerconsumableuseandsubsequentsolidwastereduction.

• Community Relations:Wastereductionanddiversioncreatesapointofoutreachwiththecommunitybyreassuringneighborhoodresidentsthatacannabiscultivationoperationisaresponsibleenvironmentalpartner,committedtothehealthandwell-beingofthelocalarea.Inaddition,becauselanduseimpactsandGHGemissionsarereduced,aprogressivesolidwastemanagementprogramcandovetailwithmunicipalgoals,suchastheCityofDenverclimate,energyandlandusesustainabilitygoals.10

• Environmental Impacts:Aswaterandenergyareinextricablylinked,consumableusereductionisenabledthroughoptimizationofoperationalprocessesrelatedtowaterandenergy,suchasthosediscussedintheenergyand

WASTE MANAGEMENT & DIVERSIONwatersectionsofthismanual.Inaddition,wastereductionanddiversionresultsinlowervolumesofmunicipalsolidwaste(MSW)andsubsequentlylowerembeddedenergy,landfillgas(LFG)emissionsandlandfillleachate.

Cultivationfacilities’wasteismainlygeneratedfromagriculturalinputs,equipment,andproductpackagingandcanbecategorizedaseitherorganic,recyclable,universalorhazardouswaste.Thoughcannabiswasteisstrictlyregulated,thissectionwilloutlinecompliancebestpracticesthatminimizetheindustry’senvironmentalimpactsfromwaste.

REGULATORY DRIVERSWastefromcannabiscultivationfacilitiesinColoradoisstrictlyregulated.Colorado’sRetailandMedicalMarijuanaRulesincludemultipleprovisionsthateitherencourageorcreatechallengestoreducingtheenvironmentalimpactofwastefromthisindustry.Forexample,therulesexplicitlyallowplantwastetobedisposedofinacompostfacility,encouragingthatpractice.Ontheotherhand,therequirementtorenderplantwasteunusablebymixingitwithotherwastescancreateabarriertocompostingifafacilitydoesnothaveenoughothercompostablewastetomixwithplantwastematerial.UnderColoradoMarijuanaEnforcementDivisionregulations,afterthemarijuanawasteismadeunusableandunrecognizable,therenderedwasteshallbe:

• DisposedofatasolidwastesiteanddisposalfacilitythathasaCertificateofDesignationfromthelocalgoverningbody.

• DepositedatacompostfacilitythathasaCertificateofDesignationfromtheDepartmentofPublicHealthandEnvironmentor...

• Compostedon-siteatafacilityownedbythegeneratorofthewasteandoperatedincompliancewiththeRegulationsPertainingtoSolidWasteSitesandFacilities(6CCR1007-2,Part1)intheColoradoDepartmentofPublicHealthandEnvironment(CDPHE).

10 Denver2020SustainabilityGoals.

Waste

36

Organicwastesrepresentasignificantcomponentofthecannabisproductionwastestream.Unusableplantmaterial,soilandothergrowingmedia,paperandfoodwasteareallcompostableincommercialcompostfacilities.Alternatively,plantandfoodwastecanbeprocessedonoroffsiteusingBokashifermentation.Ineitherscenario,separatingthesematerialsfromthegeneralwastestreamcanpresentsomelogisticalandcompliancechallenges.Carefulimplementationofbestpracticesfororganicwastemanagementcanreducetheenvironmentalimpactofafacilitybycreatingvaluableagriculturalinputswhilemaintainingcompliance.

orothercompostactivatorandwater.ItisimportantthattheproportionsofBokashicompostactivatortoorganicmaterialandresultingpHofthemixturebecorrect.Otherwise,thematerialwillfailtofermentandwillrot.Havingbeenmade"unusableandunrecognizable"thewasteshouldbeallowedtorestatthelicensedfacility,orbetransportedtoanoffsitefacility.Micro-organismscontainedintheBokashicompostactivatorwillquickly"pickle"themarijuanaandbeginbreakingdowntheorganicmatter.Afteratwo-weekanaerobic(oxygen-free)fermentationperiod,theresultingliquid(probiotictea)maybeusedasnutrient-richfertilizer.Thesolidorganicmattermaybeusedasasoilamendment.Bokashifermentationcanbedonethroughouttheyearandrequiresaverysmallfootprint.Itiseasilyscalable,producesneitherheatnorgases,andeliminatesnuisancefactorslinkedtocompostingsiteslikeodorsandvermin.Thefermentingcontainerwillnotattractfliesbecauseitiskeptsealed.Bokashifermentationremainsalargelyunknowntechnologywithnumerousnuances.ItisalsonewtoregulatorssuchasColoradoMarijuanaEnforcementDivision(MED),ColoradoDepartmentofPublicHealthandEnvironmentandColoradoDepartmentofAgriculture(CDA)andcarriesadditionalregulatoryrequirementsnotexpandeduponwithinthisprocedure.Cultivationfacilitiesthatareinterestedinadoptingthisnewtechnology,anditstechnicalandregulatorynuances,areadvisedtoseekprofessionalassistance.Composting Plantwasteandothercompostablewastes—includinggrowingmedia,paperandfoodwaste—canbedivertedfromthelandfillthroughdisposalwithalicensedhaulertoacommercialcompostingfacility.PerMEDrules,cannabisplantdebrismustberendered“unusableandunrecognizable”beforedisposal.Themostsustainablewaytoaccomplishthisisbygrindingplantdebriswithpaperorcardboardwaste,growingmediaorsoil.Oncethishasbeendone,plantdebriscanbecompostedbyalicensedcommercialcomposter.

Sustainability Aspects and Impacts• Landuse• Solidwaste• Compliance• GHGemissions

Process Description Bokashi FermentationPlantwastecanbetreatedonsiteusingtheBokashimethod,anacidicanaerobicfermentationprocess.TotakeadvantageofBokashifermentation,themarijuanawastemustbemade"unusableandunrecognizable"onthelicensedmarijuanacultivator'spropertybygrindingthewasteandlettingitfallintoa55-gallondrumorothersimilarcontainerthatiscapableofbecomingair-tightwhenclosed,addingadditionalmaterialtoachievea50percentmarijuana-wastemix,andaddingBokashi

ORGANIC WASTE MANAGEMENT

Plant materials

Figure 12:Compostingprocessdiagram

ProductProcess

Water Heat CO2

O2

Organic matter – including carbon, chemical energy, protein and nitrogen Mineral nutrients – including nitrogen and other elements Water Microorganisms

Finished compost containing organic material - including carbon, chemical energy, nitrogen, protein, humus, mineral nutrients, water and microorganism

Compost System

Waste

37

Best PracticesOrganicwasterecyclingthroughBokashifermentationon-siteorthroughoff-sitecompostingarethetwomostsustainableoptionsformanagingorganicwaste.Paperorcardboardthatcannotberecycledduetocontaminationshouldbediscardedwiththecompostablematerials.Commonsourcesincludepapertowelsfromrestrooms,handwashingstationsandkitchens,shreddedpaper,andsoiledorwetcardboard.ThesematerialscanhelpcontributetocompliancewithMEDrequirementsformixingplantwaste.Cultivatorsshouldplaceseparatereceptaclesforcompostablewastethroughoutthefacilityanywherethewasteisgenerated.Cultivatorsshouldalwaysincludedescriptivesignage(photosofcompostablematerialsarehelpful),anditisgenerallyabestpracticetoco-locateacompostbinwitheachtrashandrecyclingbin.Employeesmaynotbefamiliarwith

Hazardousanduniversalwastesarepresentinmostcannabiscultivationandextractionfacilities.Reducingandmanagingthesewastescanreduceriskstoemployeesandtheenvironmentandisessentialformaintainingcompliance.Sourcereductionandsubstitutionrepresentthebestopportunitiesforreducingriskandsavingmoneyonhazardouswastemanagementanddisposal.

Sustainability Aspects and Impacts• Materialsuse• Waterquality• Employeewell-being• Compliance

Process Description Regulatoryrequirementsforanygivenbusinessdependonthequantityof

compostingpractices.Providingashorttrainingtoallstaffonwhichitemsbelongineachbinisimportanttoensurethatrecyclablematterisnotcontaminatedwithothertypesofwaste.

Additional ConsiderationsIncorporatingcompostingintoafacilityrequiresanadditionalwastereceptacleoutdoors.CultivatorsshouldensurethatthereisadequatespaceforthereceptacleandthatitmeetsMEDrequirementsforsecurityandcontrolrequirements.Marijuanawastethatcansupporttherapidgrowthofundesirablemicro-organismsshouldbeheldinamannerthatpreventsthegrowthofthesemicro-organismsasrequiredbyMEDRuleR504HealthandSafetyRequirements.

Resources:CertifiablyGreenDenverCompostingResourceSheet

BokashiFermentationMethodandResources

hazardouswastegenerated.Universalwastesareasubsetofhazardouswastesthathavereducedmanagementstandardsasdefinedbyfederal,stateandlocallaws,regulations,rulesorotherrequirements.Mosthazardouswastescommonlygeneratedbycannabisfacilitiesareconsidereduniversalwastes.Theseincludemercury-containinglightingandballasts,manytypesofpesticidesorotherchemicalsusedinthecultivationprocess,certainsolventsorotherchemicalsusedintheproductionofmarijuanaconcentrate,marijuanasoakedinaflammablesolventforpurposesofproducingamarijuanaconcentrate,electronics(e-waste)andbatteries.Cultivatorsmustdeterminewhichregulationsapplytothewastebeforedisposal,includingmakingahazardouswastedetermination.CultivatorsshouldconsultwiththeHazardousMaterialsandWasteManagementDivision’sCustomer

UNIVERSAL & HAZARDOUS WASTE

Waste

38

TechnicalAssistancelineat303-692-3320withanyquestionsabouthazardouswaste.Hazardouswastesmustbedisposedofproperlybyaregisteredhazardouswastetransportershippingtoahazardouswastetreatment,storageanddisposalfacility(TSDF).AnygenerationofregulatedhazardouswastesmustbedisclosedtoCDPHE.CultivatorsmustobtainanEPAidentificationnumberbeforewastescanbeacceptedfordisposalbyaTSDF.Considerations:Priortobeginninganymarijuana-relatedoperations,cultivatorsshouldconsiderthefollowing:

• Isaplaninplacefordealingwithsolidandhazardouswastesgeneratedduringoperations?

• Whatquantitiesofwastewillbegeneratedandwhatarethevariouswastestreams?

• Iftheoperationisgeneratinghazardouswaste,hasthecultivatordeterminedwhichistheappropriategeneratorcategoryandwhatrulesmayapply?• Conditionallyexemptsmallquantitygenerator(CESQG).

• Small-quantitygenerator(SQG).• Large-quantitygenerator(LQG).

• Isthereawastestorageplanaddressingstoragemethodsandlocationsandlengthoftimethewastemaybestored?

• Whatreadilyavailablematerialscouldbeusedtorendermarijuanaplantmaterialandmarijuanaproductsunusableandunrecognizable?

• Wherewillthewastebesentandhowwillitbetransported?

• Willanycompostingofmarijuana-relatedwasteoccuron-site?

• Whatlicensingandpermittingrequirementswillapplytothisoperation?

Best PracticesThebestwaytoreducetheexpenseandriskassociatedwithmanaginghazardouswastesistoreducetheamountofhazardousmaterialsenteringthefacility.Opportunitiesforcultivatorsinclude:

• Planningusageofpesticidesandchemicals.• Purchasematerialsinsmallerquantitiesandbuynomorethanaone-yearsupplyofproduct.Thishelpsavoidexcessmaterialexpiringorbecomingobsoleteasregulationschange.

• Preparingonlytheamountneededforeachapplication.

• Ifapplyingorhandlingpesticides,lawfullyadheringtoallpesticidelabelinstructions.ItisalsorecommendedthatatleastoneemployeehasobtainedaCDAPrivateApplicatorlicense.Moreinformationcanbefoundatwww.colorado.gov/pacific/agplants/private-pesticide-applicators.

• Selectingideallampsandballasts.• Purchaselampsandballastswiththelongestburntimepossibletoreducethefrequencyofreplacement.

• ConsiderLEDlighting,whichdoesnotbecomehazardouswasteattheendofitslife.

• Recycleuniversalwastelamps,ballastsandbatterieswithaqualifiedrecycler.

Waste

Resources:• CDPHEGeneratorAssistanceProgram• EPAResourceConservationandRecoveryAct(RCRA)• ColoradoHazardousWasteGeneratorHandbook• CDPHESolidWasteRegulations• HazardousWasteManagementandGuidance• MarijuanaEnforcementbytheColoradoDepartmentofRevenue• Mercury-ContainingLighting• UniversalWastes

39

Packagingcannabisproductsforsaletoconsumersrepresentsasignificantdownstreamwastesource.Reducingtheamountofnon-recyclableproductpackagingreducesoverallimpactandcanbeattractivetocustomers.

Sustainability Aspects and Impacts• Materialsuse• Compliance• Solidwaste• Communityrelations

Process Description Cannabisproductsaresoldinavarietyofpackaging,encompassinganumberofdifferentmaterials,sizes,shapesandfunctionalities.Belowisanoverviewofsomecommontypesofpackagingaswellasattributesanduses.

• Vials:Typicallymadefromvirginpolypropylene(#5)plasticandwidelyusedforpackagingflower.Vialsareacceptedinmostmunicipalrecyclingprograms,somemanufacturersincluderecycledmaterialsinthecontainers.Versionswithchild-proofcapsareavailable,eliminatingtheneedforanadditionalexitpackage.

• Mylar Bags:Usedtopackageavarietyofproducts,typicallyconcentrateandfoodproducts.Mylar,orpolyethyleneterephthalate(PET)plasticfilm,istypicallynotacceptedinmixedrecyclingprograms.Resealableversionsarepreferablebecausetheyenablelongerusebythecustomer.

• Concentrate Containers:Small,typicallyscrew-topcontainerscanbemadefromavarietyofmaterials,includingpolystyrene,acrylic,silicone,glass,ormixedmaterialssuchaspolystyrenewithasiliconeinsert.Whilesomeofthesematerialsaretechnicallyrecyclable,recyclingfacilitiessortoutverysmallitems,andthesmallsizeofthesecontainersgenerallymeanstheywillendupinthelandfillevenifplacedinarecyclingbin.

• Pre-Roll Tubes:Narrowplastictubes,typicallymadefromsamematerialsaspolypropylenevials,areusedtosellsinglejoints.Similartoconcentratecontainers,smalldimensionsmakepre-rolltubesdifficulttorecycle.

• Exit Bags:Child-resistantbagsusedasouterpackagingwhenproductssoldareinnonchild-resistantpackaging.Oftenmadewithmixedmaterials,suchasfoilwithpolyethylenecoating,thesearetypicallynotrecyclable.Reusableversionsareavailable.

Best PracticesCultivatorsshould:

• Choosepackagingthatislightweight,aslightweightmaterialsrequirelessfueltoship,reducingtheassociatedemissions.

• Whenpossible,selectpackagingthatismadefromrecycledcontentandisrecyclableand/orcompostable,suchasrecycledPETplastics,recycledhigh-densitypolyethylene(HDPE)orcardboard.

• Implementapackagingreturnprogramatthepointofsale.Somecustomersmaynothaverecyclingserviceathome,soreturningtothestoremaybetheonlyrecyclingoption.Also,smallerplasticpiecesandcontainers,5-or10-mLconcentratecontainers,aresocompactandlightweightthattheyoftenmissgettingsortedoutintherecyclingprocess,endingupinthelandfill.

Similarly,discusswithpackagingsuppliersormanufacturersthepossibilityofatake-backprogram.Manufacturersmaybeabletoacceptusedpackagingandreuseitorre-formitintonewpackaging,helpingleadtoaclosed-loopforproductpackaging.

• Utilizechild-resistantpackagingtoeliminatetheneedforanadditionalexitpackage.Ifexitpackagingisnecessary,operationsshouldofferareusabletypeandencouragecustomerstoreturnthemtothestore.

Packaging

Waste

40

• MarijuanaEnforcementDivisionPermanentRetailMarijuanaRules• SustainablePackagingCoalition-DefinitionofSustainablePackaging• FrameworkforSustainableFoodPackagingDesign

Additional ConsiderationsPackagingmaterialsanddesignsarequicklyevolving,inmanycaseswithenhancedsustainabilityattributes.Asconsumersandbusinesscustomersdemandmoresustainableoptions,theindustryrespondswithmorerecyclable,compostableandinnovativematerialoptions.Onefutureopportunitywouldbetomakecannabispackagingclosed-loop,wherebycannabisplantwasteisusedasafeedstockforpolylacticacid(PLA)plasticandturnedintoproductpackaging.

Sources of Environmentally Preferable Packaging

C o m p a ny Website Recycled Content Recyclable Compostable

Higher Standard Packaging

www.higherstandardpackaging.com Yes Yes No

Elevate Packaging www.elevatepackaging.com Yes Yes Yes

Sun Grown Packaging

www.sungrownpackaging.com Yes Yes Yes

Sana Packaging www.sanapackaging.com Yes Yes No

Resources:

Table 7:SourcesofEnvironmentallyPreferablePackaging

40

Waste

41

Denver’srecyclingrateof18percentfallswellbelowthe34percentnationalaverage.11Currently,recyclinginDenverisnotmandatory,helpingleadtolowratesofwastediversion.However,businessescanbenefitfromproperlysourcing,separatinganddivertingrecyclablematerials.Single-streamcollectionandhaulingisthepracticeofchoiceoflocalrecyclers,makingitsimpleforthecustomertoparticipate.CombinedwiththesophisticationofareaMaterialsRecoveryFacilities(MRFs),thesingle-streamprocesscanleadtohighratesandhighqualityofmaterialrecapture.Recyclingreducesenvironmentalimpactofwastegeneratedincannabisoperations.

warehouse-basedindustries.Theexceptionstothisarethepackaginganduniversalwasterecyclingmentionedinprevioussections.Packagingfrominboundmaterials,wastegeneratedduringoperationsandemployeewastearethemainsourcesofrecyclablematerials.Recyclablematerialsshouldbeseparatedfromotherwastestreamsandpickedupbyarecyclingserviceprovidertoachieveenvironmentalbenefit.

Best Practices

Cultivatorsshould:

• Makesurerecyclablesareclean,dry,andseparatedfromsolidwasteitemslikeplasticbags,waxedpaper,brokenglassandpackagingthatlookslikecardboardbutisactuallyplastic(mealpackaging,receipts,coffeecups,etc.).

• Co-locaterecyclingbinswithalltrashreceptaclesandincludesignageforallbins,ideallyusingphotosofacceptableitemsforeachbin.

• Usesignageprovidedbythewastehauler,orcreatecustomsignageforspecificitems.Hangsignageonbinsorabovebinstohelpemployeeswhensortingmaterials.

ExamplesofRecycle,Compost,GeneralSignageareavailablethroughlocalwastehaulerwebsites.

Additional Considerations

RecyclingtechnologyandserviceprovidersintheDenverareaareimprovingandgrowing.Manyitemsthatwerenotacceptedforrecyclinginthepast,suchascartonsandpolystyrenefoam,arenowacceptedbysomeoralllocalrecyclinghaulers.Two-waycommunicationbetweenhaulersandbusinessesisnecessarytoensurethatbusinessmanagersstayuptodateonthecorrectrecyclingprocesses.

Sustainability Aspects and Impacts• Solidwaste• Resourceuse

Process Description Recyclingopportunitiesinthecannabisindustryaresimilartothoseinother

11CoPIRGandEcoCycle

Recycling

IN 2016 DENVER RECYCLED & COMPOSTEDABOUT 45,000 TONSOFWASTE

LASTYEARALONEDENVERRECYCLEDENOUGHTO:

SAVE SAVE

SAVEKEEP

T R E E S GALLONSOFOIL

GALLONSOFWATERTRUCK LOADS

OFTRASHOUTOFTHELANDFILL

548,000 5.5 MILLION

182 MILLION9,000

Figure 13:DiversionTotalsforDenver2016

Waste

42

SAMPLE ENERGY AUDIT FORM Sample Energy Audit Form

APPENDIX A: RESOURCE DOCUMENTS

43

SAMPLE WATER QUALITY REPORT

COLORADO STATE UNIVERSITY COLORADO STATE UNIVERSITYSoil, Water & Plant Testing Laboratory Soil, Water & Plant Testing LaboratoryRoom A320, NESB Room A320, NESBFort Collins, CO 80523-1120 Fort Collins, CO 80523-1120Phone: 970-491-5061 / Fax: 970-491-2930 Phone: 970-491-5061 / Fax: 970-491-2930

Date Received: 11/3/16Billing: Date Reported: 11/8/16 Billing:

SOURCE: Arapahoe City LAB # W519 I SOURCE: Arapahoe City

Results ResultsConductivity 398 µmhos/cmpH 7.5

Recommended pHc 8.0Limit mg/L meq/L

mg/L mg/L Calcium 29.2 1.46Aluminum 0.13 5.0 Magnesium 7.24 0.60Ammonium * N/A Sodium 19.8 0.86Arsenic * 0.2 Potassium 1.87 0.05Barium 0.03 1.0 Carbonate <0.1 <0.1Boron <0.01 5.0 Bicarbonate 103 <0.01Cadmium <0.005 0.05 Chloride 7.20 0.20Chromium <0.01 1.0 Sulfate 50.5 1.05Copper 0.02 0.5 Nitrate 0.9 0.9Fluoride * 2.0 Nitrate-Nitrogen 0.2 0.2Iron <0.01 N/A Boron <0.01Lead 0.01 0.1 Pounds of Sulfate 44.9Manganese <0.01 N/A per acre footMercury * 0.01Molybdenum 0.02 N/A Pounds of NitrateNickel <0.01 N/A per acre foot 0.5Phosphorus <0.01 N/ASelenium * 0.05 Salinity SodiumZinc 0.06 24.0 SAR 0.8 Hazard Low Hazard Low* Not requested

COMMENTS: This is good quality water for irrigation.

IRRIGATION WATER ANALYSIS

"Routine Package""Metals" and "Individual Element" Analysis

APPENDIX A: RESOURCE DOCUMENTS

44

2020 Sustainability Goals

The 2020 Sustainability Goals focus on 12 resource areas and set goals for the City and County of Denver, and community. The resource areas are Air Quality, Climate, Energy, Food, Health, Housing, Land Use, Materials, Mobility, Water Quantity, Water Quality and Workforce.

AHAM Association of Home Appliance Manufacturers: AHAM provides leadership, advocacy, and a forum for public policy, standards and business decisions to consumers and appliance manufacturers.

anion A negatively charged ion.

ASHRAE American Society of Heating, Refrigeration and Air Conditioning Engineers

BMS Building Management System: A system that controls the environment of a facility and which, when monitored, may alert to alert facility managers about broken or malfunctioning equipment.

Ca++ Calcium cation

cation A positively charged ion.

CDA Colorado Department of Agriculture: The mission of the CDA is to strengthen and advance Colorado agriculture; promote a safe and high-quality food supply; protect consumers; and foster responsible stewardship of the environment and natural resources.

CDPHE Colorado Department of Public Health and Environment: State department providing services in the areas of health, environment, marijuana, vital records, public records, laboratory services, health equity, and emergency preparedness and response.

CESQG Conditionally Exempt Small Quantity Generator: An EPA category for waste generators, based upon quantities of hazardous and acutely hazardous waste generated and accumulated.

CHP Combined Heat and Power: CHP systems, also called cogeneration systems, generate power and heat in a single system.

CMH Ceramic Metal Halide: CMH lamps provide energy-efficient wide-spectrum lighting.

CO2Carbon Dioxide: CO2 is a naturally and artificially produced compound. It is naturally produced by decompositions, respiration, and other natural sources and used by plants for photosynthesis (along with water and sunlight). It is artificially produced from burning fossil fuels, deforestations and manufacturing processes.

CSWG Cannabis Sustainability Workinggroup, also called “the Workgroup”: The CSWG was developed by DEH to determine best practices and to develop this manual and other education resources for the industry.

DG Distributed Generation: DG is an approach to energy production that generates power at the end-user location.

DEH Denver Environmental Health: The DEH works with city, state and community partners to conduct education, community engagement, and enforcement to ensure healthy people, healthy pets and a sustainable environment.

Denver’s Climate Action Plan 2015

Denver’s Climate Action Plan 2015 is a document developed that sets forth Denver’s goals, priorities, and strategies to meet the 2020 Sustainability Goals and to reduce greenhouse gas emissions 80 percent from its 2005 baseline by 2050.

EAS Engineering Assistance Study: An EAS is conducted to identify and evaluate energy savings opportunities.

Appendix B – Terms and Definitions

45

EC Electrical Conductivity: EC is the potential for material to conduct electricity (i.e. the potential for an electrical current to move through water.)

ECA Electrochemically Activated Water: ECA is water mixed with food-grade salt fed through a reactor that electrically charges the salt water to produce disinfect or detergent solutions.

EER Energy Efficiency Ratio: The EER is the ratio of cooling capacity to power input.

EMS Energy Management System: A system that monitors the environment of a facility and which may be used to alert to alert facility managers about broken or malfunctioning equipment.

Energize Denver

A benchmark ordinance requiring owners/operators of large commercial and multifamily buildings to annually assess and report the buildings’ energy performance using the free ENERGYSTAR Portfolio Manager tool.

EPA U.S. Environmental Protection Agency

FCU Fan Coil Unit: An FCU is a device consisting of a heating and/or cooling heat exchanger or coil and fan. It is part of an HVAC unit.

Feasibility Study

Also called a qualification study, a specialist performs the feasibility study using 6 to 12 months of utility bills to build a high-level model that provides a “ballpark” economic, environmental and operational impact assessment.

g/kW grams per kilowatts

g/W grams per Watts

g/sq ft or g/SF grams per square feet

HCO3-Bicarbonate anion

HPS High Pressure Sodium

HVAC Heating, Ventilation and Air Conditioning: The system used to heat and cool buildings.

InfoWise An Xcel Energy service providing interval data that is used to create a web-based energy dashboard.

ion An electrically charged atom or groups of atoms.

IPLV Integrated Part Load Value: IPLV describes the performance of a chiller capable of capacity modulation.

kW/cycle Kilowatts per cycle

LED Light-Emitting Diode: An LED is a two-lead semiconductor light-source.

LEP Light-Emitting Plasma: LEP is high-intensity full-spectrum light source.

LFG Landfill Gas: LFG is created by the microorganisms in a landfill.

LQG Large-Quantity Generator: An EPA category for waste generators based upon quantities of hazardous and acutely hazardous waste generated and accumulated.

MED Marijuana Enforcement Department, Department of Revenue: The MED’s mission is to promote public safety and reduce public harm by regulating the Colorado commercial marijuana industry through consistent administration of laws and regulations and strategic integration of process management, functional expertise and innovative problem-solving.

Appendix B – Terms and Definitions

46

Mg++ Magnesium cationMH Metal Halide: An MH lamp is a high-intensity gas discharge lamp.mL millilitermol/m2/day mole per square meter per day

mol/m2/S mole per square meter per Siemens

mol/µmol mole per micromole

µmol/mol micromole per mole

µmol/SF micromole per square foot

µmol/m-2 s-1 micromole per square meter and second (PPFD unit)

MSW Municipal Solid Waste: MSW is non-hazardous waste, such as household trash.

Na+ Sodium cation

NFT Nutrient Film Technique: NFT is a hydroponic technique whereby the bare roots of a plant are watered using a controlled, shallow, nutrient-dense stream.

nm nanometer

PAR Spectrum Photosynthetically Active Radiation: PAR designates lighting spectral range.

PPFD Photosynthetic Photon Flux Density: PPFD is the number of photons in the photosynthetically active range per square meter per second.

PV Photovoltaic: Conversion of light into electricity.

Qualification Study

See Feasibility Study

Reheat A term used to describe heating a space to allow a cooling system to run 24 hours a day to produce dehumidification without reducing temperatures in the space.

RH Relative Humidity: RH is the ratio of actual vapor density in the air to saturated vapor density of the air.

ROI Return on Investment: ROI is calculated as gains-costs/costs. Though typically used in costs analyses, it can be used to calculate investment benefits of any type.

SEER Seasonal Energy Efficiency Rating: A measure of the efficiency of an air cooling system.

SQG Small-Quantity Generator: An EPA category for waste generators based upon quantities of hazardous and acutely hazardous waste generated and accumulated.

VRF Variable Refrigerant Flow: VRF is an HVAC technology that is used to reduce loss of efficiency.

XCEL Xcel Energy is a utility company serving several Midwestern and Western States, including Colorado.

Appendix B – Terms and Definitions

denvergov.org/environmentalhealth

twitter.com/denenvirohealth | facebook.com/denverenvironmentalquality

Printed on recycled paper